To see the other types of publications on this topic, follow the link: Quantum Hall regime.

Journal articles on the topic 'Quantum Hall regime'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Quantum Hall regime.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Asano, Kenichi, and Tsuneya Ando. "Photoluminescence in quantum Hall regime:." Physica B: Condensed Matter 249-251 (June 1998): 549–52. http://dx.doi.org/10.1016/s0921-4526(98)00183-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

BUHMANN, HARTMUT. "SPIN HALL EFFECTS IN HgTe QUANTUM WELL STRUCTURES." International Journal of Modern Physics B 23, no. 12n13 (May 20, 2009): 2551–55. http://dx.doi.org/10.1142/s0217979209061974.

Full text
Abstract:
Due to a strong spin orbit interaction HgTe quantum well structures exhibit an unusual subband structure ordering which leads to some remarkable transport properties depending on the actual carrier density. Especially for quantum wells with an inverted band structure ordering, a strong Rashba-type spin orbit splitting gives rise to a strong spin Hall effect in the metallic regime and in the bulk insulating regime spin polarized edge channel transport leads to the formation of the quantum spin Hall effect. Gated quantum well structures have been used to explore these, the metallic and insulating, transport regimes experimentally.
APA, Harvard, Vancouver, ISO, and other styles
3

Suzuki, Kenji, and Yoshiyuki Ono. "Orbital Magnetization in Quantum Hall Regime." Journal of the Physical Society of Japan 66, no. 11 (November 15, 1997): 3536–42. http://dx.doi.org/10.1143/jpsj.66.3536.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Amet, F., C. T. Ke, I. V. Borzenets, J. Wang, K. Watanabe, T. Taniguchi, R. S. Deacon, et al. "Supercurrent in the quantum Hall regime." Science 352, no. 6288 (May 19, 2016): 966–69. http://dx.doi.org/10.1126/science.aad6203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kramer, Bernhard, Stefan Kettemann, and Tomi Ohtsuki. "Localization in the quantum Hall regime." Physica E: Low-dimensional Systems and Nanostructures 20, no. 1-2 (December 2003): 172–87. http://dx.doi.org/10.1016/j.physe.2003.09.034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Aoki, Hideo. "Localisation in the quantum hall regime." Surface Science 196, no. 1-3 (January 1988): 107–19. http://dx.doi.org/10.1016/0039-6028(88)90672-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pruisken, A. M. M. "Delocalization in the quantum Hall regime." Physics Reports 184, no. 2-4 (December 1989): 213–17. http://dx.doi.org/10.1016/0370-1573(89)90040-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

He, Mengyun, Yu Huang, Huimin Sun, Yu Fu, Peng Zhang, Chenbo Zhao, Kang L. Wang, Guoqiang Yu, and Qing Lin He. "Quantum anomalous Hall interferometer." Journal of Applied Physics 133, no. 8 (February 28, 2023): 084401. http://dx.doi.org/10.1063/5.0140086.

Full text
Abstract:
Electronic interferometries in integer and fractional quantum Hall regimes have unfolded the coherence, correlation, and statistical properties of interfering constituents. This is addressed by investigating the roles played by the Aharonov–Bohm effect and Coulomb interactions on the oscillations of transmission/reflection. Here, we construct magnetic interferometers using Cr-doped (Bi,Sb)2Te3 films and demonstrate the electronic interferometry using chiral edge states in the quantum anomalous Hall regime. By controlling the extent of edge coupling and the amount of threading magnetic flux, distinct interfering patterns were observed, which highlight the interplay between the Coulomb interactions and Aharonov–Bohm interference by edge states. The observed interference is likely to exhibit a long-range coherence and robustness against thermal smearing probably owing to the long-range magnetic order. Our interferometer establishes a platform for (quasi)particle interference and topological qubits.
APA, Harvard, Vancouver, ISO, and other styles
9

Shikin, V. B. "Inhomogeneous Hall-geometry sample in the quantum Hall regime." Journal of Experimental and Theoretical Physics Letters 73, no. 5 (March 2001): 246–49. http://dx.doi.org/10.1134/1.1371063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

ISHIKAWA, K., T. AOYAMA, Y. ISHIZUKA, and N. MAEDA. "FIELD THEORY OF ANISOTROPIC QUANTUM HALL GAS: METROLOGY AND A NOVEL QUANTUM HALL REGIME." International Journal of Modern Physics B 17, no. 27 (October 30, 2003): 4765–818. http://dx.doi.org/10.1142/s0217979203023112.

