Books on the topic 'Quantum dot'

To see the other types of publications on this topic, follow the link: Quantum dot.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 books for your research on the topic 'Quantum dot.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse books on a wide variety of disciplines and organise your bibliography correctly.

1

Tong, Xin, Jiang Wu, and Zhiming M. Wang, eds. Quantum Dot Photodetectors. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74270-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wu, Jiang, and Zhiming M. Wang, eds. Quantum Dot Molecules. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-8130-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Zhiming M., ed. Quantum Dot Devices. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3570-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

service), SpringerLink (Online, ed. Quantum Dot Devices. New York, NY: Springer New York, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

M, Ustinov Victor, ed. Quantum dot lasers. Oxford: Oxford University Press, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kruppa, Suzanne L. Modeling the quantum dot. Monterey, Calif: Naval Postgraduate School, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wu, Jiang, and Zhiming M. Wang, eds. Quantum Dot Solar Cells. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-8148-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yu, Peng, and Zhiming M. Wang, eds. Quantum Dot Optoelectronic Devices. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-35813-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Otto, Christian. Dynamics of Quantum Dot Lasers. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03786-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dong, Bozhang. Quantum Dot Lasers on Silicon. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-17827-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Konstantatos, Gerasimos, and Edward H. Sargent, eds. Colloidal Quantum Dot Optoelectronics and Photovoltaics. Cambridge: Cambridge University Press, 2013. http://dx.doi.org/10.1017/cbo9781139022750.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Schütz, Martin J. A. Quantum Dots for Quantum Information Processing: Controlling and Exploiting the Quantum Dot Environment. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-48559-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Rafailov, Edik U., Maria Ana Cataluna, and Eugene A. Avrutin. Ultrafast Lasers Based on Quantum Dot Structures. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527634484.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Röhm, André. Dynamic Scenarios in Two-State Quantum Dot Lasers. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-658-09402-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Kantner, Markus. Electrically Driven Quantum Dot Based Single-Photon Sources. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-39543-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Sasamal, Trailokya, Hari Mohan Gaur, Ashutosh Kumar Singh, and Xiaoqing Wen. Quantum-Dot Cellular Automata Circuits for Nanocomputing Applications. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003361633.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Ana, Cataluna Maria, and Avrutin Eugene A, eds. Ultrafast lasers based on quantum dot structures: Physics and devices. Weinheim, Germany: Wiley-VCH, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
18

Lingnau, Benjamin. Nonlinear and Nonequilibrium Dynamics of Quantum-Dot Optoelectronic Devices. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25805-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Karmakar, Supriya. Novel Three-state Quantum Dot Gate Field Effect Transistor. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-1635-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Kumar, Naresh. Memory Design Using Quantum Dot Cellular Automata (QCA) Technology. Saarbrücken: LAP LAMBERT Academic Publishing, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
21

Turton, Richard. The quantum dot: A journey into the future of microelectronics. Oxford: W.H. Freeman, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
22

The quantum dot: A journey into the future of microelectronics. New York: Oxford University Press, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
23

1969-, Gehrig Edeltraud, ed. Photonics of quantum-dot nanomaterials and devices: Theory and modelling. London: Imperial College Press, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
24

Gallagher, Sarah J. Modelling, fabrication and characterisation of a quantum dot solar concentrator. [S.l: The author], 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
25

Sridharan, K., and Vikramkumar Pudi. Design of Arithmetic Circuits in Quantum Dot Cellular Automata Nanotechnology. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16688-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Mandal, Arjun, and Subhananda Chakrabarti. Impact of Ion Implantation on Quantum Dot Heterostructures and Devices. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4334-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Adhikary, Sourav, and Subhananda Chakrabarti. Quaternary Capped In(Ga)As/GaAs Quantum Dot Infrared Photodetectors. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-5290-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Rreza, Iva. Designing Quantum Dot Architectures and Surfaces for Light Emitting Diodes. [New York, N.Y.?]: [publisher not identified], 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
29

