Academic literature on the topic 'Quantum Machine Learning (QML)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Quantum Machine Learning (QML).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Quantum Machine Learning (QML)"
Shaik, Riyaaz Uddien, Aiswarya Unni, and Weiping Zeng. "Quantum Based Pseudo-Labelling for Hyperspectral Imagery: A Simple and Efficient Semi-Supervised Learning Method for Machine Learning Classifiers." Remote Sensing 14, no. 22 (November 16, 2022): 5774. http://dx.doi.org/10.3390/rs14225774.
Full textKarandashev, Konstantin, and O. Anatole von Lilienfeld. "An orbital-based representation for accurate quantum machine learning." Journal of Chemical Physics 156, no. 11 (March 21, 2022): 114101. http://dx.doi.org/10.1063/5.0083301.
Full textChoppakatla, Arathi. "Quantum Machine Learning: Bridging the Gap Between Quantum Computing and Artificial Intelligence: An Overview." International Journal for Research in Applied Science and Engineering Technology 11, no. 8 (August 31, 2023): 1149–53. http://dx.doi.org/10.22214/ijraset.2023.55318.
Full textAvramouli, Maria, Ilias Κ. Savvas, Anna Vasilaki, and Georgia Garani. "Unlocking the Potential of Quantum Machine Learning to Advance Drug Discovery." Electronics 12, no. 11 (May 25, 2023): 2402. http://dx.doi.org/10.3390/electronics12112402.
Full textT West, Maxwell, Martin Sevior, and Muhammad Usman. "Reflection equivariant quantum neural networks for enhanced image classification." Machine Learning: Science and Technology 4, no. 3 (August 24, 2023): 035027. http://dx.doi.org/10.1088/2632-2153/acf096.
Full textChristensen, Anders S., and O. Anatole von Lilienfeld. "Operator Quantum Machine Learning: Navigating the Chemical Space of Response Properties." CHIMIA International Journal for Chemistry 73, no. 12 (December 18, 2019): 1028–31. http://dx.doi.org/10.2533/chimia.2019.1028.
Full textNguyen, Quoc Chuong, Le Bin Ho, Lan Nguyen Tran, and Hung Q. Nguyen. "Qsun: an open-source platform towards practical quantum machine learning applications." Machine Learning: Science and Technology 3, no. 1 (March 1, 2022): 015034. http://dx.doi.org/10.1088/2632-2153/ac5997.
Full textSrikumar, Maiyuren, Charles D. Hill, and Lloyd C. L. Hollenberg. "Clustering and enhanced classification using a hybrid quantum autoencoder." Quantum Science and Technology 7, no. 1 (December 21, 2021): 015020. http://dx.doi.org/10.1088/2058-9565/ac3c53.
Full textKumar, Tarun, Dilip Kumar, and Gurmohan Singh. "Performance Analysis of Quantum Classifier on Benchmarking Datasets." International Journal of Electrical and Electronics Research 10, no. 2 (June 30, 2022): 375–80. http://dx.doi.org/10.37391/ijeer.100252.
Full textChen, Samuel Yen-Chi, and Shinjae Yoo. "Federated Quantum Machine Learning." Entropy 23, no. 4 (April 13, 2021): 460. http://dx.doi.org/10.3390/e23040460.
Full textDissertations / Theses on the topic "Quantum Machine Learning (QML)"
Huembeli, Patrick. "Machine learning for quantum physics and quantum physics for machine learning." Doctoral thesis, Universitat Politècnica de Catalunya, 2021. http://hdl.handle.net/10803/672085.
Full textLa investigación en la intersección del aprendizaje automático (machine learning, ML) y la física cuántica es una área en crecimiento reciente debido al éxito y las enormes expectativas de ambas áreas. ML es posiblemente una de las tecnologías más prometedoras que ha alterado y seguirá alterando muchos aspectos de nuestras vidas. Es casi seguro que la forma en que investigamos no es una excepción y el ML, con su capacidad sin precedentes para encontrar patrones ocultos en los datos ayudará a futuros descubrimientos científicos. La física cuántica, por otro lado, aunque a veces no es del todo intuitiva, es una de las teorías físicas más exitosas, y además estamos a punto de adoptar algunas tecnologías cuánticas en nuestra vida diaria. La física cuántica de los muchos cuerpos (many-body) es una subárea de la física cuántica donde estudiamos el comportamiento colectivo de partículas o átomos y la aparición de fenómenos que se deben a este comportamiento colectivo, como las fases de la materia. El estudio de las transiciones de fase de estos sistemas a menudo requiere cierta intuición de cómo podemos cuantificar el parámetro de orden de una fase. Los algoritmos de ML pueden imitar algo similar a la intuición al inferir conocimientos a partir de datos de ejemplo. Por lo tanto, pueden descubrir patrones que son invisibles para el ojo humano, lo que los convierte en excelentes candidatos para estudiar las transiciones de fase. Al mismo tiempo, se sabe que los dispositivos cuánticos pueden realizar algunas tareas computacionales exponencialmente más rápido que los ordenadores clásicos y pueden producir patrones de datos que son difíciles de simular en los ordenadores clásicos. Por lo tanto, existe la esperanza de que los algoritmos ML que se ejecutan en dispositivos cuánticos muestren una ventaja sobre su analógico clásico. Estudiamos dos caminos diferentes a lo largo de la vanguardia del ML y la física cuántica. Por un lado, estudiamos el uso de redes neuronales (neural network, NN) para clasificar las fases de la materia en sistemas cuánticos de muchos cuerpos. Por otro lado, estudiamos los algoritmos ML que se ejecutan en ordenadores cuánticos. La conexión entre ML para la física cuántica y la física cuántica para ML en esta tesis es un subárea emergente en ML: la interpretabilidad de los algoritmos de aprendizaje. Un ingrediente crucial en el estudio de las transiciones de fase con NN es una mejor comprensión de las predicciones de la NN, para inferir un modelo del sistema cuántico. Así pues, la interpretabilidad de la NN puede ayudarnos en este esfuerzo. El estudio de la interpretabilitad inspiró además un estudio en profundidad de la pérdida de aplicaciones de aprendizaje automático cuántico (quantum machine learning, QML) que también discutiremos. En esta tesis damos respuesta a las preguntas de cómo podemos aprovechar las NN para clasificar las fases de la materia y utilizamos un método que permite hacer una adaptación de dominio para transferir la "intuición" aprendida de sistemas sin ruido a sistemas con ruido. Para mapear el diagrama de fase de los sistemas cuánticos de muchos cuerpos de una manera totalmente no supervisada, estudiamos un método conocido de detección de anomalías que nos permite reducir la entrada humana al mínimo. También usaremos métodos de interpretabilidad para estudiar las NN que están entrenadas para distinguir fases de la materia para comprender si las NN están aprendiendo algo similar a un parámetro de orden y si su forma de aprendizaje puede ser más accesible para los humanos. Y finalmente, inspirados por la interpretabilidad de las NN clásicas, desarrollamos herramientas para estudiar los paisajes de pérdida de los circuitos cuánticos variacionales para identificar posibles diferencias entre los algoritmos ML clásicos y cuánticos que podrían aprovecharse para obtener una ventaja cuántica.
De, Bonis Gianluca. "Rassegna su Quantum Machine Learning." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/24652/.
Full textDu, Yuxuan. "The Power of Quantum Neural Networks in The Noisy Intermediate-Scale Quantum Era." Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/24976.
Full textMacaluso, Antonio <1990>. "A Novel Framework for Quantum Machine Learning." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amsdottorato.unibo.it/9791/2/Antonio_Macaluso_tesi.pdf.
Full textRodriguez, Fernandez Carlos Gustavo. "Machine learning quantum error correction codes : learning the toric code /." São Paulo, 2018. http://hdl.handle.net/11449/180319.
Full textBanca:Alexandre Reily Rocha
Banca: Juan Felipe Carrasquilla
Resumo: Usamos métodos de aprendizagem supervisionada para estudar a decodificação de erros em códigos tóricos de diferentes tamanhos. Estudamos múltiplos modelos de erro, e obtemos figuras da eficácia de decodificação como uma função da taxa de erro de um único qubit. Também comentamos como o tamanho das redes neurais decodificadoras e seu tempo de treinamento aumentam com o tamanho do código tórico.
Abstract: We use supervised learning methods to study the error decoding in toric codes ofdifferent sizes. We study multiple error models, and obtain figures of the decoding efficacyas a function of the single qubit error rate. We also comment on how the size of thedecoding neural networks and their training time scales with the size of the toric code
Mestre
TACCHINO, FRANCESCO. "Digital quantum simulations and machine learning on near-term quantum processors." Doctoral thesis, Università degli studi di Pavia, 2020. http://hdl.handle.net/11571/1317093.
Full textQuantum mechanics is the gateway towards novel and potentially disruptive approaches to scientific and technical computing. In this thesis we explore, from a number of different perspectives, the effects of such strong relationship between the physical nature of information and the informational side of physical processes, with a focus on the digital quantum computing paradigm. After an extensive introduction to the theory of universal quantum simulation techniques, we review the main achievements in the field and, in parallel, we outline the state of the art of near-term architectures for quantum information processing. We then move on to present novel and scalable procedures for the study of paradigmatic spin models on intermediate-scale noisy quantum processors. Through an innovative combination of quantum algorithms with classical post-processing and error mitigation protocols, we demonstrate in practice the full digital quantum simulation of spin-spin dynamical correlation functions, reporting experimental results obtained on superconducting cloud-accessible IBM Q devices. We also exhibit a practical use-case by successfully reproducing, from quantum computed data, cross section calculations for four-dimensional inelastic neutron scattering, a common tool employed in the analysis of molecular magnetic clusters. The central part of the thesis is dedicated to the exploration of perspective hardware solutions for quantum computing. As it is not yet clear whether the currently dominant platforms, namely trapped ions and superconducting circuits, will eventually allow to reach the final goal of a fully-fledged architecture for general-purpose quantum information processing, the search for alternative technologies is at least as urgent as the improvement of existing ones or the development of new algorithms. After providing an overview of some recent proposals, including hybrid set-ups, we introduce quantum electromechanics as a promising candidate platform for future realizations of digital quantum simulators and we predict competitive performances for an elementary building block featuring nanomechanical qubits integrated within superconducting circuitry. In the final part, we extend the reach of quantum information protocols beyond its traditional areas of application, and we account for the birth and rapid development of Quantum Machine Learning, a discipline aimed at establishing a productive interplay between the parallel revolutions brought about by quantum computing and artificial intelligence. In particular, we describe an original procedure for implementing, on a quantum architecture, the behavior of binary-valued artificial neurons. Formally exact and platform-independent, our data encoding and processing scheme guarantees in principle an exponential memory advantage over classical counterparts and is particularly well suited for pattern and image recognition purposes. We test our algorithm on IBM Q quantum processors, discussing possible training schemes for single nodes and reporting a proof-of-principle demonstration of a 2-layer, 3-neuron feed-forward neural network computation run on 7 active qubits. The latter is, in terms of the total size of the quantum register, one of the largest quantum neural network computation reported to date on real quantum hardware.
Lukac, Martin. "Quantum Inductive Learning and Quantum Logic Synthesis." PDXScholar, 2009. https://pdxscholar.library.pdx.edu/open_access_etds/2319.
Full textOrazi, Filippo. "Quantum machine learning: development and evaluation of the Multiple Aggregator Quantum Algorithm." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amslaurea.unibo.it/25062/.
Full textCangini, Nicolò. "Quantum Supervised Learning: Algoritmi e implementazione." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/17694/.
Full textGupta, Riddhi Swaroop. "Robotic control and machine learning for the characterization and control of qubits." Thesis, University of Sydney, 2020. https://hdl.handle.net/2123/23519.
Full textBooks on the topic "Quantum Machine Learning (QML)"
Pattanayak, Santanu. Quantum Machine Learning with Python. Berkeley, CA: Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-6522-2.
Full textSchuld, Maria, and Francesco Petruccione. Machine Learning with Quantum Computers. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-83098-4.
Full textSchütt, Kristof T., Stefan Chmiela, O. Anatole von Lilienfeld, Alexandre Tkatchenko, Koji Tsuda, and Klaus-Robert Müller, eds. Machine Learning Meets Quantum Physics. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-40245-7.
Full textGanguly, Santanu. Quantum Machine Learning: An Applied Approach. Berkeley, CA: Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-7098-1.
Full textPastorello, Davide. Concise Guide to Quantum Machine Learning. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-6897-6.
Full textSubramanian, Thiruselvan, Archana Dhyani, Adarsh Kumar, and Sukhpal Singh Gill. Artificial Intelligence, Machine Learning and Blockchain in Quantum Satellite, Drone and Network. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003250357.
Full textRan, Shi-Ju. Tensor Network Contractions: Methods and Applications to Quantum Many-Body Systems. Cham: Springer Nature, 2020.
Find full textBhattacharyya, Siddhartha, Indrajit Pan, Ashish Mani, Sourav De, Elizabeth Behrman, and Susanta Chakraborti, eds. Quantum Machine Learning. De Gruyter, 2020. http://dx.doi.org/10.1515/9783110670707.
Full textQuantum Machine Learning. Elsevier, 2014. http://dx.doi.org/10.1016/c2013-0-19170-2.
Full textBhattacharyya, Siddhartha, Indrajit Pan, Ashish Mani, Elizabeth Behrman, and Susanta Chakraborti. Quantum Machine Learning. de Gruyter GmbH, Walter, 2020.
Find full textBook chapters on the topic "Quantum Machine Learning (QML)"
Pastorello, Davide. "QML Toolkit." In Concise Guide to Quantum Machine Learning, 49–56. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-6897-6_5.
Full textGanguly, Santanu. "QML Techniques." In Quantum Machine Learning: An Applied Approach, 317–402. Berkeley, CA: Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-7098-1_7.
Full textGanguly, Santanu. "QML Algorithms II." In Quantum Machine Learning: An Applied Approach, 277–315. Berkeley, CA: Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-7098-1_6.
Full textGanguly, Santanu. "QML: Way Forward." In Quantum Machine Learning: An Applied Approach, 461–96. Berkeley, CA: Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-7098-1_9.
Full textGanguly, Santanu. "QML Algorithms I." In Quantum Machine Learning: An Applied Approach, 205–76. Berkeley, CA: Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-7098-1_5.
Full textSchuld, Maria, and Francesco Petruccione. "Machine Learning." In Quantum Science and Technology, 21–73. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96424-9_2.
Full textSchuld, Maria, and Francesco Petruccione. "Machine Learning." In Quantum Science and Technology, 23–78. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-83098-4_2.
Full textPattanayak, Santanu. "Quantum Machine Learning." In Quantum Machine Learning with Python, 221–79. Berkeley, CA: Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-6522-2_5.
Full textSchuld, Maria, and Francesco Petruccione. "Quantum Machine Learning." In Encyclopedia of Machine Learning and Data Mining, 1–10. Boston, MA: Springer US, 2016. http://dx.doi.org/10.1007/978-1-4899-7502-7_913-1.
Full textSchuld, Maria, and Francesco Petruccione. "Quantum Machine Learning." In Encyclopedia of Machine Learning and Data Mining, 1034–43. Boston, MA: Springer US, 2017. http://dx.doi.org/10.1007/978-1-4899-7687-1_913.
Full textConference papers on the topic "Quantum Machine Learning (QML)"
Dhotre, Saloni, Karan Doshi, Sneha Satish, and Kalpita Wagaskar. "Exploring Quantum Machine Learning (QML) for Earthquake Prediction." In 2022 International Conference on Intelligent Technologies (CONIT). IEEE, 2022. http://dx.doi.org/10.1109/conit55038.2022.9848250.
Full textRehm, F., S. Vallecorsa, K. Borras, and D. Krücker. "QUANTUM MACHINE LEARNING FOR HEP DETECTOR SIMULATIONS." In 9th International Conference "Distributed Computing and Grid Technologies in Science and Education". Crossref, 2021. http://dx.doi.org/10.54546/mlit.2021.62.94.001.
Full textKudyshev, Zhaxylyk, Simeon Bogdanov, Theodor Isacsson, Alexander V. Kildishev, Alexandra Boltasseva, and Vladimir M. Shalaev. "Machine Learning Assisted Quantum Photonics." In Quantum 2.0. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/quantum.2020.qm6b.3.
Full textMalov, Dmitrii. "Quantum Algebraic Machine Learning." In 2020 IEEE 10th International Conference on Intelligent Systems (IS). IEEE, 2020. http://dx.doi.org/10.1109/is48319.2020.9199982.
Full textPerrier, Elija. "Quantum Fair Machine Learning." In AIES '21: AAAI/ACM Conference on AI, Ethics, and Society. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3461702.3462611.
Full textSatuluri, V. K. R. Rajeswari, and Vijayakumar Ponnusamy. "Quantum-Enhanced Machine Learning." In 2021 Smart Technologies, Communication and Robotics (STCR). IEEE, 2021. http://dx.doi.org/10.1109/stcr51658.2021.9589016.
Full textNguyen, Tuyen, Incheon Paik, Hiroyuki Sagawa, and Truong Cong Thang. "Quantum Machine Learning with Quantum Image Representations." In 2022 IEEE International Conference on Quantum Computing and Engineering (QCE). IEEE, 2022. http://dx.doi.org/10.1109/qce53715.2022.00142.
Full textQuiroga, David, Prasanna Date, and Raphael Pooser. "Discriminating Quantum States with Quantum Machine Learning." In 2021 IEEE International Conference on Quantum Computing and Engineering (QCE). IEEE, 2021. http://dx.doi.org/10.1109/qce52317.2021.00088.
Full textQuiroga, David, Prasanna Date, and Raphael Pooser. "Discriminating Quantum States with Quantum Machine Learning." In 2021 International Conference on Rebooting Computing (ICRC). IEEE, 2021. http://dx.doi.org/10.1109/icrc53822.2021.00018.
Full textRückmann, Max, Sebastian Kleis, Christian G. Schaeffer, and Darko Zibar. "Machine Learning in Quantum Communication." In Signal Processing in Photonic Communications. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/sppcom.2020.sptu3i.6.
Full textReports on the topic "Quantum Machine Learning (QML)"
Zahorodk, Pavlo V., Yevhenii O. Modlo, Olga O. Kalinichenko, Tetiana V. Selivanova, and Serhiy O. Semerikov. Quantum enhanced machine learning: An overview. CEUR Workshop Proceedings, March 2021. http://dx.doi.org/10.31812/123456789/4357.
Full textTretiak, Sergei, Benjamin Tyler Nebgen, Justin Steven Smith, Nicholas Edward Lubbers, and Andrey Lokhov. Machine Learning for Quantum Mechanical Materials Properties. Office of Scientific and Technical Information (OSTI), February 2019. http://dx.doi.org/10.2172/1498000.
Full textLiu, Minzhao, Ge Dong, Kyle Felker, Matthew Otten, Prasanna Balaprakash, William Tang, and Yuri Alexeev. Exploration of Quantum Machine Learning and AI Accelerators for Fusion Science. Office of Scientific and Technical Information (OSTI), October 2021. http://dx.doi.org/10.2172/1840522.
Full textBillari, Francesco C., Johannes Fürnkranz, and Alexia Prskawetz. Timing, sequencing and quantum of life course events: a machine learning approach. Rostock: Max Planck Institute for Demographic Research, October 2000. http://dx.doi.org/10.4054/mpidr-wp-2000-010.
Full textPerdigão, Rui A. P. Information physics and quantum space technologies for natural hazard sensing, modelling and prediction. Meteoceanics, September 2021. http://dx.doi.org/10.46337/210930.
Full textLockheed Martin Quantum Machine Learning. Office of Scientific and Technical Information (OSTI), January 2018. http://dx.doi.org/10.2172/1826570.
Full text