Full text
Abstract:
The von Neumann lattice representation is a convenient representation for studying several intriguing physics of quantum Hall systems. In this formalism, electrons are mapped to lattice fermions. A topological invariant expression of the Hall conductance is derived and is used for the proof of the integer quantum Hall effect in the realistic situation. Anisotropic quantum Hall gas is investigated based on the Hartree–Fock approximation in the same formalism. Thermodynamic properties, transport properties, and unusual response under external modulations are found. Implications for the integer quantum Hall effect in the finite systems are also studied and a new quantum Hall regime with non-zero longitudinal resistance is shown to exist.
APA, Harvard, Vancouver, ISO, and other styles
11

Nicopoulos, V. Nikos, and S. A. Trugman. "Complex quantum dynamics in the integer quantum Hall regime." Physical Review B 45, no. 19 (May 15, 1992): 11004–15. http://dx.doi.org/10.1103/physrevb.45.11004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Kinaret, Jari M. "A quantum dot in the fractional quantum Hall regime." Physica B: Condensed Matter 189, no. 1-4 (June 1993): 142–46. http://dx.doi.org/10.1016/0921-4526(93)90155-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Aoki, Hideo. "Double quantum dots in the fractional quantum Hall regime." Physica E: Low-dimensional Systems and Nanostructures 1, no. 1-4 (January 1997): 198–203. http://dx.doi.org/10.1016/s1386-9477(97)00043-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Kasner, Marcus. "Electronic correlation in the quantum Hall regime." Annalen der Physik 514, no. 3 (January 29, 2002): 175–252. http://dx.doi.org/10.1002/andp.20025140301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

MacDonald, A. H., E. H. Rezayi, and David Keller. "Photoluminescence in the fractional quantum Hall regime." Physical Review Letters 68, no. 12 (March 23, 1992): 1939–42. http://dx.doi.org/10.1103/physrevlett.68.1939.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Schüller, C., K. B. Broocks, P. Schröter, C. Heyn, D. Heitmann, M. Bichler, W. Wegscheider, V. M. Apalkov, and T. Chakraborty. "Charged Excitons in the Quantum Hall Regime." Acta Physica Polonica A 106, no. 3 (September 2004): 341–53. http://dx.doi.org/10.12693/aphyspola.106.341.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

MacDonald, A. H. "Spin Bottlenecks in the Quantum Hall Regime." Physical Review Letters 83, no. 16 (October 18, 1999): 3262–65. http://dx.doi.org/10.1103/physrevlett.83.3262.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Fromer, N. A., C. Schüller, D. S. Chemla, T. V. Shahbazyan, I. E. Perakis, K. Maranowski, and A. C. Gossard. "Electronic Dephasing in the Quantum Hall Regime." Physical Review Letters 83, no. 22 (November 29, 1999): 4646–49. http://dx.doi.org/10.1103/physrevlett.83.4646.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Okulov, V. I., E. A. Pamyatnykh, and A. T. Lonchakov. "Thermodynamic anomalous Hall effect: The quantum regime." Low Temperature Physics 40, no. 11 (November 2014): 1032–34. http://dx.doi.org/10.1063/1.4901991.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Main, P. C., A. K. Geim, H. A. Carmona, C. V. Brown, T. J. Foster, R. Taboryski, and P. E. Lindelof. "Resistance fluctuations in the quantum Hall regime." Physical Review B 50, no. 7 (August 15, 1994): 4450–55. http://dx.doi.org/10.1103/physrevb.50.4450.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Jain, J. K. "Composite Fermions in the Quantum Hall Regime." Science 266, no. 5188 (November 18, 1994): 1199–202. http://dx.doi.org/10.1126/science.266.5188.1199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Russell, P. A., F. F. Ouali, N. P. Hewett, and L. J. Challis. "Power dissipation in the quantum Hall regime." Surface Science 229, no. 1-3 (April 1990): 54–56. http://dx.doi.org/10.1016/0039-6028(90)90831-r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Zheng, H. Z., K. K. Choi, D. C. Tsui, and G. Weimann. "Size effect in the quantum Hall regime." Surface Science Letters 170, no. 1-2 (April 1986): A229. http://dx.doi.org/10.1016/0167-2584(86)90553-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Nielsen, Hans. "Magnetoresistance oscillations in the quantum Hall regime." Physica B: Condensed Matter 175, no. 1-3 (December 1991): 231–34. http://dx.doi.org/10.1016/0921-4526(91)90718-t.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Bhatt, R. N., and Wan Xin. "Mesoscopic effects in the quantum Hall regime." Pramana 58, no. 2 (February 2002): 271–83. http://dx.doi.org/10.1007/s12043-002-0013-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Ma, M., and A. Yu Zyuzin. "Josephson Effect in the Quantum Hall Regime." Europhysics Letters (EPL) 21, no. 9 (March 20, 1993): 941–45. http://dx.doi.org/10.1209/0295-5075/21/9/011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Zheng, H. Z., K. K. Choi, D. C. Tsui, and G. Weimann. "Size effect in the quantum Hall regime." Surface Science 170, no. 1-2 (April 1986): 209–13. http://dx.doi.org/10.1016/0039-6028(86)90963-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Yusa, G., H. Shtrikman, and I. Bar-Joseph. "Photoluminescence in the fractional quantum Hall regime." Physica E: Low-dimensional Systems and Nanostructures 12, no. 1-4 (January 2002): 49–54. http://dx.doi.org/10.1016/s1386-9477(01)00259-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Ando, Tsuneya. "Local Current Distribution in Quantum Hall Regime." Journal of the Physical Society of Japan 58, no. 10 (October 15, 1989): 3711–17. http://dx.doi.org/10.1143/jpsj.58.3711.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Nurmikko, Arto, and Aron Pinczuk. "Optical Probes in the Quantum Hall Regime." Physics Today 46, no. 6 (June 1993): 24–32. http://dx.doi.org/10.1063/1.881352.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Grunwald, A., and J. Hajdu. "Thermoelectric effects in the quantum Hall regime." Solid State Communications 63, no. 4 (July 1987): 289–92. http://dx.doi.org/10.1016/0038-1098(87)90910-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Łydżba, Patrycja, and Janusz Jacak. "Identifying Particle Correlations in Quantum Hall Regime." Annalen der Physik 530, no. 3 (November 13, 2017): 1700221. http://dx.doi.org/10.1002/andp.201700221.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Page, D. A., and E. Brown. "Nonadiabatic Effects in the Quantum Hall Regime." Annals of Physics 223, no. 1 (April 1993): 75–128. http://dx.doi.org/10.1006/aphy.1993.1027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Kasner, Marcus. "Electronic correlation in the quantum Hall regime." Annalen der Physik 11, no. 3 (March 2002): 175–252. http://dx.doi.org/10.1002/1521-3889(200203)11:3<175::aid-andp175>3.0.co;2-a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

GIESBERS, A. J. M., U. ZEITLER, J. C. MAAN, D. REUTER, and A. D. WIECK. "AHARONOV-BOHM EFFECT IN THE QUANTUM HALL REGIME." International Journal of Modern Physics B 21, no. 08n09 (April 10, 2007): 1404–8. http://dx.doi.org/10.1142/s0217979207042902.

Full text
Abstract:
We have fabricated quantum rings in a GaAs/GaAlAs heterostructure 2DEG by local anodic oxidation with an atomic force microscope. In low magnetic fields we observe Aharonov-Bohm oscillations with a period of 60 mT corresponding to an effective ring diameter of 300 nm. In the high field regime, between filling factors ν = 2/3 and ν = 3, we observe Aharonov-Bohm oscillations of quantum Hall edge channels with a surprisingly large period, Δ B = 163 mT , corresponding to an edge channel around the inner diameter of the ring.
APA, Harvard, Vancouver, ISO, and other styles
36

GRANGER, GHISLAIN, J. P. EISENSTEIN, and J. L. RENO. "EDGE HEAT TRANSPORT IN THE QUANTUM HALL REGIME." International Journal of Modern Physics B 23, no. 12n13 (May 20, 2009): 2616–17. http://dx.doi.org/10.1142/s0217979209062074.

Full text
Abstract:
We investigate the transport of heat in the integer quantized Hall regime. We make use of quantum point contacts (QPC's) positioned along the edge of a large quantum Hall droplet to both locally heat and locally detect temperature rises at the edge of the droplet. The detection scheme is thermoelectric, in essence identical to one introduced by Molenkamp, et al.1 in the early 1990's for heat transport experiments at zero magnetic field. At zero magnetic field we find that heat moves away from the heater QPC more or less isotropically. As expected from the Mott formula, we find a close connection between the detector QPC's thermoelectric response and the derivative, with respect to gate voltage, of its conductance. At high magnetic field our results show, not surprisingly, that heat transport is chiral in the quantum Hall regime. At total filling factor ν = 1 we inject a hot distribution of electrons into the edge with one of three QPC's. We observe a thermoelectric voltage at the other QPC's only if they are "downstream" from the heater. No signals are detected in the upstream direction. The magnitude of the detected thermal response is dependent upon the distance between the heater and detector QPC's. Additional measurements, in which a second QPC, between the heater and the detector, is used to drain away a portion of the injected heat, strongly suggest that the chiral heat transport we observe is indeed confined to the edge of the Hall droplet. Experiments are underway in the fractional quantum Hall regime to search for "upstream" heat propagation. Theory has suggested that such anti-chiral transport should exist at certain fractions, notably ν = 2/3, owing to backward-propagating neutral modes. Note from Publisher: This article contains the abstract only.
APA, Harvard, Vancouver, ISO, and other styles
37

CHENAUD, B., C. CHAUBET, B. JOUAULT, L. SAMINADAYAR, D. MAILLY, G. FAINI, and A. CAVANNA. "ARE AHARONOV–BOHM EFFECT AND QUANTIZED HALL REGIME COMPATIBLE?" International Journal of Nanoscience 02, no. 06 (December 2003): 535–41. http://dx.doi.org/10.1142/s0219581x03001656.