Sengupta, Saumya, and Subhananda Chakrabarti. Structural, Optical and Spectral Behaviour of InAs-based Quantum Dot Heterostructures. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-5702-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Schmeckebier, Holger. Quantum-Dot-Based Semiconductor Optical Amplifiers for O-Band Optical Communication. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-44275-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Sasamal, Trailokya Nath, Ashutosh Kumar Singh, and Anand Mohan. Quantum-Dot Cellular Automata Based Digital Logic Circuits: A Design Perspective. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1823-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Wang, Zhiming, Xin Tong, and Jiang Wu. Quantum Dot Photodetectors. Springer International Publishing AG, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
33

Quantum Dot Devices. Springer, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
34

Quantum Dot Heterostructures. Wiley, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
35

Wang, Zhiming M. Quantum Dot Devices. Springer, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
36

Tong, Xin, Jiang Wu, and Zhiming M. Wang. Quantum Dot Photodetectors. Springer International Publishing AG, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
37

Wu, Jiang, and Zhiming M. Wang. Quantum Dot Molecules. Springer, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
38

Wu, Jiang, and Zhiming M. Wang. Quantum Dot Molecules. Springer London, Limited, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
39

Wu, Jiang, and Zhiming M. Wang. Quantum Dot Molecules. Springer, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
40

Bolivar, Nelson. Quantum Dot Photovoltaics. Arcler Education Inc, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
41

Bolivar, Nelson. Quantum Dot Photovoltaics. Arcler Education Inc, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
42

Wang, Zhiming M. Quantum Dot Devices. Springer, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
43

Lozano, Fabio. Quantum-Dot Laser Behavior. Kelsiehanson Verlag, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
44

Yu, Peng, and Zhiming M. Wang. Quantum Dot Optoelectronic Devices. Springer, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
45

Wu, Jiang, and Zhiming M. Wang. Quantum Dot Solar Cells. Springer, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
46

Yu, Peng, and Zhiming M. Wang. Quantum Dot Optoelectronic Devices. Springer International Publishing AG, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
47

Wu, Jiang, and Zhiming M. Wang. Quantum Dot Solar Cells. Springer London, Limited, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
48

Wu, Jiang, and Zhiming M. Wang. Quantum Dot Solar Cells. Springer, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
49

Towe, E., and D. Pal. Intersublevel quantum-dot infrared photodetectors. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.013.7.

Full text
Abstract:
This article describes the basic principles of semiconductor quantum-dot infrared photodetectors based on conduction-band intersublevel transitions. Sufficient background material is discussed to enable an appreciation of the subtle differences between quantum-well and quantum-dot devices. The article first considers infrared photon absorption and photon detection, along with some metrics for photon detectors and the detection of infrared radiation by semiconductors. It then examines the optical matrix element for interband, intersubband and intersublevel transitions before turning to experimental single-pixel quantum-dot infrared photodetectors. In particular, it explains the epitaxial synthesis of quantum dots and looks at mid-wave and long-wave quantum-dot infrared photodetectors. It also evaluates the characteristics of quantum-dot detectors and possible development of quantum-dot focal plane array imagers. The article concludes with an assessment of the challenges and prospects for high-performance detectors and arrays.
APA, Harvard, Vancouver, ISO, and other styles
50

Melnikov, D. V., J. Kim, L. X. Zhang, and J. P. Leburton. Few-electron quantum-dot spintronics. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.013.2.

Full text
Abstract:
This article examines the spin and charge properties of double and triple quantum dots (QDs) populated containing just a few electrons, with particular emphasis on laterally coupled QDs. It first describes the theoretical approach, known as exact diagonalization method, utilized on the example of the two-electron system in coupled QDs that are modelled as two parabolas. The many-body problem is solved via the exact diagonalization method as well as variational Heitler–London and Monte Carlo methods. The article proceeds by considering the general characteristics of the two-electron double-QD structure and limitations of the approximate methods commonly used for its theoretical description. It also discusses the stability diagram for two circular dots and investigates how its features are affected by the QD elliptical deformations. Finally, it assesses the behavior of the two-electron system in the realistic double-dot confinement potentials.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography