Journal articles on the topic 'Quantum Dot Photocatalysis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Quantum Dot Photocatalysis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Chu, Kuan-Wu, Sher Lee, Chi-Jung Chang, and Lingyun Liu. "Recent Progress of Carbon Dot Precursors and Photocatalysis Applications." Polymers 11, no. 4 (April 16, 2019): 689. http://dx.doi.org/10.3390/polym11040689.
Full textChepape, Kgobudi Frans, Thapelo Prince Mofokeng, Pardon Nyamukamba, Kalenga Pierre Mubiayi, and Makwena Justice Moloto. "Enhancing Photocatalytic Degradation of Methyl Blue Using PVP-Capped and Uncapped CdSe Nanoparticles." Journal of Nanotechnology 2017 (2017): 1–6. http://dx.doi.org/10.1155/2017/5340784.
Full textWang, Ruili, Yuequn Shang, Pongsakorn Kanjanaboos, Wenjia Zhou, Zhijun Ning, and Edward H. Sargent. "Colloidal quantum dot ligand engineering for high performance solar cells." Energy & Environmental Science 9, no. 4 (2016): 1130–43. http://dx.doi.org/10.1039/c5ee03887a.
Full textKande, Bhupendra, and Prachi Parmar. "Carbon Quantum Dot and Application: A Review." Spectrum of Emerging Sciences 2, no. 1 (April 22, 2022): 11–24. http://dx.doi.org/10.55878/ses2022-2-1-3.
Full textQi, Houjuan, Cai Shi, Xiaona Jiang, Min Teng, Zhe Sun, Zhanhua Huang, Duo Pan, Shouxin Liu, and Zhanhu Guo. "Constructing CeO2/nitrogen-doped carbon quantum dot/g-C3N4 heterojunction photocatalysts for highly efficient visible light photocatalysis." Nanoscale 12, no. 37 (2020): 19112–20. http://dx.doi.org/10.1039/d0nr02965c.
Full textLi, Lingwei, Hange Feng, Xiaofan Wei, Kun Jiang, Shaolin Xue, and Paul K. Chu. "Ag as Cocatalyst and Electron-Hole Medium in CeO2 QDs/Ag/Ag2Se Z-scheme Heterojunction Enhanced the Photo-Electrocatalytic Properties of the Photoelectrode." Nanomaterials 10, no. 2 (January 31, 2020): 253. http://dx.doi.org/10.3390/nano10020253.
Full textLiu, Yunxin, Jianxin Shi, Qing Peng, and Yadong Li. "CuO Quantum-Dot-Sensitized Mesoporous ZnO for Visible-Light Photocatalysis." Chemistry - A European Journal 19, no. 13 (February 27, 2013): 4319–26. http://dx.doi.org/10.1002/chem.201203316.
Full textHomer, Micaela Kalmek, Ding-Yuan Kuo, Florence Y. Dou, and Brandi Michelle Cossairt. "(Keynote) Photoinduced Charge Transfer from Quantum Dots Measured By Cyclic Voltammetry." ECS Meeting Abstracts MA2022-02, no. 20 (October 9, 2022): 916. http://dx.doi.org/10.1149/ma2022-0220916mtgabs.
Full textLi, Boyuan, Zhenhua Cao, Shixuan Wang, Qiang Wei, and Zhurui Shen. "BiVO4 quantum dot-decorated BiPO4 nanorods 0D/1D heterojunction for enhanced visible-light-driven photocatalysis." Dalton Transactions 47, no. 30 (2018): 10288–98. http://dx.doi.org/10.1039/c8dt02402b.
Full textEvangelou, Sofia. "Altering Degenerate Four-Wave Mixing and Third-Harmonic Generation in a Coupled Quantum Dot–Metallic Nanoparticle Structure with the Use of the Purcell Effect." Materials Proceedings 4, no. 1 (November 12, 2020): 39. http://dx.doi.org/10.3390/iocn2020-07875.