Full text
Abstract:
We present calculations of the quantum oscillations appearing in the transmission of a mesoscopic GaAs / GaAlAs ring isolated by quantum point contacts. We show that the device acts as an electronic Fabry–Perot spectrometer in the quantum Hall effect regime, and discuss the effect of the coherence length of edge states.
APA, Harvard, Vancouver, ISO, and other styles
38

Maasilta, I. J., and V. J. Goldman. "Energetics of quantum antidot states in the quantum Hall regime." Physical Review B 57, no. 8 (February 15, 1998): R4273—R4276. http://dx.doi.org/10.1103/physrevb.57.r4273.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Huber, M., M. Grayson, M. Rother, R. A. Deutschmann, W. Biberacher, W. Wegscheider, M. Bichler, and G. Abstreiter. "Tunneling in the quantum Hall regime between orthogonal quantum wells." Physica E: Low-dimensional Systems and Nanostructures 12, no. 1-4 (January 2002): 125–28. http://dx.doi.org/10.1016/s1386-9477(01)00283-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Pashitskii, E. A. "New quantum states in the fractional quantum Hall effect regime." Low Temperature Physics 31, no. 2 (February 2005): 171–78. http://dx.doi.org/10.1063/1.1867312.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Kettemann, Stefan. "Persistent Hall voltage and current in the fractional quantum Hall regime." Physical Review B 55, no. 4 (January 15, 1997): 2512–22. http://dx.doi.org/10.1103/physrevb.55.2512.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

PELED, E., D. SHAHAR, Y. CHEN, E. DIEZ, D. L. SIVCO, and A. Y. CHO. "QUANTUM HALL TRANSITIONS IN MESOSCOPIC SAMPLES." International Journal of Modern Physics B 18, no. 27n29 (November 30, 2004): 3575–80. http://dx.doi.org/10.1142/s0217979204027049.

Full text
Abstract:
We present an experimental study of four-terminal resistance fluctuations of mesoscopic samples in the quantum Hall regime. We show that in the vicinity of integer quantum Hall transitions there exist two kinds of correlations between the longitudinal and Hall resistances of the samples, one on either side of the transition region.
APA, Harvard, Vancouver, ISO, and other styles
43

Polyakov, D. G., and B. I. Shklovskii. "Conductivity-peak broadening in the quantum Hall regime." Physical Review B 48, no. 15 (October 15, 1993): 11167–75. http://dx.doi.org/10.1103/physrevb.48.11167.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Knüppel, Patrick, Sylvain Ravets, Martin Kroner, Stefan Fält, Werner Wegscheider, and Atac Imamoglu. "Nonlinear optics in the fractional quantum Hall regime." Nature 572, no. 7767 (July 8, 2019): 91–94. http://dx.doi.org/10.1038/s41586-019-1356-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Hohls, F., U. Zeitler, and R. J. Haug. "High Frequency Conductivity in the Quantum Hall Regime." Physical Review Letters 86, no. 22 (May 28, 2001): 5124–27. http://dx.doi.org/10.1103/physrevlett.86.5124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Pruisken, A. M. M., and M. A. Baranov. "Cracking Coulomb Interactions in the Quantum Hall Regime." Europhysics Letters (EPL) 31, no. 9 (September 20, 1995): 543–48. http://dx.doi.org/10.1209/0295-5075/31/9/007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

de C. Chamon, C., and X. G. Wen. "Resonant tunneling in the fractional quantum Hall regime." Physical Review Letters 70, no. 17 (April 26, 1993): 2605–8. http://dx.doi.org/10.1103/physrevlett.70.2605.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Polyakov, D. G. "Spin-flip scattering in the quantum Hall regime." Physical Review B 53, no. 23 (June 15, 1996): 15777–88. http://dx.doi.org/10.1103/physrevb.53.15777.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Oto, K., S. Takaoka, and K. Murase. "Width of compressible strips in quantum Hall regime." Physica B: Condensed Matter 298, no. 1-4 (April 2001): 18–23. http://dx.doi.org/10.1016/s0921-4526(01)00247-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Hernández, C., C. Consejo, and C. Chaubet. "Admittance measurements in the quantum Hall effect regime." Physica B: Condensed Matter 453 (November 2014): 154–57. http://dx.doi.org/10.1016/j.physb.2014.03.091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography