Dissertations / Theses on the topic 'Quantum Dot - Cellular Imaging'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Quantum Dot - Cellular Imaging.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
East, Daniel. "Characterisation and functional analysis of fission yeast tropomyosin mutants and development of quantum dot-antibody conjugates for cellular imaging." Thesis, University of Kent, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.527598.
Full textWang, Weili. "Bright, compact and biocompatible quantum dot/rod-bioconjugates for Förster resonance energy transfer based ratiometric biosensing and cellular imaging." Thesis, University of Leeds, 2017. http://etheses.whiterose.ac.uk/16881/.
Full textHafian, Hilal. "IMAGERIE CELLULAIRE ET TISSULAIRE DE BIO-MARQUEURS TUMORAUX : EXCITATION MULTI-PHOTONIQUE DE QUANTUM DOTS CONJUGUES AVEC DES ANTICORPS DE DOMAINE SIMPLE." Thesis, Reims, 2016. http://www.theses.fr/2016REIMP201.
Full textThe QD-sdAbs conjugates are nano-sensors that combine a quantum dot (QD) and single domain antibodies (sdAbs). These fluorescent nanoprobes allow immunostaining on tissue sections and cells. The objective of this work is to show the interest of the multi-photon excitation for the detection and highly specific location of tumor biomarkers.Multi-photon excitation of anti CEA QD570-sdAb nanoprobes was investigated on human appendix and colon carcinoma slides for specifical detection and an optimization of the signal/auto-fluorescence emission ratio. The use of QD as excitation energy sensor for a QD-organic fluorophore FRET model has been shown. An innovative model for ultra-specific detection of CEA on MC38 CEA membrane cells by double immunostaining for a resonant energy transfer between QD and Alexa Fluor has been implemented.Our results shows the great interest of the multi-photon excitation compared to 458.9 nm excitation for discrimination and optimization of the signal / autofluorescence. It is 40 times higher at 800 nm two photon excitation has 458.9 nm one photon excitation on the studied sections.The use of conjugated QD556-sdAb anti-CEA and a conventional monoclonal antibody allows a double immunostaining on CEA on MC38 CEA membrane cells. The QD is use as multi-photon excitation energy nano-sensor enables an excitation selectivity and FRET between QD and Alexa Fluor. This configuration enables easy spectral detection of FRET and a very specific and sensitive location of membrane CEA. This is reinforced by the decrease in decay time of QD556 as donor of non radiative energy
Srivastava, Saket. "Probabilistic modeling of quantum-dot cellular automata." [Tampa, Fla.] : University of South Florida, 2007. http://purl.fcla.edu/usf/dc/et/SFE0002399.
Full textZimmer, John P. (John Philip). "Quantum dot-based nanomaterials for biological imaging." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/37888.
Full textVita.
Includes bibliographical references.
Quantum dot-based fluorescent probes were synthesized and applied to biological imaging in two distinct size regimes: (1) 100-1000 nm and (2) < 10 nm in diameter. The larger diameter range was accessed by doping CdSe/ZnS or CdS/ZnS quantum dots (QDs) into shells grown on the surfaces of pre-formed sub-micron SiO2 microspheres. The smaller diameter range was accessed with two different materials: very small InAs/ZnSe QDs and CdSe/ZnS QDs, each water solubilized with small molecule ligands chosen for their ability not only to stabilize QDs in water but also to minimize the total hydrodynamic size of the QD-ligand conjugates. Indium arsenide QDs were synthesized because nanocrystals of this material can be tuned to fluoresce in the near infrared (NIR) portion of the electromagnetic spectrum, especially in the 700-900 nm window where many tissues in the body absorb and scatter minimally, while maintaining core sizes of 2 nm or less. The QD-containing microspheres were used to image tumor vasculature in living animals, and to generate maps of size-dependent extravasation. With subcutaneously delivered nAs/ZnSe QDs, multiple lymph node mapping was demonstrated in vivo for the first time with nanocrystals. When administered intravenously, < 10 nm QDs escaped from the vasculature, or were efficiently cleared from circulation by the kidney. Both of these behaviors, previously unreported, mark key milestones in the realization of an ideal fluorescent QD probe for imaging specific compartments in vivo. Also presented in this thesis is the growth of single-crystalline cobalt nanorods through the oriented attachment of spherical cobalt nanocrystal monomers.