Full textZhang, Xianfeng, Zongqun Li, Shaowen Xu, and Yaowen Ruan. "Carbon quantum dot-sensitized hollow TiO2 spheres for high-performance visible light photocatalysis." New Journal of Chemistry 45, no. 19 (2021): 8693–700. http://dx.doi.org/10.1039/d1nj00501d.
Full textZhu, Bolin, Xuefei Li, Yue Wang, Na Liu, Ye Tian, and Jinghai Yang. "Visible-light-driven photocatalytic degradation of RhB by carbon-quantum-dot-modified g-C3N4 on carbon cloth." CrystEngComm 23, no. 27 (2021): 4782–90. http://dx.doi.org/10.1039/d1ce00396h.
Full textZhao, Chenhui, Ying Liang, Wei Li, Yi Tian, Xin Chen, Dezhong Yin, and Qiuyu Zhang. "BiOBr/BiOCl/carbon quantum dot microspheres with superior visible light-driven photocatalysis." RSC Advances 7, no. 83 (2017): 52614–20. http://dx.doi.org/10.1039/c7ra10344a.
Full textChi, Le Ha, Pham Duy Long, Hoang Vu Chung, Do Thi Phuong, Do Xuan Mai, Nguyen Thi Tu Oanh, Thach Thi Dao Lien, and Le Van Trung. "Galvanic-Cell-Based Synthesis and Photovoltaic Performance of ZnO-CdS Core-Shell Nanorod Arrays for Quantum Dots Sensitized Solar Cells." Applied Mechanics and Materials 618 (August 2014): 64–68. http://dx.doi.org/10.4028/www.scientific.net/amm.618.64.
Full textMa, Beibei, Liduo Wang, Haopeng Dong, Rui Gao, Yi Geng, Yifeng Zhu, and Yong Qiu. "Photocatalysis of PbS quantum dots in a quantum dot-sensitized solar cell: photovoltaic performance and characteristics." Phys. Chem. Chem. Phys. 13, no. 7 (2011): 2656–58. http://dx.doi.org/10.1039/c0cp02415e.
Full textWei, Wei, Yongji Yao, Qi Zhao, Zhilong Xu, Qinfan Wang, Zongtao Zhang, and Yanfeng Gao. "Oxygen defect-induced localized surface plasmon resonance at the WO3−x quantum dot/silver nanowire interface: SERS and photocatalysis." Nanoscale 11, no. 12 (2019): 5535–47. http://dx.doi.org/10.1039/c9nr01059a.
Full textKassahun, Gashaw Beyene. "High Tunability of Size Dependent Optical Properties of ZnO@M@Au (M = SiO2, In2O3, TiO2) Core/Spacer/Shell Nanostructure." Advanced Nano Research 2, no. 1 (January 12, 2019): 1–13. http://dx.doi.org/10.21467/anr.2.1.1-13.
Full textBajorowicz, Beata, Marek P. Kobylański, Anna Gołąbiewska, Joanna Nadolna, Adriana Zaleska-Medynska, and Anna Malankowska. "Quantum dot-decorated semiconductor micro- and nanoparticles: A review of their synthesis, characterization and application in photocatalysis." Advances in Colloid and Interface Science 256 (June 2018): 352–72. http://dx.doi.org/10.1016/j.cis.2018.02.003.
Full textYu, Linhui, Yan Huang, Guangcan Xiao, and Danzhen Li. "Application of long wavelength visible light (λ > 650 nm) in photocatalysis with a p-CuO–n-In2O3 quantum dot heterojunction photocatalyst." Journal of Materials Chemistry A 1, no. 34 (2013): 9637. http://dx.doi.org/10.1039/c3ta12207g.
Full textHu, Haikun, Zhou Lu, Jiasheng Li, and Zongtao Li. "P‐11.3: Manufacturing Quantum Dot Pixel Array via Self‐Assembling on Hydrophobic‐Hydrophilic Transformation Substrate." SID Symposium Digest of Technical Papers 54, S1 (April 2023): 836–40. http://dx.doi.org/10.1002/sdtp.16428.
Full textKang, Chao, Ying Huang, Hui Yang, Xiu Fang Yan, and Zeng Ping Chen. "A Review of Carbon Dots Produced from Biomass Wastes." Nanomaterials 10, no. 11 (November 23, 2020): 2316. http://dx.doi.org/10.3390/nano10112316.
