Academic literature on the topic 'Quantum degeneracy; Bose-Einstein condensation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Quantum degeneracy; Bose-Einstein condensation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Quantum degeneracy; Bose-Einstein condensation"
Shlyapnikov, Gora V. "Quantum degeneracy and Bose–Einstein condensation in low-dimensional trapped gases." Comptes Rendus de l'Académie des Sciences - Series IV - Physics 2, no. 3 (April 2001): 407–17. http://dx.doi.org/10.1016/s1296-2147(01)01182-9.
Full textWang, Jinhua, Pan Nie, Xiaokang Li, Huakun Zuo, Benoît Fauqué, Zengwei Zhu, and Kamran Behnia. "Critical point for Bose–Einstein condensation of excitons in graphite." Proceedings of the National Academy of Sciences 117, no. 48 (November 16, 2020): 30215–19. http://dx.doi.org/10.1073/pnas.2012811117.
Full textDeng, Shu-Jin, Peng-Peng Diao, Qian-Li Yu, and Hai-Bin Wu. "All-Optical Production of Quantum Degeneracy and Molecular Bose-Einstein Condensation of 6 Li." Chinese Physics Letters 32, no. 5 (May 2015): 053401. http://dx.doi.org/10.1088/0256-307x/32/5/053401.
Full textSHLYAPNIKOV, G. V. "SUPERFLUID REGIMES IN DEGENERATE ATOMIC FERMI GASES." International Journal of Modern Physics B 20, no. 19 (July 30, 2006): 2739–54. http://dx.doi.org/10.1142/s0217979206035242.
Full textÖttl, Anton, Stephan Ritter, Michael Köhl, and Tilman Esslinger. "Hybrid apparatus for Bose-Einstein condensation and cavity quantum electrodynamics: Single atom detection in quantum degenerate gases." Review of Scientific Instruments 77, no. 6 (June 2006): 063118. http://dx.doi.org/10.1063/1.2216907.
Full textFUJITA, SHIGEJI, YOSHIYASU TAMURA, and AKIRA SUZUKI. "MICROSCOPIC THEORY OF THE QUANTUM HALL EFFECT." Modern Physics Letters B 15, no. 20 (August 30, 2001): 817–25. http://dx.doi.org/10.1142/s0217984901002610.
Full textZapf, Vivien, Marcelo Jaime, and C. D. Batista. "Bose-Einstein condensation in quantum magnets." Reviews of Modern Physics 86, no. 2 (May 15, 2014): 563–614. http://dx.doi.org/10.1103/revmodphys.86.563.
Full textAoki, Tosizumi. "Bose-Einstein Condensation in Quantum Lattice Model." Journal of the Physical Society of Japan 61, no. 2 (February 15, 1992): 750–51. http://dx.doi.org/10.1143/jpsj.61.750.
Full textIshikawa, Osamu. "Localized Bose–Einstein Condensation near Quantum Phase Transition." JPSJ News and Comments 5 (January 12, 2008): 01. http://dx.doi.org/10.7566/jpsjnc.5.01.
Full textZapf, Vivien, Marcelo Jaime, and C. D. Batista. "ChemInform Abstract: Bose-Einstein Condensation in Quantum Magnets." ChemInform 46, no. 9 (February 16, 2015): no. http://dx.doi.org/10.1002/chin.201509334.
Full textDissertations / Theses on the topic "Quantum degeneracy; Bose-Einstein condensation"
Martin, Jocelyn L. "Magnetic trapping and cooling in caesium." Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.361996.
Full textBerhane, Bereket H. "Quantum optical interactions in trapped degenerate atomic gases." Diss., Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/29891.
Full textDugrain, Vincent. "Metrology with trapped atoms on a chip using non-degenerate and degenerate quantum gases." Paris 6, 2012. http://www.theses.fr/2012PA066670.
Full textAtom trapping on chip opens new perspectives for time and frequency metrology and integrated atom interferometry. The TACC experiment (Trapped Atomic Clock on a Chip) was built to study the potential of degenerate and non-degenerate quantum gases for metrology and to develop new tools for atom manipulation. One of the aims is the demonstration of a secondary frequency standard with a stability of a few 10-13 at one second. This is the context of this thesis. We report on several metrology experiments carried out with thermal clouds or Bose-Einstein condensates. Firstly, we demonstrate a stability of 5. 8 x 10-13 at one second and characterize the limiting technical noise. We then present a study of the coherence of Bose-Einstein condensates and, in particular, the effect of interactions. The data is compared with a numerical model. Secondly, we introduce several tools for producing and manipulating atoms on a chip. We show the realization of an atomic microwave powermeter and assess the current limits of its performance. We then demonstrate that high-gradient microwave fields allow one to coherently manipulate the atoms’ external motion. Finally, we present and characterize a new device for high-repetition rate atom loading involving fast modulation of the rubidium pressure
Bedingham, Daniel John. "Quantum field theory and Bose Einstein condensation." Thesis, Imperial College London, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.249588.
Full textDunningham, Jacob Andrew. "Quantum phase of Bose-Einstein condensates." Thesis, University of Oxford, 2001. http://ora.ox.ac.uk/objects/uuid:b6cc8b74-753c-4b3e-ad5e-68bd7e32b652.
Full textVorberg, Daniel. "Generalized Bose-Einstein Condensation in Driven-dissipative Quantum Gases." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2018. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-234044.
Full textDie Bose-Einstein-Kondensation ist ein Quantenphänomen, bei dem eine makroskopische Zahl von Bosonen den tiefsten Quantenzustand besetzt. Die Teilchen kondensieren, wenn bei konstanter Temperatur die Teilchendichte einen kritischen Wert übersteigt. Da die Besetzungen von angeregten Zuständen nach der Bose-Einstein-Statistik begrenzt sind, bilden alle verbleibenden Teilchen ein Kondensat im Grundzustand. Diese Argumentation ist im thermischen Gleichgewicht gültig. In dieser Arbeit untersuchen wir, ob die Bose-Einstein-Kondensation in nicht wechselwirkenden Gasen fern des Gleichgewichtes überlebt. Diese Frage stellt sich beispielsweise in Floquet-Systemen, welche Energie mit einer thermischen Umgebung austauschen. In diesen zeitperiodisch getriebenen Systemen verteilen sich die Teilchen auf Floquet-Zustände, die bis auf einen Phasenfaktor zeitperiodischen Lösungen der Schrödinger-Gleichung. Die fehlende Definition eines Grundzustandes wirft die Frage nach der Existenz eines Bose-Kondensates auf. Wir finden eine Generalisierung der Bose-Kondensation in Form einer Selektion mehrerer Zustände. Die Besetzung in jedem selektierten Zustand ist proportional zur Gesamtteilchenzahl, während die Besetzung aller übrigen Zustände begrenzt bleibt. Wir beobachten diesen Effekt nicht nur in Floquet-Systemen, z.B. getriebenen quartischen Fallen, sondern auch in Systemen die an zwei Wärmebäder gekoppelt sind, wobei die Besetzung des einen invertiert ist. In vielen Fällen ist die Teilchenzahl in den selektierten Zuständen makroskopisch, sodass nach dem Penrose-Onsager Kriterium ein fragmentiertes Kondensat vorliegt. Die Wärmeleitfähigkeit des Systems kann durch den Wechsel zwischen einem und mehreren selektierten Zuständen kontrolliert werden. Die Anzahl der selektierten Zustände ist stets ungerade, außer im Falle von Feintuning. Wir beschreiben ein Kriterium, welches bestimmt, ob es nur einen selektierten Zustand (z.B. Bose-Kondensation) oder viele selektierte Zustände gibt. In offenen Systemen, die auch Teilchen mit der Umgebung austauschen, ist der stationäre Nichtgleichgewichtszustand durch ein Wechselspiel zwischen der (Teilchenzahl-erhaltenden) Intermodenkinetik und den (Teilchenzahl-ändernden) Pump- und Verlustprozessen bestimmt. Für eine Vielzahl an Modellsystemen zeigen wir folgendes typisches Verhalten mit steigender Pumpleistung: Zunächst ist kein Zustand selektiert. Die erste Schwelle tritt auf, wenn der Gewinn den Verlust in einer Mode ausgleicht und entspricht der klassischen Laserschwelle. Bei stärkerem Pumpen treten weitere Übergänge auf, an denen je ein einzelner Zustand entweder selektiert oder deselektiert wird. Schließlich ist die Selektion überraschenderweise unabhängig von der Charakteristik des Pumpens und der Verlustprozesse. Die Selektion ist vielmehr ausschließlich durch die Intermodenkinetik bestimmt und entspricht damit den oben beschriebenen geschlossenen Systemen. Ist die Kinetik durch ein thermisches Bad hervorgerufen, tritt wie im Gleichgewicht eine Grundzustands-Kondensation auf. Unsere Theorie ist in Übereinstimmung mit experimentellen Beobachtungen von Exziton-Polariton-Gasen in Mikrokavitäten. In einer Kooperation mit experimentellen Gruppen konnten wir den Modenwechsel in einem bimodalen Quantenpunkt-Mikrolaser erklären
Salmond, Grant Leonard. "Nonlinear dynamics of Bose-Einstein condensates : semiclassical and quantum /." St. Lucia, Qld, 2002. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe16406.pdf.
Full textBoţan, Vitalie. "Bose-Einstein Condensation of Magnetic Excitons in Semiconductor Quantum Wells." Doctoral thesis, Uppsala University, Department of Physics, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7112.
Full textIn this thesis regimes of quantum degeneracy of electrons and holes in semiconductor quantum wells in a strong magnetic field are studied theoretically. The coherent pairing of electrons and holes results in the formation of Bose-Einstein condensate of magnetic excitons in a single-particle state with wave vector K. We show that correlation effects due to coherent excitations drastically change the properties of excitonic gas, making possible the formation of a novel metastable state of dielectric liquid phase with positive compressibility consisting of condensed magnetoexcitons with finite momentum. On the other hand, virtual transitions to excited Landau levels cause a repulsive interaction between excitons with zero momentum, and the ground state of the system in this case is a Bose condensed gas of weakly repulsive excitons. We introduce explicitly the damping rate of the exciton level and show that three different phases can be realized in a single quantum well depending on the exciton density: excitonic dielectric liquid surrounded by weakly interacting gas of condensed excitons versus metallic electron-hole liquid. In the double quantum well system the phase transition from the excitonic dielectric liquid phase to the crystalline state of electrons and holes is predicted with the increase of the interwell separation and damping rate.
We used a framework of Green's function to investigate the collective elementary excitations of the system in the presence of Bose-Einstein condensate, introducing "anomalous" two-particle Green's functions and symmetry breaking terms into the Hamiltonian. The analytical solution of secular equation was obtained in the Hartree-Fock approximation and energy spectra were calculated. The Coulomb interactions in the system results in a multiple-branch structure of the collective excitations energy spectrum. Systematic classification of the branches is proposed, and the condition of the stability of the condensed excitonic phase is discussed.
Boţan, Vitalie. "Bose-Einstein condensation of magnetic excitons in semiconductor quantum wells /." Uppsala : Acta Universitatis Upsaliensis, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7112.
Full textFeng, Yinqi. "Quantum optical states and Bose-Einstein condensation : a dynamical group approach." Thesis, Open University, 2001. http://oro.open.ac.uk/54440/.
Full textBooks on the topic "Quantum degeneracy; Bose-Einstein condensation"
Henrik, Smith, ed. Bose-Einstein condensation in dilute gases. Cambridge, UK: Cambridge University Press, 2002.
Find full textHenrik, Smith, ed. Bose-Einstein condensation in dilute gases. 2nd ed. Cambridge: Cambridge University Press, 2008.
Find full textPethick, Christopher. Bose-Einstein condensation in dilute gases. Copenhagen: Nordita, 1997.
Find full textUniversity), Physics Summer School (13th 2000 Australian National. Bose-Einstein condensation: From atomic physics to quantum fluids : proceedings of the Thirteenth Physics Summer School, Canberra, Australia, 17-28 January 2000. Singapore: World Scientific, 2000.
Find full textTetsuro, Nikuni, and Zaremba Eugene 1946-, eds. Bose-condensed gases at finite temperatures. Cambridge: Cambridge University Press, 2009.
Find full textM, Savage Craig, and Das M. P, eds. Proceedings of the Thirteenth Physics Summer School: Bose-Einstein condensation : from atomic physics to quantum fluids : Canberra, Australia, 17-28 January 2000. Singapore: World Scientific, 2000.
Find full textRocío, Jáuregui-Renaud, Récamier-Angelini José, and Rosas-Ortiz Oscar, eds. Latin-American School of Physics, XXXVIII ELAF: Proceedings of the conference on Quantum Information and Quantum Cold Matter, México City, México, 27 August-7 September 2007. New York: American Institute of Physics, 2008.
Find full textBose, Satyendranath. Satyendra Nath Bose: His life and times : selected works (with commentary). Hackensack, N.J: World Scientific, 2009.
Find full textC, Wali K., ed. Satyendra Nath Bose: His life and times : selected works (with commentary). Hackensack, N.J: World Scientific, 2009.
Find full text(Editor), S. Martellucci, Arthur N. Chester (Editor), Alain Aspect (Editor), and Massimo Inguscio (Editor), eds. Bose-Einstein Condensates and Atom Lasers. Springer, 2000.
Find full textBook chapters on the topic "Quantum degeneracy; Bose-Einstein condensation"
Lee, T. D., and C. N. Yang. "Many-Body Problem in Quantum Statistical Mechanics. V. Degenerate Phase in Bose-Einstein Condensation." In Selected Papers, 629–52. Boston, MA: Birkhäuser Boston, 1986. http://dx.doi.org/10.1007/978-1-4612-5397-6_48.
Full textMeystre, Pierre. "Bose–Einstein Condensation." In Quantum Optics, 289–324. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76183-7_10.
Full textLeggett, Anthony J. "Bose-Einstein Condensation." In Compendium of Quantum Physics, 71–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-70626-7_21.
Full textGerbier, F., S. Richard, J. H. Thywissen, M. Hugbart, P. Bouyer, A. Aspect, I. Shvarchuck, et al. "B. Bose-Einstein Condensation and Fermi Degeneracy." In Interactions in Ultracold Gases, 407–43. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603417.ch16.
Full textPulé, J. V., A. F. Verbeure, and V. A. Zagrebnov. "Bose-Einstein Condensation and Superradiance." In Mathematical Physics of Quantum Mechanics, 259–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-34273-7_19.
Full textMüller, Eberhard E. "Bose-Einstein Condensation of Free Photons." In Fundamental Aspects of Quantum Theory, 439–40. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-5221-1_58.
Full textKirsten, Klaus. "Bose-Einstein Condensation under External Conditions." In Quantum Field Theory Under the Influence of External Conditions, 164. Wiesbaden: Vieweg+Teubner Verlag, 1996. http://dx.doi.org/10.1007/978-3-663-01204-7_29.
Full textPulé, J. V. "Bose-Einstein Condensation in Some Interacting Systems." In Fundamental Aspects of Quantum Theory, 247–52. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-5221-1_28.
Full textSeiringer, Robert. "Cold Quantum Gases and Bose–Einstein Condensation." In Lecture Notes in Mathematics, 55–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29511-9_2.
Full textScammell, Harley. "Bose-Einstein Condensation of Particles with Half-Integer Spin." In Interplay of Quantum and Statistical Fluctuations in Critical Quantum Matter, 125–35. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97532-0_9.
Full textConference papers on the topic "Quantum degeneracy; Bose-Einstein condensation"
Chin, Cheng, Selim Jochim, Markus Bartenstein, Alexander Altmeyer, Gerhard Hendl, Stefan Riedl, Johannes Hecker Denschlag, and Rudolf Grimm. "Bose-Einstein condensation of Li2 molecules." In International Quantum Electronics Conference. Washington, D.C.: OSA, 2004. http://dx.doi.org/10.1364/iqec.2004.imi3.
Full textBolte, J., and J. Kerner. "Bose-Einstein condensation on quantum graphs." In QMath12 – Mathematical Results in Quantum Mechanics. WORLD SCIENTIFIC, 2014. http://dx.doi.org/10.1142/9789814618144_0016.
Full textSilvera, Isaac F. "Bose Einstein condensation: Compress or expand?" In Symposium on quantum fluids and solids−1989. AIP, 1989. http://dx.doi.org/10.1063/1.38785.
Full textStan, Claudiu A., Martin W. Zwierlein, Christian H. Schunck, Sebastian M. F. Raupach, and Wolfgang Ketterle. "Observation of Bose-Einstein condensation of molecules." In International Quantum Electronics Conference. Washington, D.C.: OSA, 2004. http://dx.doi.org/10.1364/iqec.2004.imi4.
Full textWeber, T., J. Herbig, M. Mark, H. C. Nagerl, and R. Grimm. "Bose-Einstein condensation of optically trapped cesium." In Quantum Electronics and Laser Science (QELS). Postconference Digest. IEEE, 2003. http://dx.doi.org/10.1109/qels.2003.238276.
Full textLlano, M. de, Rocio R. Jauregui, Jose A. Recamier, and Oscar Rosas-Ortiz. "Generalized Bose-Einstein condensation in superconductivity and superfluidity." In LATIN-AMERICAN SCHOOL OF PHYSICS XXXVIII ELAF: Quantum Information and Quantum Cold Matter. AIP, 2008. http://dx.doi.org/10.1063/1.2907757.
Full textKasper, A., Ch von Hagen, M. Ruckel, St Schneider, Th Strassel, L. Feenstra, and J. Schmiedmayer. "Bose-Einstein condensation in an atom chip." In 2003 European Quantum Electronics Conference. EQEC 2003 (IEEE Cat No.03TH8665). IEEE, 2003. http://dx.doi.org/10.1109/eqec.2003.1314140.
Full textBagnato, V. S., K. M. F. Magalhães, J. A. Seman, E. A. L. Henn, E. R. F. Ramos, Rocio R. Jauregui, Jose A. Recamier, and Oscar Rosas-Ortiz. "Introduction to the Basic-Concepts of Bose-Einstein Condensation." In LATIN-AMERICAN SCHOOL OF PHYSICS XXXVIII ELAF: Quantum Information and Quantum Cold Matter. AIP, 2008. http://dx.doi.org/10.1063/1.2907761.
Full textDavis, K. B., M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle. "Bose-Einstein Condensation in a Gas of Sodium Atoms." In EQEC'96. 1996 European Quantum Electronic Conference. IEEE, 1996. http://dx.doi.org/10.1109/eqec.1996.561567.
Full textSarchi, Davide, and Vincenzo Savona. "Kinetics of quantum fluctuations in polariton Bose Einstein condensation." In PHYSICS OF SEMICONDUCTORS: 28th International Conference on the Physics of Semiconductors - ICPS 2006. AIP, 2007. http://dx.doi.org/10.1063/1.2729935.
Full textReports on the topic "Quantum degeneracy; Bose-Einstein condensation"
Zapf, Vivien. Bose-Einstein Condensation and Bose Glasses in an S = 1 Organo-metallic quantum magnet. Office of Scientific and Technical Information (OSTI), June 2012. http://dx.doi.org/10.2172/1042992.
Full text