Academic literature on the topic 'Quantum Hall regime'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Quantum Hall regime.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Quantum Hall regime"

1

Asano, Kenichi, and Tsuneya Ando. "Photoluminescence in quantum Hall regime:." Physica B: Condensed Matter 249-251 (June 1998): 549–52. http://dx.doi.org/10.1016/s0921-4526(98)00183-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

BUHMANN, HARTMUT. "SPIN HALL EFFECTS IN HgTe QUANTUM WELL STRUCTURES." International Journal of Modern Physics B 23, no. 12n13 (May 20, 2009): 2551–55. http://dx.doi.org/10.1142/s0217979209061974.

Full text
Abstract:
Due to a strong spin orbit interaction HgTe quantum well structures exhibit an unusual subband structure ordering which leads to some remarkable transport properties depending on the actual carrier density. Especially for quantum wells with an inverted band structure ordering, a strong Rashba-type spin orbit splitting gives rise to a strong spin Hall effect in the metallic regime and in the bulk insulating regime spin polarized edge channel transport leads to the formation of the quantum spin Hall effect. Gated quantum well structures have been used to explore these, the metallic and insulating, transport regimes experimentally.
APA, Harvard, Vancouver, ISO, and other styles
3

Suzuki, Kenji, and Yoshiyuki Ono. "Orbital Magnetization in Quantum Hall Regime." Journal of the Physical Society of Japan 66, no. 11 (November 15, 1997): 3536–42. http://dx.doi.org/10.1143/jpsj.66.3536.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Amet, F., C. T. Ke, I. V. Borzenets, J. Wang, K. Watanabe, T. Taniguchi, R. S. Deacon, et al. "Supercurrent in the quantum Hall regime." Science 352, no. 6288 (May 19, 2016): 966–69. http://dx.doi.org/10.1126/science.aad6203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kramer, Bernhard, Stefan Kettemann, and Tomi Ohtsuki. "Localization in the quantum Hall regime." Physica E: Low-dimensional Systems and Nanostructures 20, no. 1-2 (December 2003): 172–87. http://dx.doi.org/10.1016/j.physe.2003.09.034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Aoki, Hideo. "Localisation in the quantum hall regime." Surface Science 196, no. 1-3 (January 1988): 107–19. http://dx.doi.org/10.1016/0039-6028(88)90672-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pruisken, A. M. M. "Delocalization in the quantum Hall regime." Physics Reports 184, no. 2-4 (December 1989): 213–17. http://dx.doi.org/10.1016/0370-1573(89)90040-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

He, Mengyun, Yu Huang, Huimin Sun, Yu Fu, Peng Zhang, Chenbo Zhao, Kang L. Wang, Guoqiang Yu, and Qing Lin He. "Quantum anomalous Hall interferometer." Journal of Applied Physics 133, no. 8 (February 28, 2023): 084401. http://dx.doi.org/10.1063/5.0140086.

Full text
Abstract:
Electronic interferometries in integer and fractional quantum Hall regimes have unfolded the coherence, correlation, and statistical properties of interfering constituents. This is addressed by investigating the roles played by the Aharonov–Bohm effect and Coulomb interactions on the oscillations of transmission/reflection. Here, we construct magnetic interferometers using Cr-doped (Bi,Sb)2Te3 films and demonstrate the electronic interferometry using chiral edge states in the quantum anomalous Hall regime. By controlling the extent of edge coupling and the amount of threading magnetic flux, distinct interfering patterns were observed, which highlight the interplay between the Coulomb interactions and Aharonov–Bohm interference by edge states. The observed interference is likely to exhibit a long-range coherence and robustness against thermal smearing probably owing to the long-range magnetic order. Our interferometer establishes a platform for (quasi)particle interference and topological qubits.
APA, Harvard, Vancouver, ISO, and other styles
9

Shikin, V. B. "Inhomogeneous Hall-geometry sample in the quantum Hall regime." Journal of Experimental and Theoretical Physics Letters 73, no. 5 (March 2001): 246–49. http://dx.doi.org/10.1134/1.1371063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

ISHIKAWA, K., T. AOYAMA, Y. ISHIZUKA, and N. MAEDA. "FIELD THEORY OF ANISOTROPIC QUANTUM HALL GAS: METROLOGY AND A NOVEL QUANTUM HALL REGIME." International Journal of Modern Physics B 17, no. 27 (October 30, 2003): 4765–818. http://dx.doi.org/10.1142/s0217979203023112.