Full textLan, Shanyou, Ziguo Lin, Da Zhang, Yongyi Zeng, and Xiaolong Liu. "Photocatalysis Enhancement for Programmable Killing of Hepatocellular Carcinoma through Self-Compensation Mechanisms Based on Black Phosphorus Quantum-Dot-Hybridized Nanocatalysts." ACS Applied Materials & Interfaces 11, no. 10 (February 18, 2019): 9804–13. http://dx.doi.org/10.1021/acsami.8b21820.
Full textRajender, Gone, Jitendra Kumar, and P. K. Giri. "Interfacial charge transfer in oxygen deficient TiO2-graphene quantum dot hybrid and its influence on the enhanced visible light photocatalysis." Applied Catalysis B: Environmental 224 (May 2018): 960–72. http://dx.doi.org/10.1016/j.apcatb.2017.11.042.
Full textWang, Ruiling, Tian Xie, Zhiyong Sun, Taofei Pu, Weibing Li, and Jin-Ping Ao. "Graphene quantum dot modified g-C3N4 for enhanced photocatalytic oxidation of ammonia performance." RSC Advances 7, no. 81 (2017): 51687–94. http://dx.doi.org/10.1039/c7ra07988e.
Full textLi, Zesheng, Bolin Li, Shaohong Peng, Dehao Li, Siyuan Yang, and Yueping Fang. "Novel visible light-induced g-C3N4 quantum dot/BiPO4 nanocrystal composite photocatalysts for efficient degradation of methyl orange." RSC Adv. 4, no. 66 (2014): 35144–48. http://dx.doi.org/10.1039/c4ra05749j.
Full textKong, Zhouzhou, Xingzhu Chen, Wee-Jun Ong, Xiujian Zhao, and Neng Li. "Atomic-level insight into the mechanism of 0D/2D black phosphorus quantum dot/graphitic carbon nitride (BPQD/GCN) metal-free heterojunction for photocatalysis." Applied Surface Science 463 (January 2019): 1148–53. http://dx.doi.org/10.1016/j.apsusc.2018.09.026.
Full textBelhacova, Lenka, Hana Bibova, Tereza Marikova, Martin Kuchar, Radek Zouzelka, and Jiri Rathousky. "Removal of Ampicillin by Heterogeneous Photocatalysis: Combined Experimental and DFT Study." Nanomaterials 11, no. 8 (August 3, 2021): 1992. http://dx.doi.org/10.3390/nano11081992.
Full textAwang, Huzaikha, Tim Peppel, and Jennifer Strunk. "Photocatalytic Degradation of Diclofenac by Nitrogen-Doped Carbon Quantum Dot-Graphitic Carbon Nitride (CNQD)." Catalysts 13, no. 4 (April 13, 2023): 735. http://dx.doi.org/10.3390/catal13040735.
Full textSiva Kumar, Nadavala, Mohammad Asif, T. Ranjeth Kumar Reddy, Gnanendra Shanmugam, and Abdelhamid Ajbar. "Silver Quantum Dot Decorated 2D-SnO2 Nanoflakes for Photocatalytic Degradation of the Water Pollutant Rhodamine B." Nanomaterials 9, no. 11 (October 30, 2019): 1536. http://dx.doi.org/10.3390/nano9111536.
Full textShao, Xiao, Weiyue Xin, and Xiaohong Yin. "Hydrothermal synthesis of ZnO quantum dot/KNb3O8 nanosheet photocatalysts for reducing carbon dioxide to methanol." Beilstein Journal of Nanotechnology 8 (October 30, 2017): 2264–70. http://dx.doi.org/10.3762/bjnano.8.226.
Full textWei, Maobin, Lili Yang, Yongsheng Yan, and Liang Ni. "Preparation of ZnS quantum dot photocatalyst and study on photocatalytic degradation of antibiotics." Materials Express 9, no. 5 (August 1, 2019): 413–18. http://dx.doi.org/10.1166/mex.2019.1518.
Full textTang, Xu, Yang Yu, Changchang Ma, Guosheng Zhou, Xinlin Liu, Minshan Song, Ziyang Lu, and Lei Liu. "The fabrication of a biomass carbon quantum dot-Bi2WO6 hybrid photocatalyst with high performance for antibiotic degradation." New Journal of Chemistry 43, no. 47 (2019): 18860–67. http://dx.doi.org/10.1039/c9nj04764f.
Full textChan, Donald K. L., Po Ling Cheung, and Jimmy C. Yu. "A visible-light-driven composite photocatalyst of TiO2 nanotube arrays and graphene quantum dots." Beilstein Journal of Nanotechnology 5 (May 22, 2014): 689–95. http://dx.doi.org/10.3762/bjnano.5.81.
Full textJia, Dongmei, Xiaoyu Li, Qianqian Chi, Jingxiang Low, Ping Deng, Wenbo Wu, Yikang Wang, et al. "Direct Electron Transfer from Upconversion Graphene Quantum Dots to TiO2 Enabling Infrared Light-Driven Overall Water Splitting." Research 2022 (April 13, 2022): 1–9. http://dx.doi.org/10.34133/2022/9781453.
Full textApostolaki, Maria-Athina, Alexia Toumazatou, Maria Antoniadou, Elias Sakellis, Evangelia Xenogiannopoulou, Spiros Gardelis, Nikos Boukos, Polycarpos Falaras, Athanasios Dimoulas, and Vlassis Likodimos. "Graphene Quantum Dot-TiO2 Photonic Crystal Films for Photocatalytic Applications." Nanomaterials 10, no. 12 (December 21, 2020): 2566. http://dx.doi.org/10.3390/nano10122566.
Full textGao, Huajing, Chengxiang Zheng, Hua Yang, Xiaowei Niu, and Shifa Wang. "Construction of a CQDs/Ag3PO4/BiPO4 Heterostructure Photocatalyst with Enhanced Photocatalytic Degradation of Rhodamine B under Simulated Solar Irradiation." Micromachines 10, no. 9 (August 23, 2019): 557. http://dx.doi.org/10.3390/mi10090557.
Full textIqbal, Anwar, Fatimah Bukola Shittu, Mohamad Nasir Mohamad Ibrahim, N. H. H. Abu Bakar, Noorfatimah Yahaya, Kalaivizhi Rajappan, M. Hazwan Hussin, Wan Hazman Danial, and Lee D. Wilson. "Photoreactive Carbon Dots Modified g-C3N4 for Effective Photooxidation of Bisphenol-A under Visible Light Irradiation." Catalysts 12, no. 11 (October 25, 2022): 1311. http://dx.doi.org/10.3390/catal12111311.
Full textChen, Liang-Che, Yuan-Kai Xiao, Nei-Jin Ke, Chun-Yan Shih, Te-Fu Yeh, Yuh-Lang Lee, and Hsisheng Teng. "Synergy between quantum confinement and chemical functionality of graphene dots promotes photocatalytic H2 evolution." Journal of Materials Chemistry A 6, no. 37 (2018): 18216–24. http://dx.doi.org/10.1039/c8ta05288c.
Full textSong, Taeyoung, Jun Young Cheong, Ji Yong Choi, Cheolmin Park, Chulhee Lee, Changsoo Lee, Hyuck Mo Lee, et al. "A feasible strategy to prepare quantum dot-incorporated carbon nanofibers as free-standing platforms." Nanoscale Advances 1, no. 10 (2019): 3948–56. http://dx.doi.org/10.1039/c9na00423h.
Full textPashazadeh, Sara, Biuck Habibi, Ali Pashazadeh, Ali Fatemi, and Milad Rasouli. "(Digital Presentation) Facile Fabrication of Graphene Quantum Dot- Doped Polyaniline Embedded Cu Metal-Organic Frameworks Composite Electrode As Improved Anode Electrocatalyst for Methanol Oxidation." ECS Meeting Abstracts MA2022-01, no. 41 (July 7, 2022): 2491. http://dx.doi.org/10.1149/ma2022-01412491mtgabs.
Full textWang, Ke, Zipeng Xing, Meng Du, Shiyu Zhang, Zhenzi Li, Kai Pan, and Wei Zhou. "Plasmon Ag and CdS quantum dot co-decorated 3D hierarchical ball-flower-like Bi5O7I nanosheets as tandem heterojunctions for enhanced photothermal–photocatalytic performance." Catalysis Science & Technology 9, no. 23 (2019): 6714–22. http://dx.doi.org/10.1039/c9cy01945f.
Full textSun, Qianqian, Zebin Yu, Ronghua Jiang, Yanping Hou, Lei Sun, Lun Qian, Fengyuan Li, Mingjie Li, Qi Ran, and Heqing Zhang. "CoP QD anchored carbon skeleton modified CdS nanorods as a co-catalyst for photocatalytic hydrogen production." Nanoscale 12, no. 37 (2020): 19203–12. http://dx.doi.org/10.1039/d0nr05268j.
Full textChandrashekar, Hediyala B., Arun Maji, Ganga Halder, Sucheta Banerjee, Sayan Bhattacharyya, and Debabrata Maiti. "Photocatalyzed borylation using water-soluble quantum dots." Chemical Communications 55, no. 44 (2019): 6201–4. http://dx.doi.org/10.1039/c9cc01737b.
Full textGrewal, Jaspreet Kaur, Manpreet Kaur, Kousik Mandal, and Virender K. Sharma. "Carbon Quantum Dot-Titanium Doped Strontium Ferrite Nanocomposite: Visible Light Active Photocatalyst to Degrade Nitroaromatics." Catalysts 12, no. 10 (September 27, 2022): 1126. http://dx.doi.org/10.3390/catal12101126.
Full textYuan, Yucheng, Na Jin, Peter Saghy, Lacie Dube, Hua Zhu, and Ou Chen. "Quantum Dot Photocatalysts for Organic Transformations." Journal of Physical Chemistry Letters 12, no. 30 (July 26, 2021): 7180–93. http://dx.doi.org/10.1021/acs.jpclett.1c01717.
Full textRen, Zhixin, Huachao Ma, Jianxin Geng, Cuijuan Liu, Chaoyu Song, and Yuguang Lv. "ZnO QDs/GO/g-C3N4 Preparation and Photocatalytic Properties of Composites." Micromachines 14, no. 8 (July 26, 2023): 1501. http://dx.doi.org/10.3390/mi14081501.
Full textAydogdu, Seyda, Arzu Hatipoglu, Bahar Eren, and Yelda Gurkan. "Photodegradation kinetics of organophosphorous with hydroxyl radicals: Experimental and theoretical study." Journal of the Serbian Chemical Society, no. 00 (2021): 56. http://dx.doi.org/10.2298/jsc210409056a.
Full textJi, Yi, Quan Zuo, Chuanshuang Chen, Yannan Liu, Yiyong Mai, and Yongfeng Zhou. "A supramolecular single-site photocatalyst based on multi-to-one Förster resonance energy transfer." Chemical Communications 57, no. 34 (2021): 4174–77. http://dx.doi.org/10.1039/d1cc01339d.
Full textBudimir, Milica, Zoran Marković, Dragana Jovanović, Miloš Vujisić, Matej Mičušík, Martin Danko, Angela Kleinová, Helena Švajdlenková, Zdeno Špitalský, and Biljana Todorović Marković. "Correction: Gamma ray assisted modification of carbon quantum dot/polyurethane nanocomposites: structural, mechanical and photocatalytic study." RSC Advances 10, no. 12 (2020): 7125. http://dx.doi.org/10.1039/d0ra90015j.
Full textHuang, Jinzhao, Song Liu, Lei Kuang, Yongdan Zhao, Tao Jiang, Shiyou Liu, and Xijin Xu. "Enhanced photocatalytic activity of quantum-dot-sensitized one-dimensionally-ordered ZnO nanorod photocatalyst." Journal of Environmental Sciences 25, no. 12 (December 2013): 2487–91. http://dx.doi.org/10.1016/s1001-0742(12)60330-1.
Full text