(cont.) When administered intravenously, < 10 nm QDs escaped from the vasculature, or were efficiently cleared from circulation by the kidney. Both of these behaviors, previously unreported, mark key milestones in the realization of an ideal fluorescent QD probe for imaging specific compartments in vivo. Also presented in this thesis is the growth of single-crystalline cobalt nanorods through the oriented attachment of spherical cobalt nanocrystal monomers.
by John P. Zimmer.
Ph.D.
Pelling, Stephen. "Terahertz imaging using a quantum dot detector." Thesis, Royal Holloway, University of London, 2011. http://repository.royalholloway.ac.uk/items/2311f672-f705-ab41-a5b9-78f87a192faf/8/.
Full textMandell, Eric S. "Theoretical studies of inter-dot potential barrier modulation in quantum-dot cellular automata." Virtual Press, 2001. http://liblink.bsu.edu/uhtbin/catkey/1221305.
Full textDepartment of Physics and Astronomy
Hendrichsen, Melissa K. "Thermal effect and fault tolerance in quantum dot cellular automata." Virtual Press, 2005. http://liblink.bsu.edu/uhtbin/catkey/1314329.
Full textDepartment of Physics and Astronomy
Kanuchok, Jonathan L. "The thermal effect and clocking in quantum-dot cellular automata." Virtual Press, 2004. http://liblink.bsu.edu/uhtbin/catkey/1286605.
Full textDepartment of Physics and Astronomy
Tung, Chia-Ching. "Implementation of multi-CLB designs using quantum-dot cellular automata /." Online version of thesis, 2010. http://hdl.handle.net/1850/11699.
Full textGustafsson, Oscar. "Type-II interband quantum dot photodetectors." Doctoral thesis, KTH, Integrerade komponenter och kretsar, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-122294.
Full textQC 20130521
Fediv, V. I. "Quantum dot as the basis of multimodal molecular imaging probes." Thesis, БДМУ, 2021. http://dspace.bsmu.edu.ua:8080/xmlui/handle/123456789/18844.
Full textBarclay, Travis J. "The temperature effect and defect study in quantum-dot cellular automata." Virtual Press, 2005. http://liblink.bsu.edu/uhtbin/catkey/1319217.
Full textDepartment of Physics and Astronomy
Patalay, Dinkar. "64-bit high efficiency binary comparator in quantum-dot cellular automata." Thesis, California State University, Long Beach, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10111200.
Full textQuantum-dot Cellular Automata (QCA) are proposed models of quantum computation, which are articulated in analogy to Von Neumann's conventional models of cellular automata. These models are worthy for the architecture of ultra-dense low-power and high-performance digital circuits. Efficient solutions have recently been proposed for several arithmetic circuits, such as adders, multipliers, and comparators. Since the design of digital circuits in QCA still poses several challenges, novel implementation strategies and methodologies are highly desirable. This project demonstrates a new design approach oriented to the implementation of binary comparators using QCA. This strategy is implemented for designing various architectures of binary comparator. With respect to existing counterparts, the comparators proposed here exhibit significantly higher speed and reduced overall area.
Singhal, Rahul. "Logic Realization Using Regular Structures in Quantum-Dot Cellular Automata (QCA)." PDXScholar, 2011. https://pdxscholar.library.pdx.edu/open_access_etds/196.
Full textWANG, RUIYU. "ANALYSIS AND MODULATION OF MOLECULAR QUANTUM-DOT CELLULAR AUTOMATA (QCA) DEVICES." Doctoral thesis, Politecnico di Torino, 2017. http://hdl.handle.net/11583/2677716.
Full textVenkataramani, Praveen. "Sequential quantum dot cellular automata design and analysis using Dynamic Bayesian Networks." [Tampa, Fla] : University of South Florida, 2008. http://purl.fcla.edu/usf/dc/et/SFE0002787.
Full textLane, Lucas A. "Advancement of blinking suppressed quantum dots for enhanced single molecule imaging." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/54023.
Full textKarim, Faizal. "Investigation of the correlated dynamics of quantum-dot cellular automata circuits and systems." Thesis, University of British Columbia, 2014. http://hdl.handle.net/2429/49968.
Full textApplied Science, Faculty of
Electrical and Computer Engineering, Department of
Graduate
Padgett, Benjamin David. "Modeling and simulation of fault tolerant properties of quantum-dot cellular automata devices." CardinalScholar 1.0, 2010. http://liblink.bsu.edu/uhtbin/catkey/1569024.
Full textCell design -- Basic logic gates -- The exclusive or gate.
Department of Physics and Astronomy
Kapkar, Rohan Viren. "Modeling and Simulation of Altera Logic Array Block using Quantum-Dot Cellular Automata." University of Toledo / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1304616947.
Full textWen, Mary Mei. "New strategies for tagging quantum dots for dynamic cellular imaging." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/52150.
Full textKarim, Faizal. "Clocking electrode design and phase analysis for molecular quantum-dot cellular automata based circuits." Thesis, University of British Columbia, 2007. http://hdl.handle.net/2429/31504.
Full textApplied Science, Faculty of
Electrical and Computer Engineering, Department of
Graduate
Raviraj, Tejas. "Design, Implementation, and Test of Next Generation FPGAs Using Quantum-Dot Cellular Automata Technology." University of Toledo / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1302291185.
Full textPouya, Shahram. "Near-wall velocimetry and investigation of slip flow in microchannels using quantum dot imaging." Diss., Connect to online resource - MSU authorized users, 2008.
Find full textKeseroglu, Kemal Oguz. "Super-resolution imaging via spectral separation of quantum dots." Thesis, Queen Mary, University of London, 2017. http://qmro.qmul.ac.uk/xmlui/handle/123456789/31801.
Full textMontana, Fernandez Daniel Mauricio. "Development of polymeric quantum dot ligands for biological imaging in the short-wave infrared." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/120211.
Full textCataloged from PDF version of thesis.
Includes bibliographical references.
The short-wave infrared region (SWIR; 1000-2000 nm) has excellent properties for in vivo imaging: low autofluorescence, reduced scattering, and little light absorption by blood and tissue. However, broad adoption of SWIR imaging in biomedical research is hampered by the availability of versatile and bright contrast materials. Quantum dots (QDs) are bright, compact SWIR emitters with narrow size distributions and emission spectra, qualities that make them ideal for labeling and multiplex SWIR imaging. Nevertheless, SWIR QDs have limited applications due to the shortcomings of established ligand systems. Established ligands result in QD probes with limited colloidal stability, large size and broad size distribution, or all three limitations. To address these limitations, we turned to polymeric ligands, beginning with the polymeric imidazole ligand (PIL) initially developed for visible-emitting CdSe/CdxZn₁₋xS QDs with L-type native ligands. We studied ligand exchange with PIL and InAs/CdSe/CdS SWIR QDs with native X-type ligands in a variety of conditions but only saw limited exchange. Our results combined with reports in the literature suggest that the mechanism of X-to-L ligand exchange is not amenable to polymeric ligands. These results led us to the concept of ligand-type matching: for straightforward exchange, QD native ligands should be the same type as the binding groups on the polymer. Thus, we synthesized InAs/CdSe/ZnS with L-type native ligands, which exchanged readily with PIL to produce probes with (<14 nm hydrodynamic diameter, Hd). We also synthesized a new ligand that is compatible with oleate-capped QDs: the polymeric acid ligand (PAL), which features carboxylic acids as the binding group and PEG₁₁ chains to solubilize the QD-ligand construct. We exchanged PAL with oleate-capped PbS and PbS/CdS QDs, resulting in compact probes ( <11 nm Hd) with narrow size distribution. The small size and narrow size distribution of these constructs are preserved for several months when stored in isotonic saline solution in air, addressing the size and stability limitations of existing ligand systems for SWIR QDs. Our constructs are bright in vivo and to demonstrate their suitability for imaging, we performed whole-body imaging as well as lymphatic imaging, including visualization of lymphatic flow.
by Daniel Mauricio Montana Fernandez.
Ph. D.
Anduwan, Gabriel A. Y. "The thermal effect and fault tolerance on nanoscale devices : the quantum dot cellular automata (QCA)." Virtual Press, 2007. http://liblink.bsu.edu/uhtbin/catkey/1369913.
Full textDepartment of Physics and Astronomy
Balijepalli, Heman. "Design, Implementation, and Test of Novel Quantum-dot Cellular Automata FPGAs for the beyond CMOS Era." University of Toledo / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1333730938.
Full textPULIMENO, AZZURRA. "Molecular Quantum-dot Cellular Automata (QCA): Characterization of the bis-ferrocene molecule as a QCA device." Doctoral thesis, Politecnico di Torino, 2013. http://hdl.handle.net/11583/2507365.
Full textErdem, Rengin. "Ag2s/2-mpa Quantum Dots." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614384/index.pdf.
Full textg/mL concentration range for 24 h. Various fluorescence spectroscopy and microscopy methods were used to determine metabolic activity, proliferation rate and apoptotic fraction of QD-treated cells as well as QD internalization efficiency and intracellular localization. Metabolic activity and proliferation rate of the QD treated cells were measured with XTT and CyQUANT®
cell proliferation assays, respectively. Intracellular localization and qualitative uptake studies were conducted using confocal laser scanning microscopy. Apoptosis studies were performed with Annexin V assay. Finally, we also conducted a quantitative uptake assay to determine internalization efficiency of the silver sulfide particles. Correlated metabolic activity and proliferation assay results indicate that Ag2S/2-MPA quantum dots are highly cytocompatible with no significant toxicity up to 600 &mu
g/mL treatment. Optimal cell imaging concentration was determined as 200 &mu
g/mL. Particles displayed a punctuated cytoplasmic distribution indicating to endosomal entrapment. In vitro characterization studies reported in this study indicate that Ag2S/2-MPA quantum dots have great biological application potential due to their excellent spectral and cytocompatibility properties. Near-infrared emission of silver sulfide quantum dots provides a major advantage in imaging since signal interference from the cells (autofluorescence) which is a typical problem in microscopic studies is minimum in this part of the emission spectrum. The results of this study are presented in an article which was accepted by Journal of Materials Chemistry. DOI: 10.1039/C2JM31959D.
Sayin, Esen. "In-vitro Characterization Of A Novel Cdte-cds/2mpa-dmsa Quantum Dot." Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613629/index.pdf.
Full textGURUNG, TAK BAHADUR. "OPTICAL IMAGING OF EXCITON MAGNETIC POLARONS IN DILUTED MAGNETIC SEMICONDUCTOR QUANTUM DOTS." University of Cincinnati / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1155658535.
Full textSmith, Andrew Michael. "Engineering semiconductor nanocrystals for molecular, cellular, and in vivo imaging." Diss., Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/37124.
Full textZimmermann, Kristen Ann. "Intracellular Transport in Cancer Treatments: Carbon Nanohorns Conjugated to Quantum Dots and Chemotherapeutic Agents." Thesis, Virginia Tech, 2012. http://hdl.handle.net/10919/72986.
Full textMaster of Science
Wu, Juwell Wendy. "Near-infrared emitting quantum dots for cellular and vascular fluorescent labeling in in vivo multiplexed imaging studies." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/68460.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 199-217).
In vivo multimodal, multiplexed microscopy allows real-time observation of hematopoietic cells, their stem and progenitor cells and metastatic cancer cells in their native bone marrow (BM) environment. Multiplexing has made possible detailed studies of the BM's microarchitecture, which helps define the niche of these cells; it has nonetheless been limited by the paucity of suitable probes fluorescent in the near-infrared spectrum that is favored by tissue optics. This project attempts to address this problem by developing cellular and vascular fluorescent imaging probes comprised of semiconductor nanocrystals, or quantum dots (QDs), with tunable fluorescence between 65o-8oonm and exhibiting photostability, robust quantum yield and narrow fluorescence profiles that are critical for such applications. The synthesis of alloyed CdTexSe1 x QDs will be detailed in the thesis. Reproducibility and workability in subsequent steps are emphasized in the methods. Special attention is also paid to the difference between working with alloyed versus single semiconductor QDs, especially the need to achieve physical and spectral uniformity when composition and its gradient are also variable. The steps for creating biological probes from these QD fluorophores are also described. They include overcoating, water solubilization and functionalization for cellular uptake and vascular retention. Finally, the thesis returns to its motivation and reports novel methods, developed using NIR QD vascular imaging probes, for visualizing in vivo 3-D imaging data of the murine BM and characterizing the tissue's architecture. Measuring the Euclidean distance between BM osteoblasts and blood vessels is presented to exemplify a potential platform for describing the geographic relationships between cells, molecules and structural components in any tissue.
by Juwell Wendy Wu.
Ph.D.
Labrado, Carson. "Exploration of Majority Logic Based Designs for Arithmetic Circuits." UKnowledge, 2017. http://uknowledge.uky.edu/ece_etds/102.
Full textHösl, Michaela Anna Ulrike [Verfasser], and Lothar R. [Akademischer Betreuer] Schad. "23Na multi-quantum coherences: from cellular spectroscopy to clinical imaging development / Michaela Anna Ulrike Hösl ; Betreuer: Lothar R. Schad." Heidelberg : Universitätsbibliothek Heidelberg, 2020. http://d-nb.info/1203877943/34.
Full textHösl, Michaela [Verfasser], and Lothar R. [Akademischer Betreuer] Schad. "23Na multi-quantum coherences: from cellular spectroscopy to clinical imaging development / Michaela Anna Ulrike Hösl ; Betreuer: Lothar R. Schad." Heidelberg : Universitätsbibliothek Heidelberg, 2020. http://d-nb.info/1203877943/34.
Full textBanerjee, Anusuya. "Novel, Targettable Bioimaging Probes Using Conjugates of Quantum Dots and DNA." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066376/document.
Full textQuantum dots (QD) are new generation of versatile probes for biology, particularly for bioimaging. For specific applications, QDs are conjugated to biomolecules such as nucleic acid or proteins and subsequently targeted to unique intra-cellular pathways. Building upon the state-of-the-art ligands for water-dispersible QDs developed by the lab, a novel and highly generalizable method to conjugate DNA to QD is developed in this thesis. This method employs thiols present on polymers on QDs for conjugation to maleimide-functionalized DNA. Extensive characterization of parameters affecting this reaction is carried out and the strategy is extended to other nanoparticles and biomolecules. Following this, a novel method to conjugate proteins to QD via DNA hybridization is discussed. Using a model protein Transferrin (Tf), the unique properties of thus generated QD-DNA-Tf conjugates are studied in-vitro and in-cellulo. These conjugates are subsequently used for tracking endosomal dynamics for up-to 20 minutes, exploiting the fullest potential of QDs for live imaging. In the last part, additional studies on factors affecting the ‘biological performance’ of QDs are carried out. Using a range of highly adaptable polymeric ligands developed by the group, interactions of surface-modified QDs with the biological interface are probed. Systematic biochemical and cellular experiments demonstrate that QDs coated with zwitterionic polymers have superior antifouling properties compared to poly(ethylene glycol)-based polymers and stability in diverse biological contexts
Xie, Zhihua. "Fiber-integrated nano-optical antennas and axicons as ultra-compact all-fiber platforms for luminescence detection and imaging down to single nano-emitters." Thesis, Besançon, 2016. http://www.theses.fr/2016BESA2046/document.
Full textMy thesis is devoted to develop ultra-compact, plug-and-play and low-cost single-mode optical fibersystems for in-fiber luminescence collection. First, a new fiber self-aligned axicon is proposed toprovide the first resolved infrared fluorescence imaging of PbS quantum dots in far field. Then,all-fiber near-field imaging of single PbS quantum dots is achieved by double resonance bowtienano-aperture antenna (BNA) with nanometer resolution. Finally, the concept of fiber nano-opticalhorn antenna is proposed for in-fiber X-ray excited luminescence out-coupling, with the purpose ofgenerating the first generation of fiber X-ray sensors and dosimeters
Thapliyal, Himanshu. "Design, Synthesis and Test of Reversible Circuits for Emerging Nanotechnologies." Scholar Commons, 2011. http://scholarcommons.usf.edu/etd/3379.
Full textCastelló, Serrano Iván. "Design and applications for quantum-onion-multicode nanospheres and other luminescent semiconductor-derived nanocomposites." Doctoral thesis, Universitat Rovira i Virgili, 2013. http://hdl.handle.net/10803/119655.
Full textCAUSAPRUNO, GIOVANNI. "Architectural Solutions for NanoMagnet Logic." Doctoral thesis, Politecnico di Torino, 2016. http://hdl.handle.net/11583/2643285.
Full textGeszke-Moritz, Malgorzata. "Synthesis of stable and non-cadmium containing quantum dots conjugated with folic acid for imaging of cancer cells." Thesis, Vandoeuvre-les-Nancy, INPL, 2011. http://www.theses.fr/2011INPL066N/document.
Full textSemiconductor QDs are tiny light-emitting crystals, and are emerging as a new class of fluorescent labels for medicine and biology. The aim of this work was to develop a new class of non-toxic QDs probes with essential attributes such as water dispersibility, photostability, biocompatibility, high luminescence and possible excitation with low-energy visible light, using simple processing method. Such nanoprobes could be used for bio-imaging of cancer cells. In the performed studies, I focused on ZnS and ZnSe QDs as they are cadmium-free and might be excited biphotonically.The synthesis protocols of ZnS and ZnSe QDs doped with two ions such as Mn or Cu and stabilized by 3-mercaptopropionic acid or 1-thioglycerol were established, followed by NCs characterization (diameter, surface charge, photophysical properties, …) using analytical techniques such as spectrophotometry UV-vis, fluorimetry, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), dynamic light scattering (DLS), infra-red analysis (FT-IR), thin layer chromatography (TLC) and electron paramagnetic resonance (EPR). The cytotoxicity of synthesized bare and conjugated NPs was evaluated on cancer cell lines using MTT, XTT and ferrous oxidation-xylenol orange assay.Finally, chosen well fluorescent and weakly toxic types of as-prepared and characterized QDs were used for bio-imaging of cancer cells. In these experiments, FA-functionalized NCs were excited biphotonically. The performed experiments showed the potential of QDs as cancer cells fluorescent markers and that they accumulate around the cell nuclei
Bhave, Gauri Suresh. "Micro-patterning colloidal quantum dots based light sources for cellular array imaging." Thesis, 2014. http://hdl.handle.net/2152/26872.
Full texttext
Isaksen, Beth Claire. "Molecular quantum-dot cellular automata." 2003. http://etd.nd.edu/ETD-db/theses/available/etd-07012003-121454/.
Full textFrost, Sarah Elizabeth. "Memory architecture for quantum-dot cellular automata." 2005. http://etd.nd.edu/ETD-db/theses/available/etd-03212005-160059/.
Full textThesis directed by Peter Kogge for the Department of Computer Science and Engineering. "March 2005." Includes bibliographical references (leaves 129-133).
Kummamuru, Ravi Kiran. "Experimental studies on quantum-dot cellular automata devices." 2004. http://etd.nd.edu/ETD-db/theses/available/etd-04162004-163831/.
Full textThesis directed by Gregory L. Snider for the Department of Electrical Engineering. "April 2004." Includes bibliographical references (leaves 135-139).
Liu, Mo. "Robustness and power dissipation in quantum-dot cellular automata." 2006. http://etd.nd.edu/ETD-db/theses/available/etd-02212006-120033/.
Full text