Academic literature on the topic 'Quantum estimation theory'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Quantum estimation theory.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Quantum estimation theory"
Rodríguez-García, Marco A., Isaac Pérez Castillo, and P. Barberis-Blostein. "Efficient qubit phase estimation using adaptive measurements." Quantum 5 (June 4, 2021): 467. http://dx.doi.org/10.22331/q-2021-06-04-467.
Full textPARIS, MATTEO G. A. "QUANTUM ESTIMATION FOR QUANTUM TECHNOLOGY." International Journal of Quantum Information 07, supp01 (January 2009): 125–37. http://dx.doi.org/10.1142/s0219749909004839.
Full textBakmou, Lahcen, Mohammed Daoud, and Rachid ahl laamara. "Multiparameter quantum estimation theory in quantum Gaussian states." Journal of Physics A: Mathematical and Theoretical 53, no. 38 (August 26, 2020): 385301. http://dx.doi.org/10.1088/1751-8121/aba770.
Full textGianani, Ilaria, and Claudia Benedetti. "Multiparameter estimation of continuous-time quantum walk Hamiltonians through machine learning." AVS Quantum Science 5, no. 1 (March 2023): 014405. http://dx.doi.org/10.1116/5.0137398.
Full textSuzuki, Jun. "Information Geometrical Characterization of Quantum Statistical Models in Quantum Estimation Theory." Entropy 21, no. 7 (July 18, 2019): 703. http://dx.doi.org/10.3390/e21070703.
Full textFujiwara, A. "Statistical estimation of a quantum operation." Quantum Information and Computation 4, no. 6&7 (December 2004): 479–88. http://dx.doi.org/10.26421/qic4.6-7-7.
Full textNiu, Ming-Li, Yue-Ming Wang, and Zhi-Jian Li. "Estimation of light-matter coupling constant under dispersive interaction based on quantum Fisher information." Acta Physica Sinica 71, no. 9 (2022): 090601. http://dx.doi.org/10.7498/aps.71.20212029.
Full textNogueira, Edson C., Gustavo de Souza, Adalberto D. Varizi, and Marcos D. Sampaio. "Quantum estimation in neutrino oscillations." International Journal of Quantum Information 15, no. 06 (September 2017): 1750045. http://dx.doi.org/10.1142/s0219749917500459.
Full textStreater, R. F. "Proof of a Modified Jaynes's Estimation Theory." Open Systems & Information Dynamics 18, no. 02 (June 2011): 223–33. http://dx.doi.org/10.1142/s1230161211000157.
Full textHaase, J. F., A. Smirne, S. F. Huelga, J. Kołodynski, and R. Demkowicz-Dobrzanski. "Precision Limits in Quantum Metrology with Open Quantum Systems." Quantum Measurements and Quantum Metrology 5, no. 1 (August 1, 2016): 13–39. http://dx.doi.org/10.1515/qmetro-2018-0002.
Full textDissertations / Theses on the topic "Quantum estimation theory"
Kubitzki, Marcus. "State and Parameter Estimation in Quantum Theory." [S.l. : s.n.], 2003. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB10806359.
Full textAhmadi, Abhari Seyed Hamed. "Quantum Algorithms for: Quantum Phase Estimation, Approximation of the Tutte Polynomial and Black-box Structures." Doctoral diss., University of Central Florida, 2012. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5096.
Full textID: 031001318; System requirements: World Wide Web browser and PDF reader.; Mode of access: World Wide Web.; Title from PDF title page (viewed March 27, 2013).; Thesis (Ph.D.)--University of Central Florida, 2012.; Includes bibliographical references (p. 82-86).
Ph.D.
Doctorate
Mathematics
Sciences
Mathematics
Porta, Mana Piero Giovanni Luca. "Studies in plausibility theory, with applications to physics." Doctoral thesis, Kista : [Mikroelektronik och tillämpad fysik Microelectronics and Applied Physics, Kungliga Tekniska högskolan], 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4421.
Full textBenedetti, C. "DECOHERENCE, NON-MARKOVIANITY AND QUANTUM ESTIMATION IN QUBIT SYSTEMS SUBJECT TO CLASSICAL NOISE." Doctoral thesis, Università degli Studi di Milano, 2015. http://hdl.handle.net/2434/254031.
Full textKnee, George C. "Concepts and applications of quantum measurement." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:2838a30b-302c-4fac-9e86-1ca452a88a83.
Full textSouza, Douglas Delgado de 1987. "Informação quântica com estados coerentes comprimidos da luz." [s.n.], 2015. http://repositorio.unicamp.br/jspui/handle/REPOSIP/276940.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin
Made available in DSpace on 2018-08-28T00:18:27Z (GMT). No. of bitstreams: 1 Souza_DouglasDelgadode_D.pdf: 6011689 bytes, checksum: b920d0dfb23c23b599d6bf1a254285ec (MD5) Previous issue date: 2015
Resumo: Na primeira parte deste trabalho seguimos os estudos de Hirota e colaboradores e definimos quatro estados quase-Bell baseados em estados coerentes comprimidos da luz. Dois desses estados são maximamente emaranhados, enquanto o emaranhamento dos outros dois depende apenas da sobreposição entre os estados coerentes comprimidos que os compõem. A partir destes estados quase-Bell, definimos novos estados interpolados cujo emaranhamento é também governado por um parâmetro de interpolação adicional e estudamos algumas das propriedades destes estados (emaranhamento e eficiência energética). Por fim, usamos estes estados e definimos alguns estados de Werner, com os quais analisamos de forma simples uma possível influência de um ambiente dissipativo parametrizado pela probabilidade de o estado de Werner estar em sua forma emaranhada ou misturada. Para esta análise usamos os conceitos de separabilidade e emaranhamento. Na segunda parte estudamos a estimativa de fase quântica usando estados gaussianos puros (estados coerentes comprimidos). Iniciamos com a estimativa da fase introduzida por um operador unitário em cujo hamiltoniano está presente uma perturbação linear nos operadores de criação e aniquilação, além do operador de número de fótons responsável pela evolução de fase (perturbação linear unitária). Obtemos quais são os estados gaussianos ótimos para a estimativa desta fase e analisamos a optimalidade da detecção homódina. A seguir, consideramos o parâmetro de perturbação como uma variável aleatória que obedece a uma distribuição gaussiana de probabilidades (perturbação linear aleatória) e novamente obtemos os estados de sonda ótimos e analisamos a optimalidade da detecção homódina. Por fim, estudamos a estimativa de fase com perturbação linear unitária utilizando os estados quase-Bell interpolados definidos na primeira parte deste trabalho e verificamos que a utilização de emaranhamento permite uma melhor estimativa de fase para uma mesma energia disponível
Abstract: In the first part of this work we follow the studies of Hirota and collaborators and we define four quasi-Bell states based on squeezed coherent states of light. Two of these states are maximally entangled, while the entanglement of the other two depends only on the overlap between the squeezed coherent states that were combined. From these quasi-Bell states we define new interpolated states for which the entanglement is also governed by an additional interpolation parameter, and we study some of the properties of these states (entanglement and energy efficiency). Finally, we use these states to define some Werner states, which we use to study in a simple way the possible influence of some dissipative environment parameterized by the probability that the Werner state is entangled or mixed. For this analysis we use the concepts of separability and entanglement. In the second part, we study the quantum phase estimation using pure Gaussian states (squeezed coherent states). We begin with the estimation of the phase introduced by a unitary operator whose Hamiltonian also contains a disturbance that is linear in the creation and annihilation operators in addition to the photon number operator responsible for the phase evolution (unitary linear disturbance). We find what are the optimal Gaussian states for this phase estimation and we also analyze the optimality of the homodyne detection. Next, we consider the disturbance parameter to be a random variable submitted to a Gaussian distribution (random linear disturbance) and again we find what are the optimal probe states and analyze the optimality of the homodyne detection. Finally we study the phase estimation with unitary linear disturbance using the interpolated quasi-Bell states defined in the first part of this work and we verify that the use of entanglement leads to a better phase estimation for the same amount of available energy
Doutorado
Física
Doutor em Ciências
2011/00220-5
FAPESP
Baldasare, Corey Adam. "Quantum Chemical pKa Estimation of Carbon Acids, Saturated Alcohols, and Ketones via Quantitative Structure-Activity Relationships." Wright State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=wright1598550823525731.
Full textSantos, Jader Pereira dos. "Uso de luz quantizada para controle e medida em sistemas atômicos e moleculares." reponame:Repositório Institucional da UFABC, 2015.
Find full textTese (doutorado) - Universidade Federal do ABC, Programa de Pós-Graduação em Física, 2015.
A presente tese de doutorado tem como principal objetivo empregar luz quantizada para o controle e medida em sistemas complexos como em um conjunto de cromóforos, e em um condensado de Bose-Einstein. Em especial, desenvolvemos formalismos de pulsos e equações mestras aplicáveis a esses sistemas e utilizamos teoria de estimativa quântica para determinar quantidades atômicas relevantes de maneira indireta (medindo propriedades da luz). Também empregamos técnicas variadas para obtenção de equações mestras para estudar diferentes problemas envolvendo interação de luz quântica com matéria. Em um caso, obtivemos uma equação mestra microscópica para o estudo de dois sistemas de dois níveis acoplados no espaço livre, e mostramos como a equação mestra microscópica desse sistema se distingue de equações fenomenológicas para o mesmo. Por fim, também discutimos a obtenção de uma equação mestra para o estudo de transferência de emaranhamento entre o campo eletromagnético quantizado e complexos Fenna-Matthews-Olson localizados em cavidades óticas distintas.
The main aim of the present Ph.D. thesis is to employ quantized light to control and measurement of complex systems such as a set of chromophores and a Bose- Einstein condensate in a double well. Specifically, we develop a formalism for pulses and master equations that can be applied to those systems and use quantum estimation theory to get information on relevant parameters in atomic system in a indirect way (measuring light properties). We also employ varied techniques for the obtention of master equations to study different problems involving the interaction of quantum light and matter. We obtained a microscopic master equation for the study of two coupled two-level systems in the free space, and we showed how the microscopic master equation of this system distinguish from the phenomenological ones. Finally, we also discuss the obtention of a master equation for the study of the transference of entanglement between the quantized electromagnetic field and the Fenna-Matthews-Olson complex localized in distinct optical cavities.
Silva, Domingos José Lopes da. "Estatística de extremos: limites da performance humana - estudo com lançadores e saltadores do atletismo." Doctoral thesis, Universidade de Évora, 2020. http://hdl.handle.net/10174/28600.
Full textGherardini, Stefano. "Noise as a resource - Probing and manipulating classical and quantum dynamical systems via stochastic measurements." Doctoral thesis, 2018. http://hdl.handle.net/2158/1120060.
Full textBooks on the topic "Quantum estimation theory"
Matteo, Paris, and Řeháček Jaroslav, eds. Quantum state estimation. Berlin: Springer, 2004.
Find full textHarney, Hanns L. Bayesian Inference: Parameter Estimation and Decisions. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003.
Find full textWatanabe, Yu. Formulation of Uncertainty Relation Between Error and Disturbance in Quantum Measurement by Using Quantum Estimation Theory. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54493-7.
Full textHarney, Hanns L. Bayesian inference: Parameter estimation and decisions. Berlin: Springer, 2002.
Find full text1975-, Sims Robert, and Ueltschi Daniel 1969-, eds. Entropy and the quantum II: Arizona School of Analysis with Applications, March 15-19, 2010, University of Arizona. Providence, R.I: American Mathematical Society, 2011.
Find full textBarnett, Alex, 1972 December 7- editor of compilation, ed. Spectral geometry. Providence, Rhode Islands: American Mathematical Society, 2012.
Find full textChakrabarti, Raj. Quantum Control and Quantum Estimation Theory. Taylor & Francis Group, 2011.
Find full textChakrabarti, Raj. Quantum Control and Quantum Estimation Theory. Taylor & Francis Group, 2021.
Find full textTeo, Yong Siah. Introduction to Quantum-State Estimation. World Scientific Publishing Co Pte Ltd, 2015.
Find full textBook chapters on the topic "Quantum estimation theory"
Watanabe, Yu. "Quantum Estimation Theory." In Formulation of Uncertainty Relation Between Error and Disturbance in Quantum Measurement by Using Quantum Estimation Theory, 37–44. Tokyo: Springer Japan, 2013. http://dx.doi.org/10.1007/978-4-431-54493-7_4.
Full textHayashi, Masahito. "Quantum Information Geometry and Quantum Estimation." In Quantum Information Theory, 253–322. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49725-8_6.
Full textWatanabe, Yu. "Classical Estimation Theory." In Formulation of Uncertainty Relation Between Error and Disturbance in Quantum Measurement by Using Quantum Estimation Theory, 19–36. Tokyo: Springer Japan, 2013. http://dx.doi.org/10.1007/978-4-431-54493-7_3.
Full textHayashi, Masahito. "Information Quantities and Parameter Estimation in Classical Systems." In Quantum Information Theory, 25–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49725-8_2.
Full textD’ariano, G. M. "Quantum Estimation Theory and Optical Detection." In Quantum Optics and the Spectroscopy of Solids, 139–74. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8796-9_8.
Full textChiribella, Giulio. "On Quantum Estimation, Quantum Cloning and Finite Quantum de Finetti Theorems." In Theory of Quantum Computation, Communication, and Cryptography, 9–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-18073-6_2.
Full textKunihiro, Noboru. "Quantum Factoring Algorithm: Resource Estimation and Survey of Experiments." In International Symposium on Mathematics, Quantum Theory, and Cryptography, 39–55. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5191-8_7.
Full textWoodhead, Erik, Charles Ci Wen Lim, and Stefano Pironio. "Semi-device-independent QKD Based on BB84 and a CHSH-Type Estimation." In Theory of Quantum Computation, Communication, and Cryptography, 107–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35656-8_9.
Full textMarvian, Iman, and Robert W. Spekkens. "Applying a Generalization of Schur-Weyl Duality to Problems in Quantum Information and Estimation." In Theory of Quantum Computation, Communication, and Cryptography, 141–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35656-8_12.
Full textFujii, Tomohiro, and Masao Hirokawa. "A Data Concealing Technique with Random Noise Disturbance and a Restoring Technique for the Concealed Data by Stochastic Process Estimation." In International Symposium on Mathematics, Quantum Theory, and Cryptography, 103–24. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5191-8_11.
Full textConference papers on the topic "Quantum estimation theory"
Walter, Michael, and Joseph M. Renes. "A Heisenberg limit for quantum region estimation." In 2014 IEEE International Symposium on Information Theory (ISIT). IEEE, 2014. http://dx.doi.org/10.1109/isit.2014.6875008.
Full textPereg, Uzi. "Communication over Quantum Channels with Parameter Estimation." In 2020 IEEE International Symposium on Information Theory (ISIT). IEEE, 2020. http://dx.doi.org/10.1109/isit44484.2020.9174144.
Full textNair, Ranjith. "Quantum limits on optical phase estimation accuracy from classical rate-distortion theory." In INTERNATIONAL CONFERENCE ON QUANTITATIVE SCIENCES AND ITS APPLICATIONS (ICOQSIA 2014): Proceedings of the 3rd International Conference on Quantitative Sciences and Its Applications. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4903098.
Full textAmbainis, Andris, and Martins Kokainis. "Quantum algorithm for tree size estimation, with applications to backtracking and 2-player games." In STOC '17: Symposium on Theory of Computing. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3055399.3055444.
Full textGangopadhyay, Bijan Kumar. "Estimation of nanocluster separation limit to retain magnetic ordering using quantum theory of ferromagnetism." In 2ND INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5033136.
Full textShepard, S. R., and Jeffrey H. Shapiro. "Ultimate quantum limits on phase measurement." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1988. http://dx.doi.org/10.1364/oam.1988.ma5.
Full textFrieden, B. Roy. "Restoration of Photon-Limited Images." In Quantum-Limited Imaging and Image Processing. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/qlip.1986.wb1.
Full textOyewande, Oluwole E. "Towards an Estimation of PCEs from Surface Sputtering Parameters." In 27th iSTEAMS-ACity-IEEE International Conference. Society for Multidisciplinary and Advanced Research Techniques - Creative Research Publishers, 2021. http://dx.doi.org/10.22624/aims/isteams-2021/v27p7.
Full textSnyder, Donald L., and Timothy J. Schulz. "Some new methods for restoring images of faint objects." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/oam.1991.ft1.
Full textSoffer, Bernard H., and Ryoichi Kikuchi. "Quantum Statistics Basis for Maximum Entropy Restoration." In Quantum-Limited Imaging and Image Processing. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/qlip.1986.wa2.
Full textReports on the topic "Quantum estimation theory"
Samuel, M. A. On estimating perturbative coefficients in quantum field theory and statistical physics. Office of Scientific and Technical Information (OSTI), May 1994. http://dx.doi.org/10.2172/296832.
Full textSamuel, M. On Estimating Perturbative Coefficients in Quantum Field Theory and Statistical Physics. Office of Scientific and Technical Information (OSTI), November 2003. http://dx.doi.org/10.2172/826542.
Full textSamuel, Mark. Theorems on Estimating Perturbative Coefficients in Quantum Field Theory and Statistical Physics. Office of Scientific and Technical Information (OSTI), June 2003. http://dx.doi.org/10.2172/813278.
Full text