Journal articles on the topic 'Quantum Machine Learning (QML)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Quantum Machine Learning (QML).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Shaik, Riyaaz Uddien, Aiswarya Unni, and Weiping Zeng. "Quantum Based Pseudo-Labelling for Hyperspectral Imagery: A Simple and Efficient Semi-Supervised Learning Method for Machine Learning Classifiers." Remote Sensing 14, no. 22 (November 16, 2022): 5774. http://dx.doi.org/10.3390/rs14225774.
Full textKarandashev, Konstantin, and O. Anatole von Lilienfeld. "An orbital-based representation for accurate quantum machine learning." Journal of Chemical Physics 156, no. 11 (March 21, 2022): 114101. http://dx.doi.org/10.1063/5.0083301.
Full textChoppakatla, Arathi. "Quantum Machine Learning: Bridging the Gap Between Quantum Computing and Artificial Intelligence: An Overview." International Journal for Research in Applied Science and Engineering Technology 11, no. 8 (August 31, 2023): 1149–53. http://dx.doi.org/10.22214/ijraset.2023.55318.
Full textAvramouli, Maria, Ilias Κ. Savvas, Anna Vasilaki, and Georgia Garani. "Unlocking the Potential of Quantum Machine Learning to Advance Drug Discovery." Electronics 12, no. 11 (May 25, 2023): 2402. http://dx.doi.org/10.3390/electronics12112402.
Full textT West, Maxwell, Martin Sevior, and Muhammad Usman. "Reflection equivariant quantum neural networks for enhanced image classification." Machine Learning: Science and Technology 4, no. 3 (August 24, 2023): 035027. http://dx.doi.org/10.1088/2632-2153/acf096.
Full textChristensen, Anders S., and O. Anatole von Lilienfeld. "Operator Quantum Machine Learning: Navigating the Chemical Space of Response Properties." CHIMIA International Journal for Chemistry 73, no. 12 (December 18, 2019): 1028–31. http://dx.doi.org/10.2533/chimia.2019.1028.
Full textNguyen, Quoc Chuong, Le Bin Ho, Lan Nguyen Tran, and Hung Q. Nguyen. "Qsun: an open-source platform towards practical quantum machine learning applications." Machine Learning: Science and Technology 3, no. 1 (March 1, 2022): 015034. http://dx.doi.org/10.1088/2632-2153/ac5997.
Full textSrikumar, Maiyuren, Charles D. Hill, and Lloyd C. L. Hollenberg. "Clustering and enhanced classification using a hybrid quantum autoencoder." Quantum Science and Technology 7, no. 1 (December 21, 2021): 015020. http://dx.doi.org/10.1088/2058-9565/ac3c53.
Full textKumar, Tarun, Dilip Kumar, and Gurmohan Singh. "Performance Analysis of Quantum Classifier on Benchmarking Datasets." International Journal of Electrical and Electronics Research 10, no. 2 (June 30, 2022): 375–80. http://dx.doi.org/10.37391/ijeer.100252.
Full textChen, Samuel Yen-Chi, and Shinjae Yoo. "Federated Quantum Machine Learning." Entropy 23, no. 4 (April 13, 2021): 460. http://dx.doi.org/10.3390/e23040460.
Full textBelis, Vasilis, Samuel González-Castillo, Christina Reissel, Sofia Vallecorsa, Elías F. Combarro, Günther Dissertori, and Florentin Reiter. "Higgs analysis with quantum classifiers." EPJ Web of Conferences 251 (2021): 03070. http://dx.doi.org/10.1051/epjconf/202125103070.
Full textMancilla, Javier, and Christophe Pere. "A Preprocessing Perspective for Quantum Machine Learning Classification Advantage in Finance Using NISQ Algorithms." Entropy 24, no. 11 (November 15, 2022): 1656. http://dx.doi.org/10.3390/e24111656.
Full textWang, Maida, Anqi Huang, Yong Liu, Xuming Yi, Junjie Wu, and Siqi Wang. "A Quantum-Classical Hybrid Solution for Deep Anomaly Detection." Entropy 25, no. 3 (February 27, 2023): 427. http://dx.doi.org/10.3390/e25030427.
Full textGyurik, Casper, Dyon Vreumingen, van, and Vedran Dunjko. "Structural risk minimization for quantum linear classifiers." Quantum 7 (January 13, 2023): 893. http://dx.doi.org/10.22331/q-2023-01-13-893.
Full textGyurik, Casper, Chris Cade, and Vedran Dunjko. "Towards quantum advantage via topological data analysis." Quantum 6 (November 10, 2022): 855. http://dx.doi.org/10.22331/q-2022-11-10-855.
Full textWieder, Marcus, Josh Fass, and John D. Chodera. "Fitting quantum machine learning potentials to experimental free energy data: predicting tautomer ratios in solution." Chemical Science 12, no. 34 (2021): 11364–81. http://dx.doi.org/10.1039/d1sc01185e.
Full text., Harshita. "6G Communication Network & Emerging Technologies." International Journal for Research in Applied Science and Engineering Technology 9, no. VII (July 10, 2021): 507–14. http://dx.doi.org/10.22214/ijraset.2021.36029.
Full textWang, Xinbiao, Yuxuan Du, Yong Luo, and Dacheng Tao. "Towards understanding the power of quantum kernels in the NISQ era." Quantum 5 (August 30, 2021): 531. http://dx.doi.org/10.22331/q-2021-08-30-531.
Full textYun, Won Joon, Jihong Park, and Joongheon Kim. "Quantum Multi-Agent Meta Reinforcement Learning." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 9 (June 26, 2023): 11087–95. http://dx.doi.org/10.1609/aaai.v37i9.26313.
Full textRiaz, Farina, Shahab Abdulla, Hajime Suzuki, Srinjoy Ganguly, Ravinesh C. Deo, and Susan Hopkins. "Accurate Image Multi-Class Classification Neural Network Model with Quantum Entanglement Approach." Sensors 23, no. 5 (March 2, 2023): 2753. http://dx.doi.org/10.3390/s23052753.
Full textShahwar, Tayyaba, Junaid Zafar, Ahmad Almogren, Haroon Zafar, Ateeq Ur Rehman, Muhammad Shafiq, and Habib Hamam. "Automated Detection of Alzheimer’s via Hybrid Classical Quantum Neural Networks." Electronics 11, no. 5 (February 26, 2022): 721. http://dx.doi.org/10.3390/electronics11050721.
Full textSato, Kyosuke, and Kenji Tsuruta. "Optimization of Molecular Characteristics via Machine Learning Based on Continuous Representation of Molecules." Materials Science Forum 1016 (January 2021): 1492–96. http://dx.doi.org/10.4028/www.scientific.net/msf.1016.1492.
Full textPinheiro, Gabriel A., Johnatan Mucelini, Marinalva D. Soares, Ronaldo C. Prati, Juarez L. F. Da Silva, and Marcos G. Quiles. "Machine Learning Prediction of Nine Molecular Properties Based on the SMILES Representation of the QM9 Quantum-Chemistry Dataset." Journal of Physical Chemistry A 124, no. 47 (November 11, 2020): 9854–66. http://dx.doi.org/10.1021/acs.jpca.0c05969.
Full textPilling, Michael J., Alex Henderson, Benjamin Bird, Mick D. Brown, Noel W. Clarke, and Peter Gardner. "High-throughput quantum cascade laser (QCL) spectral histopathology: a practical approach towards clinical translation." Faraday Discussions 187 (2016): 135–54. http://dx.doi.org/10.1039/c5fd00176e.
Full textPacheco-Londoño, Leonardo C., Eric Warren, Nataly J. Galán-Freyle, Reynaldo Villarreal-González, Joaquín A. Aparicio-Bolaño, María L. Ospina-Castro, Wei-Chuan Shih, and Samuel P. Hernández-Rivera. "Mid-Infrared Laser Spectroscopy Detection and Quantification of Explosives in Soils Using Multivariate Analysis and Artificial Intelligence." Applied Sciences 10, no. 12 (June 18, 2020): 4178. http://dx.doi.org/10.3390/app10124178.
Full textMittal, Shachi, Kevin Yeh, L. Suzanne Leslie, Seth Kenkel, Andre Kajdacsy-Balla, and Rohit Bhargava. "Simultaneous cancer and tumor microenvironment subtyping using confocal infrared microscopy for all-digital molecular histopathology." Proceedings of the National Academy of Sciences 115, no. 25 (June 4, 2018): E5651—E5660. http://dx.doi.org/10.1073/pnas.1719551115.
Full textBiamonte, Jacob, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, and Seth Lloyd. "Quantum machine learning." Nature 549, no. 7671 (September 2017): 195–202. http://dx.doi.org/10.1038/nature23474.
Full textAllcock, Jonathan, and Shengyu Zhang. "Quantum machine learning." National Science Review 6, no. 1 (November 30, 2018): 26–28. http://dx.doi.org/10.1093/nsr/nwy149.
Full textPeleshenko, Vitaly A. "QUANTUM MACHINE LEARNING." SOFT MEASUREMENTS AND COMPUTING 11, no. 60 (2022): 82–107. http://dx.doi.org/10.36871/2618-9976.2022.11.008.
Full textPudenz, Kristen L., and Daniel A. Lidar. "Quantum adiabatic machine learning." Quantum Information Processing 12, no. 5 (November 21, 2012): 2027–70. http://dx.doi.org/10.1007/s11128-012-0506-4.
Full textSaini, Shivani, PK Khosla, Manjit Kaur, and Gurmohan Singh. "Quantum Driven Machine Learning." International Journal of Theoretical Physics 59, no. 12 (December 2020): 4013–24. http://dx.doi.org/10.1007/s10773-020-04656-1.
