Academic literature on the topic 'Quantum electronics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Quantum electronics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Quantum electronics"
Mukhammadova, Dilafruz Ahmadovna. "The Role Of Quantum Electronics In Alternative Energy." American Journal of Applied sciences 03, no. 01 (January 30, 2021): 69–78. http://dx.doi.org/10.37547/tajas/volume03issue01-12.
Full textZwanenburg, Floris A., Andrew S. Dzurak, Andrea Morello, Michelle Y. Simmons, Lloyd C. L. Hollenberg, Gerhard Klimeck, Sven Rogge, Susan N. Coppersmith, and Mark A. Eriksson. "Silicon quantum electronics." Reviews of Modern Physics 85, no. 3 (July 10, 2013): 961–1019. http://dx.doi.org/10.1103/revmodphys.85.961.
Full textSAKAKI, H. "Quantum Microstructures and Quantum Wave Electronics." Nihon Kessho Gakkaishi 33, no. 3 (1991): 107–18. http://dx.doi.org/10.5940/jcrsj.33.107.
Full textGuo, Cheng, Jin Lin, Lian-Chen Han, Na Li, Li-Hua Sun, Fu-Tian Liang, Dong-Dong Li, et al. "Low-latency readout electronics for dynamic superconducting quantum computing." AIP Advances 12, no. 4 (April 1, 2022): 045024. http://dx.doi.org/10.1063/5.0088879.
Full textBorgarino, Mattia, and Alessandro Badiali. "Quantum Gates for Electronics Engineers." Electronics 12, no. 22 (November 15, 2023): 4664. http://dx.doi.org/10.3390/electronics12224664.
Full textLiu, Mengxia, Nuri Yazdani, Maksym Yarema, Maximilian Jansen, Vanessa Wood, and Edward H. Sargent. "Colloidal quantum dot electronics." Nature Electronics 4, no. 8 (August 2021): 548–58. http://dx.doi.org/10.1038/s41928-021-00632-7.
Full textTaichenachev, Alexey V. "Department of Quantum Electronics." Siberian Journal of Physics 1, no. 1 (2006): 83–84. http://dx.doi.org/10.54238/1818-7994-2006-1-1-83-84.
Full textSinclair, B. D. "Lasers and quantum electronics." Physics Bulletin 37, no. 10 (October 1986): 412. http://dx.doi.org/10.1088/0031-9112/37/10/013.
Full textDragoman, M., and D. Dragoman. "Graphene-based quantum electronics." Progress in Quantum Electronics 33, no. 6 (November 2009): 165–214. http://dx.doi.org/10.1016/j.pquantelec.2009.08.001.
Full textRost, Jan-Michael. "Tubes for quantum electronics." Nature Photonics 4, no. 2 (February 2010): 74–75. http://dx.doi.org/10.1038/nphoton.2009.279.
Full textDissertations / Theses on the topic "Quantum electronics"
Li, Elise Yu-Tzu. "Electronic structure and quantum conductance of molecular and nano electronics." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/65270.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 129-137).
This thesis is dedicated to the application of a large-scale first-principles approach to study the electronic structure and quantum conductance of realistic nanomaterials. Three systems are studied using Landauer formalism, Green's function technique and maximally localized Wannier functions. The main focus of this thesis lies on clarifying the effect of chemical modifications on electron transport at the nanoscale, as well as on predicting and designing new type of molecular and nanoelectronic devices. In the first study, we suggest and investigate a quantum interference effect in the porphyrin family molecules. We show that the transmission through a porphyrin molecule at or near the Fermi level varies by orders of magnitude following hydrogen tautomerization. The switching behavior identified in porphyrins implies new application directions in single molecular devices and molecular-size memory elements. Moving on from single molecules to a larger scale, we study the effect of chemical functionalizations to the transport properties of carbon nanotubes. We propose several covalent functionalization schemes for carbon nanotubes which display switchable on/off conductance in metallic tubes. The switching action is achieved by reversible control of bond-cleavage chemistry in [1+2] cycloadditions, via the 8p 3 8s p 2 rehybridization it induces; this leads to remarkable changes of conductance even at very low degrees of functionalization. Several strategies for real-time control on the conductance of carbon nanotubes are then proposed. Such designer functional groups would allow for the first time direct control of the electrical properties of metallic carbon nanotubes, with extensive applications in nanoscale devices. In the last part of the thesis we address the issue of low electrical conductivity observed in carbon nanotube networks. We characterize intertube tunneling between carbon nanotube junctions with or without a covalent linker, and explore the possibility of improving intertube coupling and enhance electrical tunneling by transition metal adsorptions on CNT surfaces. The strong hybridization between transition metal d orbitals with the CNT [pi] orbitals serves as an excellent electrical bridge for a broken carbon nanotube junction. The binding and coupling between a transition metal atom and sandwiching nanotubes can be even stronger in case of nitrogendoped carbon nanotubes. Our studies suggest a more effective strategy than the current cross-linking methods used in carbon nanotube networks.
by Elise Yu-Tzu Li.
Ph.D.
Midgley, Stuart. "Quantum waveguide theory." University of Western Australia. School of Physics, 2003. http://theses.library.uwa.edu.au/adt-WU2004.0036.
Full textLynch, Alastair M. "Low Cost and Flexible Electronics for Quantum Key Distribution and Quantum Information." Thesis, University of Bristol, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.520592.
Full textHinzer, Karin. "Semiconductor quantum dot lasers." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0003/MQ36702.pdf.
Full textEl, Kass Abdallah. "Milli-Kelvin Electronics at the Quantum-Classical Interface." Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/26889.
Full textLittle, Reginald Bernard. "The synthesis and characterization of some II-VI semiconductor quantum dots, quantum shells and quantum wells." Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/30573.
Full textNakanishi, Toshihiro. "Coupled-resonator-based metamaterials emulating quantum systems." 京都大学 (Kyoto University), 2016. http://hdl.handle.net/2433/204563.
Full textKhalid, Ahmed Usman. "FPGA emulation of quantum circuits." Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=98979.
Full textMcNeil, Robert Peter Gordon. "Surface acoustic wave quantum electronic devices." Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610718.
Full textJiang, Jun. "A Quantum Chemical View of Molecular and Nano-Electronics." Doctoral thesis, Stockholm : Biotechnology, Kungliga tekniska högskolan, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4335.
Full textBooks on the topic "Quantum electronics"
R, Whinnery John, ed. Quantum electronics. New York: IEEE, 1992.
Find full textSalter, Heath. Quantum Electronics. New Delhi: World Technologies, 2011.
Find full textKose, Volkmar. Superconducting Quantum Electronics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989.
Find full textKose, Volkmar, ed. Superconducting Quantum Electronics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-95592-1.
Full textVolkmar, Kose, and Albrecht M, eds. Superconducting quantum electronics. Berlin: Springer-Verlag, 1989.
Find full textProkhorov, A. M., and I. Ursu, eds. Trends in Quantum Electronics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-662-10624-2.
Full textHirayama, Yoshiro, Kazuhiko Hirakawa, and Hiroshi Yamaguchi, eds. Quantum Hybrid Electronics and Materials. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1201-6.
Full textInstitute of Electrical and Electronics Engineers., ed. IEEE journal of quantum electronics. Piscatawy: IEEE, 1986.
Find full textIEEE Lasers and Electro-Optics Society. and Institute of Electrical and Electronics Engineers., eds. IEEE journal of quantum electronics. [s.l.]: IEEE Lasers and Electro-Optics Society, 1991.
Find full textConference on Lasers and Electro-Optics. International quantum electronics conference (IQEC). Washington, D.C: Optical Society of America, 2006.
Find full textBook chapters on the topic "Quantum electronics"
Goser, Karl, Peter Glösekötter, and Jan Dienstuhl. "Quantum Electronics." In Nanoelectronics and Nanosystems, 151–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-05421-5_10.
Full textKolawole, Michael Olorunfunmi. "Elements of Quantum Electronics." In Electronics, 271–316. First edition. | Boca Raton, FL : CRC Press, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9781003052913-9.
Full textSuits, Bryan H. "Quantum Logic." In Electronics for Physicists, 305–20. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-36364-1_15.
Full textKawabata, A. "Quantum Wires." In Mesoscopic Physics and Electronics, 54–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-71976-9_8.
Full textPevzner, Vadim, and Karl Hess. "Quantum Ray Tracing: A New Approach to Quantum Transport in Mesoscopic Systems." In Computational Electronics, 227–30. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4757-2124-9_45.
Full textVan Haesendonck, C., and Y. Bruynseraede. "Quantum Interference in Normal Metals." In Superconducting Electronics, 19–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83885-9_2.
Full textLübbig, H. "Classical Dynamics of Josephson Tunnelling and Its Quantum Limitations." In Superconducting Quantum Electronics, 2–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-95592-1_1.
Full textGutmann, P., and H. Bachmair. "Cryogenic Current Comparator Metrology." In Superconducting Quantum Electronics, 255–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-95592-1_10.
Full textAlbrecht, M., and W. Kessel. "Fast SQUID Pseudo Random Generators." In Superconducting Quantum Electronics, 269–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-95592-1_11.
Full textBrunk, G. "Modelling of Resistive Networks for Dispersive Tunnel Processes." In Superconducting Quantum Electronics, 24–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-95592-1_2.
Full textConference papers on the topic "Quantum electronics"
Arnold, John M. "Teaching quantum electronics to electronic engineering undergraduates." In Education and Training in Optics and Photonics 2001. SPIE, 2002. http://dx.doi.org/10.1117/12.468723.
Full textKrokhin, O. N. "Quantum Electronics 50th Jubilee." In SPIE Proceedings, edited by Yuri N. Kulchin, Jinping Ou, Oleg B. Vitrik, and Zhi Zhou. SPIE, 2007. http://dx.doi.org/10.1117/12.726441.
Full textSaglamyurek, E., N. Sinclair, J. Jin, J. S. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel. "Quantum Memory For Quantum Repeaters." In International Quantum Electronics Conference. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/iqec.2011.i93.
Full textSchneider, Hans Christian, and Weng W. Chow. "Quantum coherence in semiconductor quantum dots." In International Quantum Electronics Conference. Washington, D.C.: OSA, 2004. http://dx.doi.org/10.1364/iqec.2004.ithf2.
Full text"2005 European Quantum Electronics Conference." In EQEC '05. European Quantum Electronics Conference, 2005. IEEE, 2005. http://dx.doi.org/10.1109/eqec.2005.1567171.
Full text"Joint Council on Quantum Electronics." In CLEO 2007. IEEE, 2007. http://dx.doi.org/10.1109/cleo.2007.4452324.
Full textBishnoi, Dimple. "Quantum dots: Rethinking the electronics." In INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2015): Proceeding of International Conference on Condensed Matter and Applied Physics. Author(s), 2016. http://dx.doi.org/10.1063/1.4946309.
Full textKrokhin, O. N. "Fifty Years of Quantum Electronics." In ZABABAKHIN SCIENTIFIC TALKS - 2005: International Conference on High Energy Density Physics. AIP, 2006. http://dx.doi.org/10.1063/1.2337172.
Full textSenami, Masato, and Akitomo Tachibana. "Quantum chemical approaches to the electronic structures of nano-electronics materials." In 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT). IEEE, 2010. http://dx.doi.org/10.1109/icsict.2010.5667357.
Full textFurusawa, Akira. "Quantum Teleportation and Quantum Information Processing." In Quantum Electronics and Laser Science Conference. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/qels.2010.qtha1.
Full textReports on the topic "Quantum electronics"
De Heer, Walter A. Epitaxial Graphene Quantum Electronics. Fort Belvoir, VA: Defense Technical Information Center, May 2014. http://dx.doi.org/10.21236/ada604108.
Full textBocko, Mark F., and Marc J. Feldman. Quantum Computing with Superconducting Electronics. Fort Belvoir, VA: Defense Technical Information Center, February 1998. http://dx.doi.org/10.21236/ada344625.
Full textO'Connell, R. F. Small Systems: Single Electronics/Quantum Transport. Fort Belvoir, VA: Defense Technical Information Center, September 1994. http://dx.doi.org/10.21236/ada298817.
Full textvan der Heijden, Joost. Optimizing electron temperature in quantum dot devices. QDevil ApS, March 2021. http://dx.doi.org/10.53109/ypdh3824.
Full textElmgren, Karson, Ashwin Acharya, and Will Will Hunt. Superconductor Electronics Research. Center for Security and Emerging Technology, November 2021. http://dx.doi.org/10.51593/20210003.
Full textBraga, Davide. NECQST: Novel Electronics for Cryogenic Quantum Sensors Technology. Office of Scientific and Technical Information (OSTI), October 2019. http://dx.doi.org/10.2172/1630711.
Full textFluegel, Brian. Fellowship in Physics/Modern Optics and Quantum Electronics. Fort Belvoir, VA: Defense Technical Information Center, May 1992. http://dx.doi.org/10.21236/ada253666.
Full textGaskill, J. D. Fellowship in Physics/Modern Optics and Quantum Electronics. Fort Belvoir, VA: Defense Technical Information Center, February 1990. http://dx.doi.org/10.21236/ada218772.
Full textSchoelkopf, R. J., and S. M. Girvin. Student Support for Quantum Computing With Single Cooper-Pair Electronics. Fort Belvoir, VA: Defense Technical Information Center, January 2006. http://dx.doi.org/10.21236/ada442606.
Full textSchoelkopf, R. J., and S. M. Girvin. Student Support for Quantum Computing with Single Cooper-Pair Electronics. Fort Belvoir, VA: Defense Technical Information Center, January 2006. http://dx.doi.org/10.21236/ada465023.
Full text