Full text
Abstract:
The von Neumann lattice representation is a convenient representation for studying several intriguing physics of quantum Hall systems. In this formalism, electrons are mapped to lattice fermions. A topological invariant expression of the Hall conductance is derived and is used for the proof of the integer quantum Hall effect in the realistic situation. Anisotropic quantum Hall gas is investigated based on the Hartree–Fock approximation in the same formalism. Thermodynamic properties, transport properties, and unusual response under external modulations are found. Implications for the integer quantum Hall effect in the finite systems are also studied and a new quantum Hall regime with non-zero longitudinal resistance is shown to exist.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Quantum Hall regime"

1

Goldmann, Eyal. "Studies of quantum dots in the quantum hall regime /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC IP addresses, 1999. http://wwwlib.umi.com/cr/ucsd/fullcit?p9945779.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kasner, Marcus. "Electronic correlation in the quantum Hall regime." [S.l. : s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=968650392.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Asman, Poppy. "Thermoelectric transport in the Quantum Hall regime." Thesis, University of Warwick, 2017. http://wrap.warwick.ac.uk/101803/.

Full text
Abstract:
This research develops a theoretical model to explain the behaviour of the thermo-power in the quantum Hall regime. It uses the concept that at low temperatures the transport through the system will be caused by thermal activation as well as that caused by the conductance. The model is built up in stages, starting with proving the assumption that Dykhne's theorem will work for an asymmetric distribution of particle transport through the system and deriving the behaviour of the particles in the edge states of the system. It then combines this information with a previously developed simple model for the bulk of the modulation-doped GaAs/AlGaAs heterostructure and compares this with experimental data. This reveals that this simple system is not a viable model to represent the data, and as such the model is made more complex with the inclusion of tunnelling. The different parameters which describe the model are found, the saddle energy gap , the transition value for the edge states c, the current splitting parameter and the tunnelling parameter . This is done either by extracting them from the experimental data, or in the case of considering it as a free parameter. How these values vary with the temperature is investigated before a comparison of the theoretical model including tunnelling is conducted with the experimental data. The result from the comparison show a promising alignment between the model and experiment, and further work is proposed where is no longer considered a constant.
APA, Harvard, Vancouver, ISO, and other styles
4

Davies, Huw David Mansel. "Optical studies in the fractional quantum Hall regime." Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.267919.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Suddards, Matthew Edmund. "Scanning capacitance microscopy in the quantum Hall regime." Thesis, University of Nottingham, 2007. http://eprints.nottingham.ac.uk/10356/.

Full text
Abstract:
This thesis discusses the development of a novel scanning capacitance microscope (SCM) that enables the investigation of the local capacitance and conductivity of surfaces and near-surface nanostructures at cryogenic temperatures and high magnetic fields. Simultaneous atomic force microscopy (AFM) and SCM measurements can be made at a temperature of 1.5K and a magnetic field of 12T. The AFM/SCM sensor is based on a quartz-tuning fork with an etched metal tip. SCM measurements are made using an RF tuned filter design which allows changes in capacitance to be measured with sub-attofarad resolution and a bandwidth of 200Hz. Test measurements were made over an evaporated gold film. The capacitance distance curve was recovered from the measured quantities using a deconvolution scheme normally used for force-distance curves. Measurements have been made of a two-dimensional electron gas in the quantum Hall effect (QHE) regime. Highly conductive stripes form near the edge of the sample at integer Landau level filling factors in agreement with theoretical predictions. These measurements are the first direct imaging of the compressible stripes at the physical edge of a Hall bar device. Measurements were also made by point spectroscopy in a region that was locally depleted. Around this region a ring-shaped stripe of considerably larger width than at the sample edge is observed. The increased width was explained in terms of a shallower potential gradient compared to the physical edge of the sample. Preliminary measurements have demonstrated that the microscope is capable of imaging edge states whilst passing current through the device.
APA, Harvard, Vancouver, ISO, and other styles
6

Franklin, J. D. F. "Edge states in the Fractional Quantum Hall Regime." Thesis, University of Cambridge, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.599178.

Full text
Abstract:
This is an experimental thesis, intended to discover new features of the Fractional Quantum Hall Effect (FQHE), by the fabrication of lithographic microstructures. It begins with an exposition of the theory required to understand electrical transport in Gallium Arsenide high mobility semiconductor heterostructures at low temperatures, and high magnetic fields. It continues with the various theories which attempt to explain the origin of the FQHE, and some predictions that have been made. The role of fractionally-charged quasiparticles is discussed, particularly with reference to the Aharonov-Bohm effect (AB). Experimental measurements are presented of the Aharonov-Bohm effect in the FQHE, and analysis is presented as to their interpretation. Numerical models are shown to describe the energy dependence of the Aharonov-Bohm oscillations, and fitted to experiment. There is a discussion of how the Fermi liquid model of the edge states in the FQHE produces different predictions than the Luttinger liquid model, and the Fermi liquid model is shown to give a good fit to the experimental data. The edge of the sample in the FQHE is currently a subject of much discussion, so this thesis presents results about the equilibration of electronic edge states in the FQHE. An experimental device was developed which allows a continuous variation in the slope of the electrostatic potential at the edge, thus allowing the equilibration to be altered. Scattering coefficients between edge states, both in the integer and fractional Quantum Hall regimes are derived, and the implications discussed, as is the energy dependence of the scattering, for which a theory is developed. Novel oscillations in the scattering coefficients are also observed, and the system is used to experimentally refute the theoretical prediction that under certain circumstances quasiparticles propagate counter to the standard direction.
APA, Harvard, Vancouver, ISO, and other styles
7

Eyles, Ruth Helen. "Phonon spectroscopy in the fractional quantum Hall regime." Thesis, University of Nottingham, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.385115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hernangomez, Perez Daniel. "Spin-orbit Coupling and Strong Interactions in the Quantum Hall Regime." Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENY087.

