Academic literature on the topic 'Quantum heterostructures'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Quantum heterostructures.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Quantum heterostructures"
Давыдова, З. "МОДЕЛИРОВАНИЕ И РАСЧЕТ СПЕКТРА ФОТОЛЮМИНЕСЦЕНЦИИ ГЕТЕРОСТРУКТУРЫ С КВАНТОВОЙ ЯМОЙ НА ПРИМЕРЕ ALGaAS/GaAS." EurasianUnionScientists 6, no. 12(81) (January 18, 2021): 30–35. http://dx.doi.org/10.31618/esu.2413-9335.2020.6.81.1163.
Full textДавыдова, З. "MODELING AND CALCULATION OF THE PHOTOLUMINESCENCE SPECTRUM OF A HETEROSTRUCTURE WITH A QUANTUM WELL BY THE EXAMPLE OF ALGaAS / GaAS." EurasianUnionScientists 6, no. 12(81) (January 18, 2021): 30–35. http://dx.doi.org/10.31618/esu.2413-9335.2020.6.81.1172.
Full textБабичев, А. В., А. С. Курочкин, Е. С. Колодезный, А. В. Филимонов, А. А. Усикова, В. Н. Неведомский, А. Г. Гладышев, et al. "Гетероструктуры одночастотных и двухчастотных квантово-каскадных лазеров." Физика и техника полупроводников 52, no. 6 (2018): 597. http://dx.doi.org/10.21883/ftp.2018.06.45922.8751.
Full textГлинский, Г. Ф. "Простой численный метод определения энергетического спектра носителей заряда в полупроводниковых гетероструктурах." Письма в журнал технической физики 44, no. 6 (2018): 17. http://dx.doi.org/10.21883/pjtf.2018.06.45763.17113.
Full textIliash, S. A. "Thermally stimulated conductivity in InGaAs/GaAs quantum wire heterostructures." Semiconductor Physics Quantum Electronics and Optoelectronics 19, no. 1 (April 8, 2016): 75–78. http://dx.doi.org/10.15407/spqeo19.01.075.
Full textChang, Leroy L., and Leo Esaki. "Semiconductor Quantum Heterostructures." Physics Today 45, no. 10 (October 1992): 36–43. http://dx.doi.org/10.1063/1.881342.
Full textBoschker, H., and J. Mannhart. "Quantum-Matter Heterostructures." Annual Review of Condensed Matter Physics 8, no. 1 (March 31, 2017): 145–64. http://dx.doi.org/10.1146/annurev-conmatphys-031016-025404.
Full textWu, Jiazhen, Fucai Liu, Masato Sasase, Koichiro Ienaga, Yukiko Obata, Ryu Yukawa, Koji Horiba, et al. "Natural van der Waals heterostructural single crystals with both magnetic and topological properties." Science Advances 5, no. 11 (November 2019): eaax9989. http://dx.doi.org/10.1126/sciadv.aax9989.
Full textМалевская, А. В., Н. А. Калюжный, С. А. Минтаиров, Р. А. Салий, Д. А. Малевский, М. В. Нахимович, В. Р. Ларионов, П. В. Покровский, М. З. Шварц, and В. М. Андреев. "Высокоэффективные (EQE=37.5%) инфракрасные (850 нм) светодиоды с брэгговским и зеркальным отражателями." Физика и техника полупроводников 55, no. 12 (2021): 1218. http://dx.doi.org/10.21883/ftp.2021.12.51709.9711.
Full textGRESHNOV, A. A., E. N. KOLESNIKOVA, and G. G. ZEGRYA. "SPECTRUM OF CARRIERS AND OPTICAL PROPERTIES OF 2D HETEROSTRUCTURES IN TILTED MAGNETIC FIELD." International Journal of Nanoscience 02, no. 06 (December 2003): 401–9. http://dx.doi.org/10.1142/s0219581x03001498.
Full textDissertations / Theses on the topic "Quantum heterostructures"
Ko, D. Y. K. "Quantum tunnelling in heterostructures." Thesis, University of Exeter, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.384673.
Full textMartin, Robert W. "Quantum magnetotransport in strained layer heterostructures." Thesis, University of Oxford, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.315751.
Full textDhillon, S. S. "Terahertz intersubband electroluminescence from quantum cascade heterostructures." Thesis, University of Cambridge, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.598519.
Full textSmith, Ainsley H. "Quantum confined states in cylindrical nanowire heterostructures." DigitalCommons@Robert W. Woodruff Library, Atlanta University Center, 2007. http://digitalcommons.auctr.edu/dissertations/2364.
Full textTorresani, Patrick. "Hole quantum spintronics in strained germanium heterostructures." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAY040/document.
Full textThis thesis focuses on low temperature experiments in germaniumbased heterostructure in the scope of quantumspintronic. First, theoretical advantages of Ge for quantum spintronic are detailed, specifically the low hyperfine interaction and strong spin orbit coupling expected in Ge. In a second chapter, the theory behind quantum dots and double dots systems is explained, focusing on the aspects necessary to understand the experiments described thereafter, that is to say charging effects in quantum dots and double dots and Pauli spin blockade. The third chapter focuses on spin orbit interaction. Its origin and its effect on energy band diagrams are detailed. This chapter then focuses on consequences of the spin orbit interaction specific to two dimensional germaniumheterostructure, that is to say Rashba spin orbit interaction, D’Yakonov Perel spin relaxation mechanism and weak antilocalization.In the fourth chapter are depicted experiments in Ge/Si core shell nanowires. In these nanowire, a quantumdot formnaturally due to contact Schottky barriers and is studied. By the use of electrostatic gates, a double dot system is formed and Pauli spin blockade is revealed.The fifth chapter reports magneto-transport measurements of a two-dimensional holegas in a strained Ge/SiGe heterostructure with the quantum well laying at the surface, revealing weak antilocalization. By fitting quantumcorrection to magneto-conductivity characteristic transport times and spin splitting energy of 2D holes are extracted. Additionally, suppression of weak antilocalization by amagnetic field parallel to the quantum well is reported and this effect is attributed to surface roughness and virtual occupation of unoccupied subbands.Finally, chapter number six reportsmeasurements of quantization of conductance in strained Ge/SiGe heterostructure with a buried quantumwell. First the heterostructure is characterized by means ofmagneto-conductance measurements in a Hall bar device. Then another device engineered specifically as a quantum point contact is measured and displays steps of conductance. Magnetic field dependance of these steps is measured and an estimation of the g-factor for heavy holes in germanium is extracted
Harrison, Paul Anthony. "Resonant tunnelling and luminescence in coupled quantum wells." Thesis, University of Nottingham, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.363933.
Full textWee, Siew Fong. "Interdiffusion of semiconductor alloy heterostructures." Thesis, University of Surrey, 1998. http://epubs.surrey.ac.uk/844156/.
Full textChung, Sung-Yong. "Si/SiGe heterostructures materials, physics, quantum functional devices and their integration with heterostructure bipolar transistors /." Columbus, Ohio : Ohio State University, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1132244278.
Full textMalins, David Brendan. "Ultrafast dynamics in InAs quantum dot and GaInNAs quantum well semiconductor heterostructures /." St Andrews, 2007. http://hdl.handle.net/10023/404.
Full textMalins, David B. "Ultrafast dynamics in InAs quantum dot and GaInNAs quantum well semiconductor heterostructures." Thesis, University of St Andrews, 2008. http://hdl.handle.net/10023/404.
Full textBooks on the topic "Quantum heterostructures"
A, Kochelap V., and Stroscio Michael A. 1949-, eds. Quantum heterostructures: Microelectronics and optoelectronics. Cambridge: Cambridge University Press, 1999.
Find full textLeo, Karl. Dynamics of coherent optical excitations in semiconductor heterostructures. Aachen: Verlag Shaker, 1993.
Find full textMandal, Arjun, and Subhananda Chakrabarti. Impact of Ion Implantation on Quantum Dot Heterostructures and Devices. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4334-5.
Full textIvchenko, Eougenious L. Superlattices and Other Heterostructures: Symmetry and Optical Phenomena. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997.
Find full textSengupta, Saumya, and Subhananda Chakrabarti. Structural, Optical and Spectral Behaviour of InAs-based Quantum Dot Heterostructures. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-5702-1.
Full textIvchenko, E. L. Superlattices and other heterostructures: Symmetry and optical phenomena. Berlin: Springer-Verlag, 1995.
Find full textIvchenko, E. L. Superlattices and other heterostructures: Symmetry and optical phenomena. 2nd ed. Berlin: Springer, 1997.
Find full textVasʹko, F. T. Ėlektronnye sostoi͡a︡nii͡a︡ i opticheskie perekhody v poluprovodnikovykh geterostrukturakh. Kiev: Nauk. dumka, 1993.
Find full textJ, Paul D., ed. Silicon quantum integrated circuits: Silicon-germanium heterostructure devices : basics and realisations. Berlin: Springer, 2005.
Find full textQuantum Dot Heterostructures. Wiley, 1999.
Find full textBook chapters on the topic "Quantum heterostructures"
Pearsall, Thomas P. "Free Electron Behavior in Semiconductor Heterostructures." In Quantum Photonics, 57–109. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55144-9_3.
Full textBastard, G. "Electronic States in Semiconductor Heterostructures." In Physics and Applications of Quantum Wells and Superlattices, 21–42. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-5478-9_2.
Full textOhno, Hideo. "Ferromagnetic III–V Semiconductors and Their Heterostructures." In Semiconductor Spintronics and Quantum Computation, 1–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-05003-3_1.
Full textMendez, E. E. "Applications of Resonant Tunneling in Semiconductor Heterostructures." In Interfaces, Quantum Wells, and Superlattices, 227–42. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-1045-7_13.
Full textEtienne, Bernard. "Electron Conduction and Quantum Phenomena in 2D Heterostructures." In Advances in Quantum Phenomena, 159–83. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1975-1_10.
Full textGuerrero, A. H. "Exchange Energy Interactions in Quantum Well Heterostructures." In Computational Electronics, 251–54. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4757-2124-9_51.
Full textBarker, J. R., S. Collins, D. Lowe, and S. Murray. "Theory of Transient Quantum Transport in Heterostructures." In Proceedings of the 17th International Conference on the Physics of Semiconductors, 449–52. New York, NY: Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4615-7682-2_100.
Full textYurchenko, L. V., and V. B. Yurchenko. "Semiquantal Dynamics of Electrons in Quantum Heterostructures." In Heterostructure Epitaxy and Devices — HEAD’97, 83–86. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5012-5_12.
Full textUstinov, V. M. "Semiconductor Quantum Dot Heterostructures (Growth and Applications)." In Nanostructured Films and Coatings, 41–54. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4052-2_4.
Full textChang, L. L. "Materials and Physics Aspects of Quantum Heterostructures." In NATO ASI Series, 83–115. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-3686-8_7.
Full textConference papers on the topic "Quantum heterostructures"
Makowski, Jan D., Brady D. Anderson, Wing S. Chan, Mika J. Saarinen, Christopher J. Palstrøm, and Joseph J. Talghader. "Band-Gap Tuning with Mechanical Heterostructures." In International Quantum Electronics Conference. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/iqec.2009.ituj7.
Full textDvurechenskii, Anatoly, Andrew Yakimov, Aigul Zinovieva, Aleksei Nenashev, and Vladimir Zinovev. "PHYSICS PHENOMENA IN SILICON BASED QUANTUM DOT STRUCTURES FOR NANOELECTRONICS, NANOPHOTONIC AND SPINTRONIC." In International Forum “Microelectronics – 2020”. Joung Scientists Scholarship “Microelectronics – 2020”. XIII International conference «Silicon – 2020». XII young scientists scholarship for silicon nanostructures and devices physics, material science, process and analysis. LLC MAKS Press, 2020. http://dx.doi.org/10.29003/m1548.silicon-2020/26-29.
Full textMajedi, Hamed. "Nonlinear quantum photonics on graphene/silicons heterostructures." In Photonics for Quantum 2020. SPIE, 2021. http://dx.doi.org/10.1117/12.2611215.
Full textAdinehloo, Davoud. "Temperature-induced valley polarization in WS2 heterostructures." In Photonics for Quantum 2020. SPIE, 2021. http://dx.doi.org/10.1117/12.2611888.
Full textMalov, Y. A. "Heterostructures As a Quantum Optical Klistron." In EQEC'96. 1996 European Quantum Electronic Conference. IEEE, 1996. http://dx.doi.org/10.1109/eqec.1996.561643.
Full textChokomakoua, J. C. "Quantum Hall Ferromagnetism In InSb Heterostructures." In PHYSICS OF SEMICONDUCTORS: 27th International Conference on the Physics of Semiconductors - ICPS-27. AIP, 2005. http://dx.doi.org/10.1063/1.1994217.
Full textBarettin, Daniele, Matthias Auf der Maur, Alessandro Pecchia, and Aldo di Carlo. "Realistic models of quantum-dot heterostructures." In 14th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD 2014). IEEE, 2014. http://dx.doi.org/10.1109/nusod.2014.6935327.
Full textLEDENTSOV, Nikolay N. "QUANTUM DOT HETEROSTRUCTURES FOR SEMICONDUCTOR DEVICES." In NANOCON 2019. TANGER Ltd., 2020. http://dx.doi.org/10.37904/nanocon.2019.8446.
Full textZakharova, A., S. T. Yen, and K. A. Chao. "Quantum computer on InAs/GaSb heterostructures." In SPIE Proceedings, edited by Yuri I. Ozhigov. SPIE, 2003. http://dx.doi.org/10.1117/12.517922.
Full textPopp, Johannes, Michael Haider, Martin Franckie, Jerome Faist, and Christian Jirauschek. "Numerical Optimization of Quantum Cascade Detector Heterostructures." In 2020 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD). IEEE, 2020. http://dx.doi.org/10.1109/nusod49422.2020.9217784.
Full textReports on the topic "Quantum heterostructures"
Davis, Robert F. Heterostructures for Increased Quantum Efficiency in Nitride LEDs. Office of Scientific and Technical Information (OSTI), September 2010. http://dx.doi.org/10.2172/1177775.
Full textPandey, Lakshmi N., and Thomas F. George. Intersubband Transitions in Quantum-Well Heterostructures with Delta-Doped Barriers. Fort Belvoir, VA: Defense Technical Information Center, July 1992. http://dx.doi.org/10.21236/ada252849.
Full textIyer, Shanthi. Optical Studies Of GaAsSbN Alloys and Their Quantum Well Heterostructures. Fort Belvoir, VA: Defense Technical Information Center, July 2004. http://dx.doi.org/10.21236/ada424998.
Full textStockman, Mark I., Lakshmi N. Pandey, and Thomas F. George. Light-Induced Drift of Quantum-Confined Electrons in Semiconductor Heterostructures. Fort Belvoir, VA: Defense Technical Information Center, December 1990. http://dx.doi.org/10.21236/ada229959.
Full textKim, Philip. Nano Electronics on Atomically Controlled van der Waals Quantum Heterostructures. Fort Belvoir, VA: Defense Technical Information Center, March 2015. http://dx.doi.org/10.21236/ada616377.
Full textNakotte, Tom. Engineering of Lead Selenide Quantum Dot Based Devices and Core/Shell Heterostructures. Office of Scientific and Technical Information (OSTI), April 2020. http://dx.doi.org/10.2172/1614831.
Full textStockman, Mark I., Lakshmi N. Pandey, and Thomas F. George. Reply to Comment on 'Light-Induced Drift of Quantum-Confined Electrons in Semiconductor Heterostructures' by A. A. Grinberg and S. Luryi. Fort Belvoir, VA: Defense Technical Information Center, June 1991. http://dx.doi.org/10.21236/ada237468.
Full textMei-Yin Chou. Quantum Monte-Carlo Study of Electron Correlation in Heterostructure Quantum Dots. Office of Scientific and Technical Information (OSTI), November 2006. http://dx.doi.org/10.2172/894945.
Full textHayduk, Michael J., Mark F. Krol, and Raymond K. Boncek. Heterostructure Quantum Confined Stark Effect Electrooptic Modulators Operating at 938 nm. Fort Belvoir, VA: Defense Technical Information Center, December 1993. http://dx.doi.org/10.21236/ada279342.
Full textMeasurements of Spin Dynamics Reveal that Shape of Excitons in Quantum Rod Heterostructures Changes with Size (Fact Sheet). Office of Scientific and Technical Information (OSTI), June 2012. http://dx.doi.org/10.2172/1045736.
Full text