Full textLamata, Lucas. "Quantum Reinforcement Learning with Quantum Photonics." Photonics 8, no. 2 (January 28, 2021): 33. http://dx.doi.org/10.3390/photonics8020033.
Full textFung, Fred. "QUANTUM SOFTWARE: Quantum Machine Learning in Telecommunication." Digitale Welt 6, no. 2 (March 12, 2022): 30–31. http://dx.doi.org/10.1007/s42354-022-0472-7.
Full textCárdenas‐López, Francisco A., Mikel Sanz, Juan Carlos Retamal, and Enrique Solano. "Enhanced Quantum Synchronization via Quantum Machine Learning." Advanced Quantum Technologies 2, no. 7-8 (January 7, 2019): 1800076. http://dx.doi.org/10.1002/qute.201800076.
Full textLamata, Lucas, Mikel Sanz, and Enrique Solano. "Quantum Machine Learning and Bioinspired Quantum Technologies." Advanced Quantum Technologies 2, no. 7-8 (August 2019): 1900075. http://dx.doi.org/10.1002/qute.201900075.
Full textBANG, Jeongho. "Machine Learning and Quantum Algorithm." Physics and High Technology 26, no. 12 (December 30, 2017): 25–29. http://dx.doi.org/10.3938/phit.26.048.
Full textRoggero, Alessandro, Jakub Filipek, Shih-Chieh Hsu, and Nathan Wiebe. "Quantum Machine Learning with SQUID." Quantum 6 (May 30, 2022): 727. http://dx.doi.org/10.22331/q-2022-05-30-727.
Full textSpagnolo, Nicolò, Alessandro Lumino, Emanuele Polino, Adil S. Rab, Nathan Wiebe, and Fabio Sciarrino. "Machine Learning for Quantum Metrology." Proceedings 12, no. 1 (August 23, 2019): 28. http://dx.doi.org/10.3390/proceedings2019012028.
Full textFabrizio, Alberto, Benjamin Meyer, Raimon Fabregat, and Clemence Corminboeuf. "Quantum Chemistry Meets Machine Learning." CHIMIA International Journal for Chemistry 73, no. 12 (December 18, 2019): 983–89. http://dx.doi.org/10.2533/chimia.2019.983.
Full textWang, Bingjie. "Quantum algorithms for machine learning." XRDS: Crossroads, The ACM Magazine for Students 23, no. 1 (September 20, 2016): 20–24. http://dx.doi.org/10.1145/2983535.
Full textCarrasquilla, Juan. "Machine learning for quantum matter." Advances in Physics: X 5, no. 1 (January 1, 2020): 1797528. http://dx.doi.org/10.1080/23746149.2020.1797528.
Full textDas Sarma, Sankar, Dong-Ling Deng, and Lu-Ming Duan. "Machine learning meets quantum physics." Physics Today 72, no. 3 (March 2019): 48–54. http://dx.doi.org/10.1063/pt.3.4164.
Full textKhan, Tariq M., and Antonio Robles-Kelly. "Machine Learning: Quantum vs Classical." IEEE Access 8 (2020): 219275–94. http://dx.doi.org/10.1109/access.2020.3041719.
Full textStajic, Jelena. "Machine learning and quantum physics." Science 355, no. 6325 (February 9, 2017): 591.15–593. http://dx.doi.org/10.1126/science.355.6325.591-o.
Full textSchuld, Maria. "Machine learning in quantum spaces." Nature 567, no. 7747 (March 2019): 179–81. http://dx.doi.org/10.1038/d41586-019-00771-0.
Full textSheng, Yu-Bo, and Lan Zhou. "Distributed secure quantum machine learning." Science Bulletin 62, no. 14 (July 2017): 1025–29. http://dx.doi.org/10.1016/j.scib.2017.06.007.
Full textHush, Michael R. "Machine learning for quantum physics." Science 355, no. 6325 (February 9, 2017): 580. http://dx.doi.org/10.1126/science.aam6564.
Full textSarkar, Soumyadip. "Quantum Machine Learning: A Review." International Journal for Research in Applied Science and Engineering Technology 11, no. 3 (March 31, 2023): 352–54. http://dx.doi.org/10.22214/ijraset.2023.49421.
Full textWatkins, William M., Samuel Yen-Chi Chen, and Shinjae Yoo. "Quantum machine learning with differential privacy." Scientific Reports 13, no. 1 (February 11, 2023). http://dx.doi.org/10.1038/s41598-022-24082-z.
Full textMoussa, Charles, Max Hunter Gordon, Michał Baczyk, Marco Cerezo, Lukasz Cincio, and Patrick J. Coles. "Resource frugal optimizer for quantum machine learning." Quantum Science and Technology, August 11, 2023. http://dx.doi.org/10.1088/2058-9565/acef55.
Full text