Academic literature on the topic 'Quantum dots glass'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Quantum dots glass.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Quantum dots glass"
Zhang, Jian, and Jia Wei Sheng. "Copper Quantum Dots Formation in a Borosilicate Glass." Journal of Nano Research 32 (May 2015): 66–70. http://dx.doi.org/10.4028/www.scientific.net/jnanor.32.66.
Full textKim, Bok Hyeon, Dong Hoon Son, Seongmin Ju, Chaehwan Jeong, Seongjae Boo, Cheol Jin Kim, and Won-Taek Han. "Effect of Aluminum on the Formation of Silver Metal Quantum Dots in Sol–Gel Derived Alumino-Silicate Glass Film." Journal of Nanoscience and Nanotechnology 6, no. 11 (November 1, 2006): 3399–403. http://dx.doi.org/10.1166/jnn.2006.020.
Full textJia, Rui, De-Sheng Jiang, Ping-Heng Tan, and Bao-Quan Sun. "Quantum dots in glass spherical microcavity." Applied Physics Letters 79, no. 2 (July 9, 2001): 153–55. http://dx.doi.org/10.1063/1.1380732.
Full textVERMA, ABHISHEK, P. K. PANDEY, J. KUMAR, S. NAGPAL, P. K. BHATNAGAR, and P. C. MATHUR. "GROWTH DYNAMICS OF II–VI COMPOUND SEMICONDUCTOR QUANTUM DOTS EMBEDDED IN BOROSILICATE GLASS MATRIX." International Journal of Nanoscience 07, no. 02n03 (April 2008): 151–60. http://dx.doi.org/10.1142/s0219581x08005250.
Full textZhao, Weigang, Cuirong Liu, and Xu Yin. "Cs4PbBr6 Combined with Graphite as Anode for High-Performance Lithium Batteries." Metals 12, no. 10 (September 23, 2022): 1584. http://dx.doi.org/10.3390/met12101584.
Full textSonawane, R. S., S. D. Naik, S. K. Apte, M. V. Kulkarni, and B. B. Kale. "CdS/CdSSe quantum dots in glass matrix." Bulletin of Materials Science 31, no. 3 (June 2008): 495–99. http://dx.doi.org/10.1007/s12034-008-0077-2.
Full textKaushik, Diksha, Madhulika Sharma, A. B. Sharma, and R. K. Pandey. "Study of Self-Organized CdS Q-Dots." Journal of Nanoscience and Nanotechnology 8, no. 8 (August 1, 2008): 4303–8. http://dx.doi.org/10.1166/jnn.2008.an38.
Full textKolobkova, E. V., A. V. Polyakova, A. N. Abdrshin, N. V. Nikonorov, and V. A. Aseev. "Nanostructured glass ceramic based on fluorophosphate glass with PbSe quantum dots." Glass Physics and Chemistry 41, no. 1 (January 2015): 127–31. http://dx.doi.org/10.1134/s1087659615010137.
Full textKuznetsova, M. S., R. V. Cherbunin, V. M. Litvyak, and E. V. Kolobkova. "Spectroscopy of PbS and PbSe quantum dots in fluorine phosphate glasses." Физика и техника полупроводников 52, no. 5 (2018): 497. http://dx.doi.org/10.21883/ftp.2018.05.45841.30.
Full textYükselici, M. H., Ç. Allahverdi, and H. Athalin. "Zinc incorporation into CdTe quantum dots in glass." Materials Chemistry and Physics 119, no. 1-2 (January 2010): 218–21. http://dx.doi.org/10.1016/j.matchemphys.2009.08.057.
Full textDissertations / Theses on the topic "Quantum dots glass"
Poliakova, A. V., E. V. Kolobkova, A. N. Abdrshin, N. V. Nikonorov, and V. A. Aseev. "Optical Properties of PbSe Qantum Dots Doped in Fluorophosphate Glasses." Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35364.
Full textWang, Zheng. "Synthesis, properties and applications of glasses containing chalcogenide quantum dots." Electronic Thesis or Diss., Université de Rennes (2023-....), 2023. http://www.theses.fr/2023URENS093.
Full textIn this dissertation, the synthesis, properties and applications of glasses containing chalcogenide quantum dots (QDs) have been studied. Multicomponent lead chalcogenide QDs glasses (containing PbSe or PbS QDs) were successfully prepared, and their optical properties and potential applications were explored in combination with rare earth Tm3+ ion doping. In addition, based on the results, lead-free and environmentally friendly chalcogenide QDs glasses (containing ZnS or ZnSe QDs) were successfully prepared, and its luminescent performance was further improved by doping with transition metal nickel ions. These results lay the foundation for the improvement of optical properties of lead-based chalcogenide QDs and for the development of environmentally friendly heavy metal-free chalcogenide QDs glasses. Although future improvements are possible and necessary for practical applications, these chalcogenide QDs glasses developed in this work have application potential in the fields of luminescent solar concentrators, optical anti-counterfeiting, solid-state lighting, and optical temperature sensing
Gonsalves, Peter Robert. "THE DESIGN AND FABRICATION OF A MICROFLUIDIC REACTOR FOR SYNTHESIS OF CADMIUM SELENIDE QUANTUM DOTS USING SILICON AND GLASS SUBSTRATES." DigitalCommons@CalPoly, 2012. https://digitalcommons.calpoly.edu/theses/720.
Full textKumar, Ganapathy. "Enhanced verdet constant via quantum dot doped glass samples a thesis presented to the faculty of the Graduate School, Tennessee Technological University /." Click to access online, 2008. http://proquest.umi.com/pqdweb?index=0&did=1597632931&SrchMode=1&sid=3&Fmt=6&VInst=PROD&VType=PQD&RQT=309&VName=PQD&TS=1268920533&clientId=28564.
Full textHsung, Chung Wu, and 鍾武雄. "Development of deep glass-etching technology for fabricating a microreactor of synthesizing composite quantum dots." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/11317703186460532248.
Full text國立臺灣師範大學
機電科技研究所
94
In this report, we fabricated an all-glass microreactor chip and used it to synthesize compound quantum dots. A microreactor chip integrates micro channels, a micro mixer, a Pt heater, and a temperature sensor on one glass chip. During fabrication of micro channels, a thick photoresist and Cr/Au layer were used as etching masks. Such etching masks could sufficiently reduce pinhole phenomenon. In addition, if we replaced aqua regia with KI solution, it would not damage the photoresist. Therefore, it could improve defects at edge of micro channels. If we considered annealing factor with different glass materials, the experimental results showed that if we annealed Pyrex 7740 to 600 ℃ and etched micro channels by using HF for 10 min, the channel width was found to be reduced from 498 m to 278 m. The lateral underetching ratio decreased from 5 to 0.96. Thus, we could improve the large lateral underetching of glass (Pyrex 7740) by annealing. However, the surface roughness of micro channels was high. On the other hand, it was not necessary for Corning 1737 to be annealed. We could get smaller lateral underetching ratio and better surface roughness of micro channel. As for Soda-lime, it didn’t have any relationship between annealing and lateral underetching ratio, but the surface roughness was high. Consequently, Corning 1737 was suitable material for making microreactor chip. For preparation of compound quantum dots, microfluidic systems have good characteristic on good mass and heat transfer. It can precisely control the reaction temperature, reaction time, and concentration of the solute. Therefore, unlike traditional reaction which is used to produce quantum dots with different sizes, we can use microfluidic systems to synthesize uniform quantum dots. When the reaction temperature was controlled from 200-280 ℃, the absorbance peak was found to increase from 481 nm to 538 nm. its corresponding band gap was discovered to decrease from 2.58 eV to 2.3 eV.
Pinheiro, Ana Catarina Tavares. "Luminescent Glass Materials for Photovoltaics." Master's thesis, 2019. http://hdl.handle.net/10362/89660.
Full textJIH-HSIN, CHENG, and 鄭日新. "A Study on the Growth of ZnSe and ZnTe Quantum Dots on the Glass and Si Substrate." Thesis, 2002. http://ndltd.ncl.edu.tw/handle/80979765800052749168.
Full textLin, Hung-Yuan, and 林鴻源. "Laser Deposition ZnSe Quantum dot Glass Thin Film." Thesis, 1996. http://ndltd.ncl.edu.tw/handle/95702695329813831774.
Full text國立交通大學
光電工程研究所
84
ZnSe doped glasses thin films were deposited on silicon and substrate by using of Q-switched Nd:YAG laser, and the targert were prepared by sol-gel methed of colloid chemical technique. From the SEM, we can realize the fine structure of the ZnSe thin film surface and estimate the grain size about 200 A. By changing the deposition condition, we obtain a single crystallite of ZnSe thin film which is identified to be H(002) or C(111) by XRD, and the grain sizecaculation through Half Maximum of XRD peak tch the result of SEM. In the Raman spetra, we make sure the ZnSe bond, and the peak show that the phonon frequency shift to lower side for grain size becaming smaller. The energy gap of ZnSe film is acquired by the Transmission spectra has the phenomonon of blue shift, and this result is corresponding with the prediction of Quantum dot effect.
Lin, Hong-Yuan, and 林鴻源. "Laser deposition ZnSe quantum dot glass thin films." Thesis, 1996. http://ndltd.ncl.edu.tw/handle/93861374520609226198.
Full textKUO, JIN-PING, and 郭進平. "Studies on the Electrochemical Behaviors of Caffeic Acid with Carbon Black/Carbon Quantum Dot/Metal Organic Frameworks Modified Glassy Carbon Electrode." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/8u857b.
Full text輔仁大學
化學系
107
In this study, using nano carbon black/carbon quantum dot (CQD)/metal-organic frameworks (MOFs) modified electrode detecting caffeic acid, and investigating the electrochemical properties of the modified electrode. The metal organic frameworks have been successfully scrutinized by using Fourier transform infrared spectroscopy (FT-IR) and powder X-ray diffraction (PXRD), transmission electron microscopy (TEM) and fluorescence spectrometer successful identify the CQD, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) confirmed that carbon black/carbon quantum dots/metal-organic frameworks modified electrode can be successfully prepared. In these optimal conditions, differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) were used to confirm nano carbon black/carbon quantum dots/metal-organic frameworks modified electrode has excellent electron transfer characteristics, low electron transfer resistance and increase oxidation current signal characteristics. After the optimization process, the electrochemical detection of CA in a wide concentration range, from 0.1 μM to 20 μM concentration range, with the limit of detection (S/N = 3) of 20 nM. In addition, the repeatability of the CB/CQD/MOFs/GCE was measured in the intra-day and inter-day and the relative standard deviation (RSD) was less than 6.93 % and 1.15 %, respectively. Stability remained above 94.52 % after 20 scan by DPV, long-term stability remained above 84.78 %, which confirmed that the modified electrode has good repeatability and stability. Finally, CB/CQD/MOFs/GCE applied in determination of caffeic acid in commercial beverages. The recovery was between 95.01 to 113.14 %, which shows the feasible detection of CA in real sample.
Book chapters on the topic "Quantum dots glass"
Yu, Feng Bin, Fu Yi Chen, and Wan Qi Jie. "Preparation and Characterization of CdS Quantum Dots Doped Phosphate Nanocomposite Glass." In Advances in Composite Materials and Structures, 801–4. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-427-8.801.
Full textScamarcio, G. "Raman Scattering in CdS1-x Se x Quantum Dots Embedded in Glass: Evidence of Size-Dependent Lattice Contraction." In Phonons in Semiconductor Nanostructures, 393–401. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1683-1_38.
Full textVerma, A., P. K. Bhatnagar, P. C. Mathur, S. Nagpal, P. K. Pandey, and J. Kumar. "Development of Low Size Dispersion, High Volume Fraction and Strong Quantum Confined CdSxSe1-x Quantum Dots Embedded in Borosilicate Glass Matrix and Study of their Optical Properties." In Semiconductor Photonics: Nano-Structured Materials and Devices, 161–63. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-471-5.161.
Full textShukla, Shailendra Kumar. "Solar Distillation Using Quantum Dot Glass Evaporator." In Lecture Notes in Mechanical Engineering, 1–6. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1894-2_1.
Full textC.A. Silva, Anielle, Jerusa M. de Oliveira, Luciana R.S. Floresta, Matheus V. da Silva, José L. da S. Duarte, Karolina B. da Silva, Eurípedes A. da Silva Filho, et al. "Transition Metals Doped Nanocrystals: Synthesis, Characterization, and Applications." In Transition Metal Compounds - Synthesis, Properties, and Application. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.97326.
Full textSutton, Adrian P. "Materials by design." In Concepts of Materials Science, 102–13. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192846839.003.0009.
Full textKumar, Indradeep. "Simulation and Modeling of Nanotechnology Aircraft Using MATLAB." In Nanotechnology in Aerospace and Structural Mechanics, 257–90. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-7921-2.ch008.
Full textCristina Vasconcelos, Helena. "Optical Nonlinearities in Glasses." In Nonlinear Optics - Nonlinear Nanophotonics and Novel Materials for Nonlinear Optics. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.101774.
Full textMassimi, Michela. "Evolving natural kinds." In Perspectival Realism, 304–31. Oxford University Press, 2022. http://dx.doi.org/10.1093/oso/9780197555620.003.0013.
Full textMark, James E., Dale W. Schaefer, and Gui Lin. "Surfaces." In The Polysiloxanes. Oxford University Press, 2015. http://dx.doi.org/10.1093/oso/9780195181739.003.0008.
Full textConference papers on the topic "Quantum dots glass"
Reisfeld, Renata, Marek Eyal, Valery Chernyak, and Christian K. Jorgensen. "Glasses including quantum dots of cadmium sulfide, silver, and laser dyes." In Submolecular Glass Chemistry and Physics, edited by Phillip Bray and Norbert J. Kreidl. SPIE, 1991. http://dx.doi.org/10.1117/12.50210.
Full textPeyghambarian, N. "Recent advances in nonlinear semiconductor quantum dots in glass." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/oam.1993.fc.1.
Full textEsch, V., G. Khitrova, H. M. Gibbs, Xu Jiajin, L. C. Liu, and S. H. Risbud. "Quantum-confined Franz-Keldysh Effect in CdTe Quantum Dots in Glass." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/oam.1989.pd10.
Full textLipovskii, A. A., I. D. Litvin, A. A. Sitnikova, and S. A. Soloviev. "Synthesis and study of glasses doped with semiconductor quantum dots." In The European Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/cleo_europe.1994.cwf46.
Full textJustus, B. L., J. A. Ruller, D. McMorrow, and J. S. Melinger. "Femtosecond Nonresonant Nonlinear-optical Response of CuCl Quantum Dots in Glass." In Nonlinear Optics. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/nlo.1992.md7.
Full textJacob, G. J., D. B. Almeida, W. M. Faustino, E. F. Chillcce, E. Rodriguez, C. H. Brito Cruz, L. C. Barbosa, and C. L. Cesar. "PbTe quantum dots in tellurite glass microstructured optical fiber." In Integrated Optoelectronic Devices 2008, edited by Kurt G. Eyink, Frank Szmulowicz, and Diana L. Huffaker. SPIE, 2008. http://dx.doi.org/10.1117/12.761563.
Full textJacob, G. J., E. Rodriguez, E. F. Chillcce, W. Faustino, W. L. Moreira, C. H. Brito, L. C. Barbosa, and C. L. Cesar. "PbTe quantum dots in tellurite glass photonic optical fiber." In Photonic Crystal Materials and Devices VI. SPIE, 2007. http://dx.doi.org/10.1117/12.701227.
Full textJacob, Gilberto J., Luiz C. Barbosa, and Carlos L. Cesar. "Tellurite glass optical fiber doped with PbTe quantum dots." In Integrated Optoelectronic Devices 2005, edited by Diana L. Huffaker and Pallab K. Bhattacharya. SPIE, 2005. http://dx.doi.org/10.1117/12.587248.
Full textBhardwaj, A., A. Hreibi, C. Liu, J. Heo, J. L. Auguste, J. M. Blondy, and F. Gérôme. "PbS quantum dots doped glass fibers for optical applications." In CLEO: Science and Innovations. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/cleo_si.2012.cth1g.1.
Full textOreshkina, K., V. Dubrovin, Y. Sgibnev, N. Nikonorov, A. Babkina, E. Kulpina, and K. Zyryanova. "Luminescent Glass with Lead Perovskite Quantum Dots for Solar Concentrators." In 2020 International Conference Laser Optics (ICLO). IEEE, 2020. http://dx.doi.org/10.1109/iclo48556.2020.9285792.
Full text