Full text
Abstract:
L'effet Hall quantique, qui apparaît dans les gaz d'électrons bidimensionnels soumis à un champ magnétique perpendiculaire et à basses températures, a été un sujet de recherche intense pendant les derniers trente ans, en particulier, à cause des manifestations spectaculaires de la mécanique quantique dans les propriétés de transport à l'échelle macroscopique. Dans cette thèse, on étend l'horizon de la recherche au niveau théorique sur ce sujet en considérant les effets du couplage spin-orbite et l'interaction électron-électron de façon analytique dans ce régime.Dans la première partie de ce manuscrit, on considère l'effet simultané du couplage spin-orbite de type Rashba et l'interaction Zeeman dans le régime de l'effet Hall quantique entier. Pour cela, on étend un formalisme de fonctions de Green basé sur des états de vortex cohérents avec l'objectif d'inclure le couplage entre les degrés de liberté orbitaux et de spin dans les états de dérive électroniques. Puis, comme première application, on montre comment obtenir analytiquement, nonperturbativement et de manière contrôlée des fonctionnelles quantiques (spectre et densité d'états locale) pour des potentiels électrostatiques arbitraires et localement plats. Les fonctionnelles sont ensuite analysées dans différents régimes de températures et comparées aux données expérimentales obtenues à partir des sondes de spectroscopie locales. Comme seconde mise en pratique du formalisme, on étudie en profondeur les propriétés de transport de charge et de spin dans un régime hydrodynamique d'équilibre local (ou quasi-équilibre) et dérive des expressions analytiques qui incorporent les caractères non-relativiste et relativiste des gaz d'électrons avec couplage spin-orbite de type Rashba.Dans la deuxième partie de cette thèse, on s'occupe du problème de traiter analytiquement les fortes interactions électron-électron dans le régime de l'effet Hall quantique fractionnaire. A cette fin, on étudie un problème à deux corps généralisé avec du désordre et des corrélations électroniques, en utilisant une nouvelle représentation d'états de vortex cohérents. Des corrélations à longue portée entre les particules sont incorporées de manière topologique à travers la présence d'une métrique non-Euclidienne. Subséquemment, on montre que ces états de vortex forment bien une base d'un espace de Hilbert élargi, puis on dérive l'équation du mouvement pour la fonction de Green. Enfin, on vérifie la consistance de notre théorie pour tout niveau de Landau de paire et on discute la nécessité d'aller au-delà de la limite semiclassique (à champ magnétique infinie) pour obtenir des gaps dans chaque niveau de énergie
The quantum Hall effect, appearing in disordered two-dimensional electron gases under strong perpendicular magnetic fields and low temperatures, has been a subject of intense research during the last thirty years due to its very spectacular macroscopic quantum transport properties. In this thesis, we expand the theoretical horizon by analytically considering the effects of spin-orbit coupling and strong electron-electron interaction in these systems.In the first part of the manuscript, we examine the simultaneous effect of Rashba spin-orbit and Zeeman interaction in the integer quantum Hall regime. Under these conditions, we extend a coherent-state vortex Green's function formalism to take into account the coupling between orbital and spin degrees of freedom within the electronic drift states. As a first application of this framework, we analytically compute controlled microscopic nonperturbative quantum functionals, such as the energy spectrum and the local density of states, in arbitrary locally flat electrostatic potential landscapes, which are then analyzed in detail in different temperature regimes and compared to scanning tunnelling experimental data. As a second application, we thoroughly study local equilibrium charge and spin transport properties and derive analytical useful formulas which incorporate the mixed non-relativistic and relativistic character of Rashba-coupled electron gases.In the second part of this thesis, we deal with the problem of analytically incorporating strong electron-electron interactions in the fractional quantum Hall regime. To this purpose, we consider a generalized two-body problem where both disorder and correlations are combined and introduce a new vortex coherent-state representation of the two-body states that naturally include long-range correlations between the electrons. The novelty of this theory is that correlations are topologically built in through the non-Euclidean metric of the Hilbert space. Next, we show that this kind of vortex states form a basis of an enlarged Hilbert space and derive the equation of motion for the Green's function in this representation. Finally, we check the consistency of our approach for any Landau level of the pair and discuss the necessity of going beyond the semiclassical (infinite magnetic field) approximation to obtain energy gaps within each energy level
APA, Harvard, Vancouver, ISO, and other styles
9

Thiney, Vivien. "Detection of travelling electrons in the Quantum Hall effect regime with a singlet-triplet quantum bit detector." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAY069/document.

Full text
Abstract:
L’optique quantique avec électron est un domaine de recherche en expansion depuis ses débuts au cours des années 90 prenant suite aux premières expériences d’interférence avec électrons réalisées dans les années 80. Ce domaine est dédié à la réalisation d’expérience d’optique quantique avec des électrons plutôt que des photons. Leur intérêt est double, d’une part les électrons étant des fermions de nouveaux phénomènes, en comparaison des photons qui sont des bosons, peuvent être observés. L’électron anti-bunching, en comparaison du bunching des photons obtenu dans des expériences de corrélations en est un exemple. Le deuxième avantage des électrons est le fait qu’ils peuvent être contrôlés et manipulés à l’aide de champ électrique, un tel contrôle n’est pas possible avec des photons. Alors que les composants de base pour la réalisation de ces expériences sont déjà existant comme la lame séparatrice, ou encore les sources cohérentes à électrons uniques, la détection immédiate d’un électron unique dans de telles expériences est toujours manquante. La difficulté étant le faible temps d’interaction entre l’électron en déplacement et le détecteur de charge qui est limité typiquement à moins de 1ns principalement à cause de la vitesse élevée de déplacement de l’électron qui est égale à la vitesse de Fermi soit 10-100km/s. Ce temps d’interaction est environ deux ordres de grandeurs plus petits que ce qui est nécessaire pour le meilleur détecteur de charge démontré jusqu’à présent.Dans ce manuscrit est présenté le développement d’un détecteur ultra-sensible pour la détection immédiate d’un électron se déplaçant à la vitesse de Fermi. Notre stratégie est de détecter un électron unique se déplaçant dans les canaux de bords (ECs) de l’effet Hall quantique à partir de la mesure d’une variation de phase d’un bit quantique singlet-triplet, appelé qubit détecteur par la suite. La détection immédiate de cet électron en déplacement n’étant possible que si l’interaction avec ce dernier induit une variation de phase de pi, avec une lecture immédiate de l’état de spin du qubit détecteur.Grâce au développement et à l’utilisation d’un RF-QPC, cette lecture immédiate de l’état de spin est tout d’abord démontrée. Par la suite le développement du qubit détecteur avec la réalisation d’oscillations cohérentes d’échange est décrit. Sa sensibilité en charge est démontrée avec l’observation d’une phase induite par l’interaction avec un courant d’électrons dans les ECs. Ce courant est imposé par l’application d’un biais de tension contrôlant le potentiel chimique de ces ECs.Après optimisation de ce qubit détecteur pour la détection d’un électron unique, il est calibré en utilisant le même procédé de courant imposé par application d’un biais de tension. Cette calibration nous fournie la variation de signal attendue pour l’interaction avec cette charge unique est indique que sa détection immédiate est impossible dans nos conditions expérimentales. Notre détecteur ayant une sensibilité de charge de l’ordre de 8.10-5 pour une bande passante allant de DC à 1THz. Cette sensibilité est environ deux ordres de grandeur trop petite que ce qui est nécessaire pour la détection immédiate de cette charge unique. Finalement, ce qubit détecteur est utilisé pour détecté, dans une expérience moyennée, ce qui est appelé un edge magneto plasmon composé par moins de 5 électrons. Néanmoins, atteindre la détection de la charge unique dans n’a pas été possible, la sensibilité en charge étant légèrement trop petite pour y arriver.Les différentes limites de notre détecteur sont listées et expliquées tout au long du manuscrit, avec une présentation de différents axes de développement qui devraient permettre de réussir cette détection d’un électron unique dans une nouvelle expérience
The electron quantum optics field is a research topic with an interest growing over the years since the 80's and the first interference experiment with electrons. This field is dedicated to the implementation of quantum optics experiments with electrons instead of photon. The advantage is twofold, one is the fermion nature of the electrons which ensure the observation of phenomenon which cannot be observed with photon (boson), the anti-bunching of the electrons in correlation experiments contrary to the bunching for photons illustrates this point. The second advantage is the possibility to interact and control electrons with electric fields since they are charged particles. Such control does not exist with photon. In addition to these fundamental experiments, it has been recently demonstrated that this topic presents a possible candidate for quantum information with so called flying qubit. While the based components to mimic the quantum optics experiments are already demonstrated like the beam splitter, phase shifter or coherent single electron source, the single electron detection in a single shot manner in such system is still lacking. The difficulty being the short interaction time between the travelling charge and the charge detector, being of less than 1ns in such system where the electron propagate at the Fermi velocity 10-100km/s. This interaction is approximately two orders of magnitude shorter than what is required with the actual best on chip charge detector.In this thesis is presented the development of an ultra-sensitive detector for the single shot detection of an electron travelling at the Fermi velocity. Our strategy was to detect a single travelling electron propagating in the edge channels (ECs) of the quantum Hall effect by measuring the induced phase shift of a singlet-triplet qubit, referred as to the qubit detector. The single shot detection being only possible if the interaction with the travelling electron induces a complete π phase shift and the spin readout of the qubit detector being performed in a single shot manner.Thanks to the development and use of a RF-QPC the single shot spin readout of the qubit detector has been first demonstrated. Its development with the implementation of coherent exchange oscillations is then described. The charge sensitivity of the qubit detector is validated in an experiment consisting in recording a phase shift of these oscillations due to the interaction with an imposed flow of electrons in the ECs. This flow of electron was induced by a DC voltage bias applied on the ECs to tune their chemical potential.This qubit detector is then optimised for the single travelling charge detection. Its calibration has been implemented using the same imposed flow of electrons by application of a DC bias. This calibration provides the expected signal variation induced by the interaction with a single travelling electron, and indicates the impossibility to implement this detection in a single shot manner in our experimental conditions. Our detector exhibits a charge sensitivity estimated close to 8.10-5 e/Hz-1/2 for a detection bandwidth from DC to 1 THz. The sensitivity is close to two orders of magnitude smaller than required for a single shot detection. Finally this qubit detector has been employed to detect in average measurements an edge magneto plasmon composed by less than 5 electrons. However, the single electron level could not be reached in statistical measurement neither, the sensitivity of our qubit detector being too limited.The different limitations of our experiment are listed and explained with the presentation of different axes of development which could permit to succeed this detection in another experiment
APA, Harvard, Vancouver, ISO, and other styles
10

Buset, Jonathan. "Near infrared optical manipulation of a GaAs/AlGaAs quantum well in the quantum hall regime." Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=21957.

Full text
Abstract:
Using electronic spin rather than charge to replace existing microelectronic systems has been a well studied area of research in the last ten years. More recently, research has focused on using the nuclear spin of GaAs rather than the electron spin. This work has demonstrated that GaAs nuclear spins have many desirable properties and show great potential as quantum information carriers. The challenge in the implementation of nuclear spins lies in the ability to control and retrieve the information that they carry. One proposed method is to dynamically polarize the GaAs nuclear spins using circularly polarized photoexcitation. If successful, this could open new horizons in the field of quantum information processing. This thesis details an investigation into the use of polarized light to manipulate the properties of a GaAs/AlGaAs quantum well sample. The three main topics explored in this thesis are: 1) the design and operation of a polarization controller that is able to shine well-defined and tunable polarized light on to a sample contained in a cryogenic environment at T = 0.27K; 2) the manipulation of the nuclear polarization in GaAs using low power laser light with tunable polarization; and 3) a preliminary investigation into illuminating a quantum Hall sample with unfocused, low power laser light and the transport properties modifications that occur in the quantum Hall regime.
L'utilisation du spin electronique plutot que la charge electronique pour remplacer les systemes microelectroniques a ete un domaine bien etudie de la recherche au cours des dix dernieres annees. Plus recemment, la recherche a porte sur l'utilisation du spin nucleaire du GaAs plutot que le spin electronique. Ce travail a demontre que les spins nucleaires du GaAs ont de nombreuses proprietes desirables et montrent un grand potentiel en tant que transporteurs de l'information quantique. Le defi dans la mise en oeuvre des spins nucleaires reside dans la capacite de controler et de recuperer les informations qu'elles transportent. Une methode proposee consiste a polariser dynamiquement les spins nucleaires du GaAs en utilisant la photoexcitation polarisee circulairement. Ceci pourrait ouvrir de nouveaux horizons dans le domaine du traitement de l'information quantique. Cette these expose en details une enquete sur l'utilisation de la lumiere polarisee pour manipuler les proprietes d'un echantillon puit quantique de GaAs/AlGaAs. Les trois principaux sujets abordes dans cette these sont les suivants: 1) la conception et le fonctionnement d'un controleur de polarisation qui est capable d'emettre une lumiere polarisee bien definie et ajustable sur un echantillon dans un environnement cryogenique a T = 0.27K, 2) la manipulation de la polarisation nucleaire dans le GaAs en utilisant un laser a faible puissance avec une polarisation ajustable, et 3) une enquete preliminaire sur l'illumination d'un echantillon de Hall quantique avec un laser non-focalise a faible puissance et les modifications des proprietes de transport qui se produisent dans le regime de Hall quantique.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Quantum Hall regime"

1

Frieß, Benedikt. Spin and Charge Ordering in the Quantum Hall Regime. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-33536-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

O, Heinonen, ed. Composite fermions: A unified view of the quantum Hall regime. Singapore: World Scientific, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Heinonen, O. Composite Fermions: A Unified View of the Quantum Hall Regime. World Scientific Publishing Company, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Composite Fermions: A Unified View of the Quantum Hall Regime. World Scientific Publishing Company, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Frieß, Benedikt. Spin and Charge Ordering in the Quantum Hall Regime. Springer International Publishing AG, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Frieß, Benedikt. Spin and Charge Ordering in the Quantum Hall Regime. Springer London, Limited, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Frieß, Benedikt. Spin and Charge Ordering in the Quantum Hall Regime. Springer, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kavokin, Alexey V., Jeremy J. Baumberg, Guillaume Malpuech, and Fabrice P. Laussy. Quantum Fluids of Light. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198782995.003.0010.

Full text
Abstract:
In this chapter, we deal with polaritons as a “quantum fluid of light”, described by variants of the Gross–Pitaevskii equation. We discuss how interactions between flowing polaritons and a defect allow to study their superfluid regime and generate topological defects. Including spin gives rise to an effective magnetic field (polariton spin-orbit coupling) that acts on the topological defects—half-solitons and half-vortices—behaving as effective magnetic monopoles. We describe various techniques to create periodic potentials, that can lead to the formation of polaritonic bands and gaps with a unique flexibility. Special focus is given to topologically nontrivial bands, leading to a polariton topological insulator, based on a polariton graphene analog.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Quantum Hall regime"

1

Baer, Stephan, and Klaus Ensslin. "Quantum Dots in the Quantum Hall Regime." In Transport Spectroscopy of Confined Fractional Quantum Hall Systems, 233–46. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-21051-3_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sohrmann, C., J. Oswald, and R. A. R. ömer. "Quantum Percolation in the Quantum Hall Regime." In Quantum and Semi-classical Percolation and Breakdown in Disordered Solids, 1–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-85428-9_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Glattli, D. Christian. "Tunneling Experiments in the Fractional Quantum Hall Effect Regime." In The Quantum Hall Effect, 163–97. Basel: Birkhäuser Basel, 2005. http://dx.doi.org/10.1007/3-7643-7393-8_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wei, H. P., D. C. Tsui, and A. M. M. Pruisken. "Localization and scaling in the quantum Hall regime." In Quantum Hall Effect: A Perspective, 166–69. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-010-9709-3_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Schüller, Christian, Neil A. Fromer, Ilias E. Perakis, and Daniel S. Chemla. "Ultrafast Spectroscopy in the Quantum Hall Regime." In Nonequilibrium Physics at Short Time Scales, 209–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-08990-3_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gudmundsson, Vidar. "Screening of Impurities in the Quantum Hall Regime." In NATO ASI Series, 517–33. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4757-6565-6_34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kouwenhoven, Leo P. "Adiabatic Transport in the Fractional Quantum Hall Regime." In Electronic Properties of Multilayers and Low-Dimensional Semiconductor Structures, 429–30. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-7412-1_26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

v. Klitzing, K., G. Ebert, N. Kleinmichel, H. Obloh, G. Dorda, and G. Weimann. "Energy Dissipation Processes in the Quantum Hall Regime." In Proceedings of the 17th International Conference on the Physics of Semiconductors, 271–74. New York, NY: Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4615-7682-2_57.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Beenakker, Carlo W. J. "Adiabatic Transport in the Fractional Quantum Hall Effect Regime." In Quantum Coherence in Mesoscopic Systems, 177–93. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-3698-1_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ohtsuki, T., Y. Ono, N. Tajima, and K. Suzuki. "Equilibrium and Non-Equilibrium Current in the Quantum Hall Regime." In Quantum Dynamics of Submicron Structures, 143–50. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0019-9_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Quantum Hall regime"

1

Byszewski, M., B. Chwalisz-Pietka, D. K. Maude, M. L. Sadowski, M. Potemski, T. Saku, Y. Hirayama, et al. "Charged excitons in fractional quantum Hall regime." In PHYSICS OF SEMICONDUCTORS: 28th International Conference on the Physics of Semiconductors - ICPS 2006. AIP, 2007. http://dx.doi.org/10.1063/1.2730061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Real, Mariano A., Daniel Gresta, Alejandra Tonina, Liliana Arrachea, and Werner Dietsche. "Thermoelectricity in Corbino devices in the quantum Hall regime." In 2020 Conference on Precision Electromagnetic Measurements (CPEM 2020). IEEE, 2020. http://dx.doi.org/10.1109/cpem49742.2020.9191875.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gazzano, Olivier, Bin Cao, Jiuning Hu, Tobias Grass, Tobias Huber, David Newell, Mohammad Hafezi, and Glenn Solomon. "Unbiased photo-carrier transport in the quantum Hall regime." In CLEO: QELS_Fundamental Science. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/cleo_qels.2018.fm3h.2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pruisken, A. A. M., and H. P. Wei. "Has universality in the Quantum Hall Regime been observed?" In Ordering disorder: Prospect and retrospect in condensed matter physics. AIP, 1992. http://dx.doi.org/10.1063/1.44744.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hernández, C., and C. Chaubet. "AC-magnetotransport of a 2DEG in the quantum Hall regime." In 7TH INTERNATIONAL CONFERENCE ON LOW DIMENSIONAL STRUCTURES AND DEVICES: (LDSD 2011). AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4878312.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Crépieux, Adeline. "Photo-assisted shot noise in the fractional quantum Hall regime." In NOISE AND FLUCTUATIONS: 18th International Conference on Noise and Fluctuations - ICNF 2005. AIP, 2005. http://dx.doi.org/10.1063/1.2036799.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Aramaki, H., R. Eguchi, E. Kamata, and T. Fujisawa. "Quantum Antidot with Fully and Partially Depleted Regions in the Quantum Hall Regime." In 2018 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2018. http://dx.doi.org/10.7567/ssdm.2018.a-3-06.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Akera, Hiroshi, and Hidekatsu Suzuura. "Thermohydrodynamic Instability in Narrow Quantum Hall Systems in the Breakdown Regime." In PHYSICS OF SEMICONDUCTORS: 28th International Conference on the Physics of Semiconductors - ICPS 2006. AIP, 2007. http://dx.doi.org/10.1063/1.2730067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bid, Aveek, N. Ofek, H. Inoue, M. Heiblum, C. L. Kane, V. Umansky, D. Mahalu, Jisoon Ihm, and Hyeonsik Cheong. "Observation of Neutral Modes In The Fractional Quantum Hall Effect Regime." In PHYSICS OF SEMICONDUCTORS: 30th International Conference on the Physics of Semiconductors. AIP, 2011. http://dx.doi.org/10.1063/1.3666537.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Couturaud, O., B. Jouault, S. Bonifacie, C. Chaubet, and D. Mailly. "Tunneling and Coulomb Blockade in narrow GaAs/InGaAs/AlGaAs Hall bars in the quantum hall regime." In PHYSICS OF SEMICONDUCTORS: 28th International Conference on the Physics of Semiconductors - ICPS 2006. AIP, 2007. http://dx.doi.org/10.1063/1.2730065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography