To see the other types of publications on this topic, follow the link: Quantum dots.

Journal articles on the topic 'Quantum dots'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Quantum dots.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Aharonovich, Igor. "Quantum dots light up ahead." Photonics Insights 1, no. 2 (2022): C04. http://dx.doi.org/10.3788/pi.2022.c04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kouwenhoven, Leo, and Charles Marcus. "Quantum dots." Physics World 11, no. 6 (June 1998): 35–40. http://dx.doi.org/10.1088/2058-7058/11/6/26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Reed, Mark A. "Quantum Dots." Scientific American 268, no. 1 (January 1993): 118–23. http://dx.doi.org/10.1038/scientificamerican0193-118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhou, Xiaoyan, Liang Zhai, and Jin Liu. "Epitaxial quantum dots: a semiconductor launchpad for photonic quantum technologies." Photonics Insights 1, no. 2 (2022): R07. http://dx.doi.org/10.3788/pi.2022.r07.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Artemyev, M. V., and U. Woggon. "Quantum dots in photonic dots." Applied Physics Letters 76, no. 11 (March 13, 2000): 1353–55. http://dx.doi.org/10.1063/1.126029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Razumov, V. F., S. B. Brichkin, and S. A. Tovstun. "Colloidal Quantum Dots: 6. Nanoclusters of Colloidal Quantum Dots." High Energy Chemistry 58, S1 (August 2024): S81—S104. http://dx.doi.org/10.1134/s0018143924700218.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Loss, Daniel, and David P. DiVincenzo. "Quantum computation with quantum dots." Physical Review A 57, no. 1 (January 1, 1998): 120–26. http://dx.doi.org/10.1103/physreva.57.120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

López, Juan Carlos. "Quantum leap for quantum dots." Nature Reviews Neuroscience 4, no. 3 (March 2003): 163. http://dx.doi.org/10.1038/nrn1066.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zunger, Alex. "Semiconductor Quantum Dots." MRS Bulletin 23, no. 2 (February 1998): 15–17. http://dx.doi.org/10.1557/s0883769400031213.

Full text
Abstract:
Semiconductor “quantum dots” refer to nanometer-sized, giant (103–105 atoms) molecules made from ordinary inorganic semiconductor materials such as Si, InP, CdSe, etc. They are larger than the traditional “molecular clusters” (~1 nanometer containing ≤100 atoms) common in chemistry yet smaller than the structures of the order of a micron, manufactured by current electronic-industry lithographic techniques. Quantum dots can be made by colloidal chemistry techniques (see the articles by Alivisatos and by Nozik and Mićić in this issue), by controlled coarsening during epitaxial growth (see the article by Bimberg et al. in this issue), by size fluctuations in conventional quantum wells (see the article by Gammon in this issue), or via nano-fabrication (see the article by Tarucha in this issue).
APA, Harvard, Vancouver, ISO, and other styles
10

Barachevsky, V. A. "Photochromic quantum dots." Izvestiya vysshikh uchebnykh zavedenii. Fizika, no. 11 (2021): 30–44. http://dx.doi.org/10.17223/00213411/64/11/30.

Full text
Abstract:
The analysis of the results of fundamental and applied research in the field of creation of photochromic nanoparticles of the "core-shell" type, in which semiconductor nanocrystals - quantum dots were used as a core, and the shell included physically or chemically sorbed molecules of photochromic thermally relaxing (spiropyrans, spirooxazines , chromenes, azo compounds) or thermally irreversible (diarylethenes, fulgimides) compounds. It has been shown that such nanoparticles provide reversible modulation of the QD radiation intensity, which can be used in information and biomedical technologies.
APA, Harvard, Vancouver, ISO, and other styles
11

Barachevsky, V. A. "Photochromic Quantum Dots." Russian Physics Journal 64, no. 11 (March 2022): 2017–34. http://dx.doi.org/10.1007/s11182-022-02551-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Evanko, Daniel. "Bioluminescent quantum dots." Nature Methods 3, no. 4 (April 2006): 240. http://dx.doi.org/10.1038/nmeth0406-240a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Lindberg, V., and B. Hellsing. "Metallic quantum dots." Journal of Physics: Condensed Matter 17, no. 13 (March 19, 2005): S1075—S1094. http://dx.doi.org/10.1088/0953-8984/17/13/004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Kaputkina, N. E., and Yu E. Lozovik. "“Spherical” quantum dots." Physics of the Solid State 40, no. 11 (November 1998): 1935–36. http://dx.doi.org/10.1134/1.1130690.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Dukes, Albert D., James R. McBride, and Sandra Rosenthal. "Luminescent Quantum Dots." ECS Transactions 33, no. 33 (December 17, 2019): 3–16. http://dx.doi.org/10.1149/1.3578017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Tinkham, M. "Metallic quantum dots." Philosophical Magazine B 79, no. 9 (September 1999): 1267–80. http://dx.doi.org/10.1080/13642819908216970.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Han, Gang, Taleb Mokari, Caroline Ajo-Franklin, and Bruce E. Cohen. "Caged Quantum Dots." Journal of the American Chemical Society 130, no. 47 (November 26, 2008): 15811–13. http://dx.doi.org/10.1021/ja804948s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Pile, David. "Intraband quantum dots." Nature Photonics 9, no. 1 (December 23, 2014): 7. http://dx.doi.org/10.1038/nphoton.2014.317.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Guyot-Sionnest, Philippe. "Colloidal quantum dots." Comptes Rendus Physique 9, no. 8 (October 2008): 777–87. http://dx.doi.org/10.1016/j.crhy.2008.10.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Zhou, Weidong, and James J. Coleman. "Semiconductor quantum dots." Current Opinion in Solid State and Materials Science 20, no. 6 (December 2016): 352–60. http://dx.doi.org/10.1016/j.cossms.2016.06.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Gershoni, David. "Pyramidal quantum dots." Nature Photonics 4, no. 5 (May 2010): 271–72. http://dx.doi.org/10.1038/nphoton.2010.96.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Nomura, Masahiro, and Yasuhiko Arakawa. "Shaking quantum dots." Nature Photonics 6, no. 1 (December 22, 2011): 9–10. http://dx.doi.org/10.1038/nphoton.2011.323.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Golan, Yuval, Lev Margulis, Gary Hodes, Israel Rubinstein, and John L. Hutchison. "Electrodeposited quantum dots." Surface Science 311, no. 1-2 (May 1994): L633—L640. http://dx.doi.org/10.1016/0039-6028(94)90465-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Gaisler, A. V., I. A. Derebezov, V. A. Gaisler, D. V. Dmitriev, A. I. Toropov, A. S. Kozhukhov, D. V. Shcheglov, A. V. Latyshev, and A. L. Aseev. "AlInAs quantum dots." JETP Letters 105, no. 2 (January 2017): 103–9. http://dx.doi.org/10.1134/s0021364017020096.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Vishnoi, Pratap, Madhulika Mazumder, Manaswee Barua, Swapan K. Pati, and C. N. R. Rao. "Phosphorene quantum dots." Chemical Physics Letters 699 (May 2018): 223–28. http://dx.doi.org/10.1016/j.cplett.2018.03.069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

H. Sargent, E. "Infrared Quantum Dots." Advanced Materials 17, no. 5 (March 8, 2005): 515–22. http://dx.doi.org/10.1002/adma.200401552.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Nozik, A. J., H. Uchida, P. V. Kamat, and C. Curtis. "GaAs Quantum Dots." Israel Journal of Chemistry 33, no. 1 (1993): 15–20. http://dx.doi.org/10.1002/ijch.199300004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Bacon, Mitchell, Siobhan J. Bradley, and Thomas Nann. "Graphene Quantum Dots." Particle & Particle Systems Characterization 31, no. 4 (November 27, 2013): 415–28. http://dx.doi.org/10.1002/ppsc.201300252.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Tárnok, Attila. "Quantum of dots." Cytometry Part A 77A, no. 10 (September 24, 2010): 905–6. http://dx.doi.org/10.1002/cyto.a.20971.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Schneider, H. C., W. W. Chow, P. M. Smowton, E. J. Pearce, and S. W. Koch. "Quantum Dots: Anomalous Carrier-Induced Dispersion in Semiconductor Quantum Dots." Optics and Photonics News 13, no. 12 (December 1, 2002): 50. http://dx.doi.org/10.1364/opn.13.12.000050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Brichkin, S. B., M. G. Spirin, S. A. Tovstun, and V. F. Razumov. "Colloidal Quantum Dots: 5. Luminescence Features of Colloidal Quantum Dots." High Energy Chemistry 58, S1 (August 2024): S54—S80. http://dx.doi.org/10.1134/s0018143924700164.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Sánchez Pérez, Karla J., J. C. García-Melgarejo, and J. J. Sánchez-Mondragón. "Semi classical quantum dots in their own micro cavity." Acta Universitaria 23 (December 6, 2013): 23–26. http://dx.doi.org/10.15174/au.2013.557.

Full text
Abstract:
Among quantum dots there is an interaction called Foerster interaction, it consists on the transfer of one exciton from a quantum dot to another in a non-radiative energy transfer mechanism. In this work, we develop a model of the interaction of a pair of coupled Quan­tum Dots (QDs), each one in its own micro cavity, interacting with its own classical field.
APA, Harvard, Vancouver, ISO, and other styles
33

Shimada, Hiroshi, Youiti Ootuka, Shun-ichi Kobayashi, Shingo Katsumoto, and Akira Endo. "Quantum Charge Fluctuations in Quantum Dots." Journal of the Physical Society of Japan 69, no. 3 (March 15, 2000): 828–35. http://dx.doi.org/10.1143/jpsj.69.828.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Burkard, Guido, Daniel Loss, and David P. DiVincenzo. "Coupled quantum dots as quantum gates." Physical Review B 59, no. 3 (January 15, 1999): 2070–78. http://dx.doi.org/10.1103/physrevb.59.2070.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Lozada-Cassou, M., Shi-Hai Dong, and Jiang Yu. "Quantum features of semiconductor quantum dots." Physics Letters A 331, no. 1-2 (October 2004): 45–52. http://dx.doi.org/10.1016/j.physleta.2004.08.047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Molotkov, S. N., and S. S. Nazin. "Quantum cryptography based on quantum dots." Journal of Experimental and Theoretical Physics Letters 63, no. 8 (April 1996): 687–93. http://dx.doi.org/10.1134/1.567087.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Ferry, D. K., R. A. Akis, D. P. Pivin Jr, J. P. Bird, N. Holmberg, F. Badrieh, and D. Vasileska. "Quantum transport in ballistic quantum dots." Physica E: Low-dimensional Systems and Nanostructures 3, no. 1-3 (October 1998): 137–44. http://dx.doi.org/10.1016/s1386-9477(98)00228-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Kiraz, A., C. Reese, B. Gayral, Lidong Zhang, W. V. Schoenfeld, B. D. Gerardot, P. M. Petroff, E. L. Hu, and A. Imamoglu. "Cavity-quantum electrodynamics with quantum dots." Journal of Optics B: Quantum and Semiclassical Optics 5, no. 2 (February 26, 2003): 129–37. http://dx.doi.org/10.1088/1464-4266/5/2/303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Pachos, Jiannis K., and Vlatko Vedral. "Topological quantum gates with quantum dots." Journal of Optics B: Quantum and Semiclassical Optics 5, no. 6 (October 16, 2003): S643—S646. http://dx.doi.org/10.1088/1464-4266/5/6/016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Masumoto, Yasuaki, Ivan V. Ignatiev, Kazuhiro Nishibayashi, Tsuyoshi Okuno, Sergey Yu Verbin, and Irina A. Yugova. "Quantum beats in semiconductor quantum dots." Journal of Luminescence 108, no. 1-4 (June 2004): 177–80. http://dx.doi.org/10.1016/j.jlumin.2004.01.038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Roy, Xavier, Christine L. Schenck, Seokhoon Ahn, Roger A. Lalancette, Latha Venkataraman, Colin Nuckolls, and Michael L. Steigerwald. "Quantum Soldering of Individual Quantum Dots." Angewandte Chemie 124, no. 50 (November 7, 2012): 12641–44. http://dx.doi.org/10.1002/ange.201206301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Bryant, Garnett W. "Quantum dots in quantum well structures." Journal of Luminescence 70, no. 1-6 (October 1996): 108–19. http://dx.doi.org/10.1016/0022-2313(96)00048-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Huang, Zhongkai, Jinfeng Qu, Xiangyang Peng, Wenliang Liu, Kaiwang Zhang, Xiaolin Wei, and Jianxin Zhong. "Quantum confinement in graphene quantum dots." physica status solidi (RRL) - Rapid Research Letters 8, no. 5 (March 31, 2014): 436–40. http://dx.doi.org/10.1002/pssr.201409064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Roy, Xavier, Christine L. Schenck, Seokhoon Ahn, Roger A. Lalancette, Latha Venkataraman, Colin Nuckolls, and Michael L. Steigerwald. "Quantum Soldering of Individual Quantum Dots." Angewandte Chemie International Edition 51, no. 50 (November 7, 2012): 12473–76. http://dx.doi.org/10.1002/anie.201206301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Razumov, V. F., and S. A. Tovstun. "Colloidal Quantum Dots: 4. Colloidal Quantum Dots and Basic Photoluminescence Laws." High Energy Chemistry 58, S1 (August 2024): S39—S53. http://dx.doi.org/10.1134/s0018143924700206.

Full text
Abstract:
Abstract A brief review of the well-known laws and rules of photoluminescence is given, and it is shown that these laws usually do not hold for CQD solutions. It has been shown that this is due to a special mechanism for the formation of the luminescent properties of CQDs. The derivation of a new universal law of photoluminescence, applicable to any type of luminophores, which has recently been substantiated theoretically and verified experimentally using the example of CQDs, is presented.
APA, Harvard, Vancouver, ISO, and other styles
46

Wang, Feng, Niladri S. Karan, Hue Minh Nguyen, Benjamin D. Mangum, Yagnaseni Ghosh, Chris J. Sheehan, Jennifer A. Hollingsworth, and Han Htoon. "Quantum Dots: Quantum Optical Signature of Plasmonically Coupled Nanocrystal Quantum Dots (Small 38/2015)." Small 11, no. 38 (October 2015): 5176. http://dx.doi.org/10.1002/smll.201570238.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Kaur, Haleena. "Cellular uptake of aptamer by Quantum Dots (QDs)." Biomarkers and Drug Discovery 1, no. 1 (November 5, 2018): 01. http://dx.doi.org/10.31579/2642-9799/004.

Full text
Abstract:
Aptamers are short single stranded oligonucleotide sequences that exhibit high binding affinity and high specificity against their target molecule. Binding affinity and specificity are crucial features for aptamers in order to exploit their therapeutic and diagnostic potential and to make them an appealing candidate for the commercial market1,2. Aptamers contain functional moieties that can fold into different conformation such as hairpin stem and loops, G-quadruplexes, and pseudoknots. A study led by Dr Harleen Kaur involving unique stem-loop truncation strategy was employed to find the binding domain in a 66-mer long DNA aptamer sequence against the heparin binding domain of vascular endothelial growth factor (VEGF165) protein1. The results from the work demonstrated identification of a 26-mer long aptamer sequence referred as SL2-B in the paper with improvement in the binding affinity by more than 200-folds (Kd = 0.5nM) against VEGF protein. To improve the biostability of the aptamer in the biological fluids, the phosphorothioate linkages (PS-linkages) in the phosphate backbone of the DNA were introduced at the 5’-and 3’-termini of the obtained SL2-B aptamer sequence. The PS-modified SL2-B aptamer sequence demonstrated significant improvement in the stability without comprising
APA, Harvard, Vancouver, ISO, and other styles
48

Kaur, Haleena. "Cellular uptake of aptamer by Quantum Dots (QDs)." Biomarkers and Drug Discovery 1, no. 1 (November 5, 2018): 01. http://dx.doi.org/10.31579/2642-9799/003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Stride, John Arron, and Fatemeh Mirnajafizadeh. "A Brief Review on Core/shell Quantum Dots." SDRP Journal of Nanotechnology & Material Science 3, no. 1 (2020): 121–26. http://dx.doi.org/10.25177/jnms.3.1.ra.10624.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

JX, Guo. "Graphene-Quantum Dots Hybrid Based Dual Band Photodetector." Physical Science & Biophysics Journal 7, no. 1 (January 5, 2023): 1–4. http://dx.doi.org/10.23880/psbj-16000234.

Full text
Abstract:
Graphene, which can detect a broad spectrum from ultraviolet to terahertz, is a promising photodetector material because it offers a broad spectral bandwidth and fast response times. However, the nature of weak light absorption has limited the responsivity of graphene-based photodetectors. Here, we demonstrate a responsivity of up to ∼6.7×103 A/W in a hybrid photodetector that consists of monolayer or bilayer graphene covered with a thin film of colloidal quantum dots. At the same time, benefits from gate-tunability, the device can response from the short-wavelength infrared to the visible, and compatibility with current circuit technologies.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography