Academic literature on the topic 'Quantum degeneracy; Bose-Einstein condensation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Quantum degeneracy; Bose-Einstein condensation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Quantum degeneracy; Bose-Einstein condensation"

1

Shlyapnikov, Gora V. "Quantum degeneracy and Bose–Einstein condensation in low-dimensional trapped gases." Comptes Rendus de l'Académie des Sciences - Series IV - Physics 2, no. 3 (April 2001): 407–17. http://dx.doi.org/10.1016/s1296-2147(01)01182-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Jinhua, Pan Nie, Xiaokang Li, Huakun Zuo, Benoît Fauqué, Zengwei Zhu, and Kamran Behnia. "Critical point for Bose–Einstein condensation of excitons in graphite." Proceedings of the National Academy of Sciences 117, no. 48 (November 16, 2020): 30215–19. http://dx.doi.org/10.1073/pnas.2012811117.

Full text
Abstract:
An exciton is an electron–hole pair bound by attractive Coulomb interaction. Short-lived excitons have been detected by a variety of experimental probes in numerous contexts. An excitonic insulator, a collective state of such excitons, has been more elusive. Here, thanks to Nernst measurements in pulsed magnetic fields, we show that in graphite there is a critical temperature (T = 9.2 K) and a critical magnetic field (B = 47 T) for Bose–Einstein condensation of excitons. At this critical field, hole and electron Landau subbands simultaneously cross the Fermi level and allow exciton formation. By quantifying the effective mass and the spatial separation of the excitons in the basal plane, we show that the degeneracy temperature of the excitonic fluid corresponds to this critical temperature. This identification would explain why the field-induced transition observed in graphite is not a universal feature of three-dimensional electron systems pushed beyond the quantum limit.
APA, Harvard, Vancouver, ISO, and other styles
3

Deng, Shu-Jin, Peng-Peng Diao, Qian-Li Yu, and Hai-Bin Wu. "All-Optical Production of Quantum Degeneracy and Molecular Bose-Einstein Condensation of 6 Li." Chinese Physics Letters 32, no. 5 (May 2015): 053401. http://dx.doi.org/10.1088/0256-307x/32/5/053401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

SHLYAPNIKOV, G. V. "SUPERFLUID REGIMES IN DEGENERATE ATOMIC FERMI GASES." International Journal of Modern Physics B 20, no. 19 (July 30, 2006): 2739–54. http://dx.doi.org/10.1142/s0217979206035242.

Full text
Abstract:
We give a brief overview of recent studies of quantum degenerate regimes in ultracold Fermi gases. The attention is focused on the regime of Bose-Einstein condensation of weakly bound molecules of fermionic atoms, formed at a large positive scattering length for the interspecies atom-atom interaction. We analyze remarkable collisional stability of these molecules and draw prospects for future studies.
APA, Harvard, Vancouver, ISO, and other styles
5

Öttl, Anton, Stephan Ritter, Michael Köhl, and Tilman Esslinger. "Hybrid apparatus for Bose-Einstein condensation and cavity quantum electrodynamics: Single atom detection in quantum degenerate gases." Review of Scientific Instruments 77, no. 6 (June 2006): 063118. http://dx.doi.org/10.1063/1.2216907.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

FUJITA, SHIGEJI, YOSHIYASU TAMURA, and AKIRA SUZUKI. "MICROSCOPIC THEORY OF THE QUANTUM HALL EFFECT." Modern Physics Letters B 15, no. 20 (August 30, 2001): 817–25. http://dx.doi.org/10.1142/s0217984901002610.

Full text
Abstract:
The phonon exchange between the electron and the elementary magnetic flux (fluxon) induces an attractive transition in the degenerate Landau states. This attraction bounds an electron–fluxon complex. The center-of-mass of the complex moves as a boson with a linear dispersion relation (∊ = cp). The 2D system of free massless bosons undergoes a Bose–Einstein condensation at k B T c = 1.954ℏcn1/2, where n is the boson density. For GaAs/AlGaAs, T c ~ 1 K at the principal Landau-level occupation ratio ν = 1, where the electron number equals the fluxon number. Below T c , there is an energy gap, which stabilizes the Hall resistivity plateau. The plateau value (j/N)(h/e2) at the fractional occupation ratio ν = N/j, for odd j, indicates that the composite boson containing an electron and j fluxons carries the fractional charge (magnitude) e/j due to the magnetic confinement.
APA, Harvard, Vancouver, ISO, and other styles
7

Zapf, Vivien, Marcelo Jaime, and C. D. Batista. "Bose-Einstein condensation in quantum magnets." Reviews of Modern Physics 86, no. 2 (May 15, 2014): 563–614. http://dx.doi.org/10.1103/revmodphys.86.563.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Aoki, Tosizumi. "Bose-Einstein Condensation in Quantum Lattice Model." Journal of the Physical Society of Japan 61, no. 2 (February 15, 1992): 750–51. http://dx.doi.org/10.1143/jpsj.61.750.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ishikawa, Osamu. "Localized Bose–Einstein Condensation near Quantum Phase Transition." JPSJ News and Comments 5 (January 12, 2008): 01. http://dx.doi.org/10.7566/jpsjnc.5.01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zapf, Vivien, Marcelo Jaime, and C. D. Batista. "ChemInform Abstract: Bose-Einstein Condensation in Quantum Magnets." ChemInform 46, no. 9 (February 16, 2015): no. http://dx.doi.org/10.1002/chin.201509334.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Quantum degeneracy; Bose-Einstein condensation"

1

Martin, Jocelyn L. "Magnetic trapping and cooling in caesium." Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.361996.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Berhane, Bereket H. "Quantum optical interactions in trapped degenerate atomic gases." Diss., Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/29891.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dugrain, Vincent. "Metrology with trapped atoms on a chip using non-degenerate and degenerate quantum gases." Paris 6, 2012. http://www.theses.fr/2012PA066670.

Full text
Abstract:
Le piégeage d’atomes sur puce ouvre de nouvelles possibilités pour la métrologie temps-fréquence et l’interférométrie atomique intégrée. L’expérience TACC (Trapped Atomic Clock on a Chip) a pour but d’étudier le potentiel des gaz quantiques, dégénérés ou non, pour la métrologie, et d’élaborer de nouveaux outils pour la manipulation des atomes. Elle vise notamment la réalisation d’un étalon secondaire de fréquence avec une stabilité de quelques 10-13 à une seconde. Cette thèse s’inscrit dans ce contexte. Nous y présentons les résultats de quelques expériences de métrologie réalisées avec des nuages thermiques ou des condensats de Bose-Einstein. Dans un premier temps nous démontrons une stabilité de 5. 8 x 10-13 à une seconde et caractérisons les bruits techniques limitant cette stabilité. Nous présentons ensuite une étude de la cohérence des condensats et en particulier l’effet des interactions. Les données sont comparées à un modèle numérique. Dans un deuxième temps nous présentons quelques outils développés pour la production et la manipulation d’atomes sur puce. Nous démontrons d’abord la réalisation d’un puissancemètre atomique pour la micro-onde et estimons les limites actuelles de ses performances. Nous démontrons ensuite que des champs micro-onde ayant des gradients élevés permettent la manipulation cohérente de l’état externe des atomes. Enfin nous présentons et caractérisons un nouveau dispositif pour la production de nuages d’atomes froids à haute cadence consistant en la modulation rapide de la pression de rubidium dans une cellule
Atom trapping on chip opens new perspectives for time and frequency metrology and integrated atom interferometry. The TACC experiment (Trapped Atomic Clock on a Chip) was built to study the potential of degenerate and non-degenerate quantum gases for metrology and to develop new tools for atom manipulation. One of the aims is the demonstration of a secondary frequency standard with a stability of a few 10-13 at one second. This is the context of this thesis. We report on several metrology experiments carried out with thermal clouds or Bose-Einstein condensates. Firstly, we demonstrate a stability of 5. 8 x 10-13 at one second and characterize the limiting technical noise. We then present a study of the coherence of Bose-Einstein condensates and, in particular, the effect of interactions. The data is compared with a numerical model. Secondly, we introduce several tools for producing and manipulating atoms on a chip. We show the realization of an atomic microwave powermeter and assess the current limits of its performance. We then demonstrate that high-gradient microwave fields allow one to coherently manipulate the atoms’ external motion. Finally, we present and characterize a new device for high-repetition rate atom loading involving fast modulation of the rubidium pressure
APA, Harvard, Vancouver, ISO, and other styles
4

Bedingham, Daniel John. "Quantum field theory and Bose Einstein condensation." Thesis, Imperial College London, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.249588.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dunningham, Jacob Andrew. "Quantum phase of Bose-Einstein condensates." Thesis, University of Oxford, 2001. http://ora.ox.ac.uk/objects/uuid:b6cc8b74-753c-4b3e-ad5e-68bd7e32b652.

Full text
Abstract:
The quantum phase of a Bose-Einstein condensate has long been a subject fraught with misunderstanding and confusion. In this thesis we provide a consis- tent description of this phenomenon and, in particular, discuss how phase may be defined, created, manipulated, and controlled. We begin by describing how it is possible to set up a reference condensate against which the phase of other condensates can be compared. This allows us to think of relative phases as if they were absolute and gives a clear and precise definition to 'the phase of a condensate'. A relative phase may also be established by coupling condensates and we show how this can be controlled. We then extend this model to explain how the phase along a chain of coupled condensates can lock naturally without the need for any measurements. The second part of the thesis deals primarily with the link between entangle- ment and phase. We show that, in general, the more entangled a state is, the better its phase resolution. This leads us to consider schemes by which maximally entangled states may be able to be created since these should give the best prac- tical advantages over their classical counterparts. We consider two such states: a number correlated pair of condensates and a Schrodinger cat state. Both schemes are shown to be remarkably robust to loss. A comparison of the merits of these two states, as the inputs to an interferom- eter, reveals very different behaviours. In particular, the number correlated state performs significantly better than the cat state in the presence of loss, which means that it might be useful in interferometry and frequency standard schemes where phase resolution is of the utmost importance. Finally, we propose a scheme for concentrating the entanglement between con- densates, which is an important step in quantum communication protocols. This, along with the ability to manipulate phase and entanglement, suggests that the future for condensates holds not only academic interest but great potential for practical applications.
APA, Harvard, Vancouver, ISO, and other styles
6

Vorberg, Daniel. "Generalized Bose-Einstein Condensation in Driven-dissipative Quantum Gases." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2018. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-234044.

Full text
Abstract:
Bose-Einstein condensation is a collective quantum phenomenon where a macroscopic number of bosons occupies the lowest quantum state. For fixed temperature, bosons condense above a critical particle density. This phenomenon is a consequence of the Bose-Einstein distribution which dictates that excited states can host only a finite number of particles so that all remaining particles must form a condensate in the ground state. This reasoning applies to thermal equilibrium. We investigate the fate of Bose condensation in nonisolated systems of noninteracting Bose gases driven far away from equilibrium. An example of such a driven-dissipative scenario is a Floquet system coupled to a heat bath. In these time-periodically driven systems, the particles are distributed among the Floquet states, which are the solutions of the Schrödinger equation that are time periodic up to a phase factor. The absence of the definition of a ground state in Floquet systems raises the question, whether Bose condensation survives far from equilibrium. We show that Bose condensation generalizes to an unambiguous selection of multiple states each acquiring a large occupation proportional to the total particle number. In contrast, the occupation numbers of nonselected states are bounded from above. We observe this phenomenon not only in various Floquet systems, i.a. time-periodically-driven quartic oscillators and tight-binding chains, but also in systems coupled to two baths where the population of one bath is inverted. In many cases, the occupation numbers of the selected states are macroscopic such that a fragmented condensation is formed according to the Penrose-Onsager criterion. We propose to control the heat conductivity through a chain by switching between a single and several selected states. Furthermore, the number of selected states is always odd except for fine-tuning. We provide a criterion, whether a single state (e.g., Bose condensation) or several states are selected. In open systems, which exchange also particles with their environment, the nonequilibrium steady state is determined by the interplay between the particle-number-conserving intermode kinetics and particle-number-changing pumping and loss processes. For a large class of model systems, we find the following generic sequence when increasing the pumping: For small pumping, no state is selected. The first threshold, where the stimulated emission from the gain medium exceeds the loss in a state, is equivalent to the classical lasing threshold. Due to the competition between gain, loss and intermode kinetics, further transitions may occur. At each transition, a single state becomes either selected or deselected. Counterintuitively, at sufficiently strong pumping, the set of selected states is independent of the details of the gain and loss. Instead, it is solely determined by the intermode kinetics like in closed systems. This implies equilibrium condensation when the intermode kinetics is caused by a thermal environment. These findings agree well with observations of exciton-polariton gases in microcavities. In a collaboration with experimentalists, we observe and explain the pump-power-driven mode switching in a bimodal quantum-dot micropillar cavity
Die Bose-Einstein-Kondensation ist ein Quantenphänomen, bei dem eine makroskopische Zahl von Bosonen den tiefsten Quantenzustand besetzt. Die Teilchen kondensieren, wenn bei konstanter Temperatur die Teilchendichte einen kritischen Wert übersteigt. Da die Besetzungen von angeregten Zuständen nach der Bose-Einstein-Statistik begrenzt sind, bilden alle verbleibenden Teilchen ein Kondensat im Grundzustand. Diese Argumentation ist im thermischen Gleichgewicht gültig. In dieser Arbeit untersuchen wir, ob die Bose-Einstein-Kondensation in nicht wechselwirkenden Gasen fern des Gleichgewichtes überlebt. Diese Frage stellt sich beispielsweise in Floquet-Systemen, welche Energie mit einer thermischen Umgebung austauschen. In diesen zeitperiodisch getriebenen Systemen verteilen sich die Teilchen auf Floquet-Zustände, die bis auf einen Phasenfaktor zeitperiodischen Lösungen der Schrödinger-Gleichung. Die fehlende Definition eines Grundzustandes wirft die Frage nach der Existenz eines Bose-Kondensates auf. Wir finden eine Generalisierung der Bose-Kondensation in Form einer Selektion mehrerer Zustände. Die Besetzung in jedem selektierten Zustand ist proportional zur Gesamtteilchenzahl, während die Besetzung aller übrigen Zustände begrenzt bleibt. Wir beobachten diesen Effekt nicht nur in Floquet-Systemen, z.B. getriebenen quartischen Fallen, sondern auch in Systemen die an zwei Wärmebäder gekoppelt sind, wobei die Besetzung des einen invertiert ist. In vielen Fällen ist die Teilchenzahl in den selektierten Zuständen makroskopisch, sodass nach dem Penrose-Onsager Kriterium ein fragmentiertes Kondensat vorliegt. Die Wärmeleitfähigkeit des Systems kann durch den Wechsel zwischen einem und mehreren selektierten Zuständen kontrolliert werden. Die Anzahl der selektierten Zustände ist stets ungerade, außer im Falle von Feintuning. Wir beschreiben ein Kriterium, welches bestimmt, ob es nur einen selektierten Zustand (z.B. Bose-Kondensation) oder viele selektierte Zustände gibt. In offenen Systemen, die auch Teilchen mit der Umgebung austauschen, ist der stationäre Nichtgleichgewichtszustand durch ein Wechselspiel zwischen der (Teilchenzahl-erhaltenden) Intermodenkinetik und den (Teilchenzahl-ändernden) Pump- und Verlustprozessen bestimmt. Für eine Vielzahl an Modellsystemen zeigen wir folgendes typisches Verhalten mit steigender Pumpleistung: Zunächst ist kein Zustand selektiert. Die erste Schwelle tritt auf, wenn der Gewinn den Verlust in einer Mode ausgleicht und entspricht der klassischen Laserschwelle. Bei stärkerem Pumpen treten weitere Übergänge auf, an denen je ein einzelner Zustand entweder selektiert oder deselektiert wird. Schließlich ist die Selektion überraschenderweise unabhängig von der Charakteristik des Pumpens und der Verlustprozesse. Die Selektion ist vielmehr ausschließlich durch die Intermodenkinetik bestimmt und entspricht damit den oben beschriebenen geschlossenen Systemen. Ist die Kinetik durch ein thermisches Bad hervorgerufen, tritt wie im Gleichgewicht eine Grundzustands-Kondensation auf. Unsere Theorie ist in Übereinstimmung mit experimentellen Beobachtungen von Exziton-Polariton-Gasen in Mikrokavitäten. In einer Kooperation mit experimentellen Gruppen konnten wir den Modenwechsel in einem bimodalen Quantenpunkt-Mikrolaser erklären
APA, Harvard, Vancouver, ISO, and other styles
7

Salmond, Grant Leonard. "Nonlinear dynamics of Bose-Einstein condensates : semiclassical and quantum /." St. Lucia, Qld, 2002. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe16406.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Boţan, Vitalie. "Bose-Einstein Condensation of Magnetic Excitons in Semiconductor Quantum Wells." Doctoral thesis, Uppsala University, Department of Physics, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7112.

Full text
Abstract:

In this thesis regimes of quantum degeneracy of electrons and holes in semiconductor quantum wells in a strong magnetic field are studied theoretically. The coherent pairing of electrons and holes results in the formation of Bose-Einstein condensate of magnetic excitons in a single-particle state with wave vector K. We show that correlation effects due to coherent excitations drastically change the properties of excitonic gas, making possible the formation of a novel metastable state of dielectric liquid phase with positive compressibility consisting of condensed magnetoexcitons with finite momentum. On the other hand, virtual transitions to excited Landau levels cause a repulsive interaction between excitons with zero momentum, and the ground state of the system in this case is a Bose condensed gas of weakly repulsive excitons. We introduce explicitly the damping rate of the exciton level and show that three different phases can be realized in a single quantum well depending on the exciton density: excitonic dielectric liquid surrounded by weakly interacting gas of condensed excitons versus metallic electron-hole liquid. In the double quantum well system the phase transition from the excitonic dielectric liquid phase to the crystalline state of electrons and holes is predicted with the increase of the interwell separation and damping rate.

We used a framework of Green's function to investigate the collective elementary excitations of the system in the presence of Bose-Einstein condensate, introducing "anomalous" two-particle Green's functions and symmetry breaking terms into the Hamiltonian. The analytical solution of secular equation was obtained in the Hartree-Fock approximation and energy spectra were calculated. The Coulomb interactions in the system results in a multiple-branch structure of the collective excitations energy spectrum. Systematic classification of the branches is proposed, and the condition of the stability of the condensed excitonic phase is discussed.

APA, Harvard, Vancouver, ISO, and other styles
9

Boţan, Vitalie. "Bose-Einstein condensation of magnetic excitons in semiconductor quantum wells /." Uppsala : Acta Universitatis Upsaliensis, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Feng, Yinqi. "Quantum optical states and Bose-Einstein condensation : a dynamical group approach." Thesis, Open University, 2001. http://oro.open.ac.uk/54440/.

Full text
Abstract:
The concept of coherent states for a quantum system has been generalized in many different ways. One elegant way is the dynamical group approach. The subject of this thesis is the physical application of some dynamical group methods in quantum optics and Bose-Einstein Condensation(BEC) and their use in generalizing some quantum optical states and BEC states. We start by generalizing squeezed coherent states to the displaced squeezed phase number states and studying the signal-to-quantum noise ratio for these states. Following a review of the properties of Kerr states and the basic theory of the deformation of the boson algebra, we present an algebraic approach to Kerr states and generalize them to the squeezed states of the q-parametrized harmonic oscillator. Using the eigenstates of a nonlinear density-dependent annihilation operator of the deformed boson algebra, we propose general time covariant coherent states for any time-independent quantum system. Using the ladder operator approach similar to that of binomial states, we construct interpolating number-coherent states, intermediate states which are generalizations of some fundamental states in quantum optics. Salient statistical properties and non-classical features of these interpolating numbercoherent states are investigated and the interaction with an atomic system in the framework of the Jaynes-Cummings model and the scheme to produce these states are also studied in detail. After briefly reviewing the realization of Bose-Einstein Condensates and relevant theoretical research using mean-field theory, we present a dynamical group approach to Bose-Einstein condensation and the atomic tunnelling between two condensates which interact via a minimal coupling term. First we consider the spectrum of one Bose-Einstein condensate and show that the mean-field dynamics is characterised by the semi-direct product of the 8U(1,1) and Heisenberg-Weyl groups. We then construct a generalized version of the BEC ground states and weakly excited states. It is shown that our states for BEC provide better fits to the experimental results. Then we investigate the tunnelling between the excitations in two condensates which interact via a minimal coupling term. The dynamics of the two interacting Bose systems is characterised by the 80(3,2) group, which leads to an exactly solvable model. Further we describe the dynamics of the tunnelling of the two coupled condensates in terms of the semi-direct product of 80(3,2) and two independent Heisenberg-Weyl groups. From this we obtain the energy spectrum and eigenstates for the two interacting Bose-Einstein condensates, as well as the Josephson current between the two coupled condensates.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Quantum degeneracy; Bose-Einstein condensation"

1

Henrik, Smith, ed. Bose-Einstein condensation in dilute gases. Cambridge, UK: Cambridge University Press, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Henrik, Smith, ed. Bose-Einstein condensation in dilute gases. 2nd ed. Cambridge: Cambridge University Press, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pethick, Christopher. Bose-Einstein condensation in dilute gases. Copenhagen: Nordita, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

University), Physics Summer School (13th 2000 Australian National. Bose-Einstein condensation: From atomic physics to quantum fluids : proceedings of the Thirteenth Physics Summer School, Canberra, Australia, 17-28 January 2000. Singapore: World Scientific, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tetsuro, Nikuni, and Zaremba Eugene 1946-, eds. Bose-condensed gases at finite temperatures. Cambridge: Cambridge University Press, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

M, Savage Craig, and Das M. P, eds. Proceedings of the Thirteenth Physics Summer School: Bose-Einstein condensation : from atomic physics to quantum fluids : Canberra, Australia, 17-28 January 2000. Singapore: World Scientific, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rocío, Jáuregui-Renaud, Récamier-Angelini José, and Rosas-Ortiz Oscar, eds. Latin-American School of Physics, XXXVIII ELAF: Proceedings of the conference on Quantum Information and Quantum Cold Matter, México City, México, 27 August-7 September 2007. New York: American Institute of Physics, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bose, Satyendranath. Satyendra Nath Bose: His life and times : selected works (with commentary). Hackensack, N.J: World Scientific, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

C, Wali K., ed. Satyendra Nath Bose: His life and times : selected works (with commentary). Hackensack, N.J: World Scientific, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

(Editor), S. Martellucci, Arthur N. Chester (Editor), Alain Aspect (Editor), and Massimo Inguscio (Editor), eds. Bose-Einstein Condensates and Atom Lasers. Springer, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Quantum degeneracy; Bose-Einstein condensation"

1

Lee, T. D., and C. N. Yang. "Many-Body Problem in Quantum Statistical Mechanics. V. Degenerate Phase in Bose-Einstein Condensation." In Selected Papers, 629–52. Boston, MA: Birkhäuser Boston, 1986. http://dx.doi.org/10.1007/978-1-4612-5397-6_48.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Meystre, Pierre. "Bose–Einstein Condensation." In Quantum Optics, 289–324. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76183-7_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Leggett, Anthony J. "Bose-Einstein Condensation." In Compendium of Quantum Physics, 71–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-70626-7_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gerbier, F., S. Richard, J. H. Thywissen, M. Hugbart, P. Bouyer, A. Aspect, I. Shvarchuck, et al. "B. Bose-Einstein Condensation and Fermi Degeneracy." In Interactions in Ultracold Gases, 407–43. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603417.ch16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pulé, J. V., A. F. Verbeure, and V. A. Zagrebnov. "Bose-Einstein Condensation and Superradiance." In Mathematical Physics of Quantum Mechanics, 259–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-34273-7_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Müller, Eberhard E. "Bose-Einstein Condensation of Free Photons." In Fundamental Aspects of Quantum Theory, 439–40. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-5221-1_58.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kirsten, Klaus. "Bose-Einstein Condensation under External Conditions." In Quantum Field Theory Under the Influence of External Conditions, 164. Wiesbaden: Vieweg+Teubner Verlag, 1996. http://dx.doi.org/10.1007/978-3-663-01204-7_29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pulé, J. V. "Bose-Einstein Condensation in Some Interacting Systems." In Fundamental Aspects of Quantum Theory, 247–52. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-5221-1_28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Seiringer, Robert. "Cold Quantum Gases and Bose–Einstein Condensation." In Lecture Notes in Mathematics, 55–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29511-9_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Scammell, Harley. "Bose-Einstein Condensation of Particles with Half-Integer Spin." In Interplay of Quantum and Statistical Fluctuations in Critical Quantum Matter, 125–35. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97532-0_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Quantum degeneracy; Bose-Einstein condensation"

1

Chin, Cheng, Selim Jochim, Markus Bartenstein, Alexander Altmeyer, Gerhard Hendl, Stefan Riedl, Johannes Hecker Denschlag, and Rudolf Grimm. "Bose-Einstein condensation of Li2 molecules." In International Quantum Electronics Conference. Washington, D.C.: OSA, 2004. http://dx.doi.org/10.1364/iqec.2004.imi3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bolte, J., and J. Kerner. "Bose-Einstein condensation on quantum graphs." In QMath12 – Mathematical Results in Quantum Mechanics. WORLD SCIENTIFIC, 2014. http://dx.doi.org/10.1142/9789814618144_0016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Silvera, Isaac F. "Bose Einstein condensation: Compress or expand?" In Symposium on quantum fluids and solids−1989. AIP, 1989. http://dx.doi.org/10.1063/1.38785.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Stan, Claudiu A., Martin W. Zwierlein, Christian H. Schunck, Sebastian M. F. Raupach, and Wolfgang Ketterle. "Observation of Bose-Einstein condensation of molecules." In International Quantum Electronics Conference. Washington, D.C.: OSA, 2004. http://dx.doi.org/10.1364/iqec.2004.imi4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Weber, T., J. Herbig, M. Mark, H. C. Nagerl, and R. Grimm. "Bose-Einstein condensation of optically trapped cesium." In Quantum Electronics and Laser Science (QELS). Postconference Digest. IEEE, 2003. http://dx.doi.org/10.1109/qels.2003.238276.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Llano, M. de, Rocio R. Jauregui, Jose A. Recamier, and Oscar Rosas-Ortiz. "Generalized Bose-Einstein condensation in superconductivity and superfluidity." In LATIN-AMERICAN SCHOOL OF PHYSICS XXXVIII ELAF: Quantum Information and Quantum Cold Matter. AIP, 2008. http://dx.doi.org/10.1063/1.2907757.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kasper, A., Ch von Hagen, M. Ruckel, St Schneider, Th Strassel, L. Feenstra, and J. Schmiedmayer. "Bose-Einstein condensation in an atom chip." In 2003 European Quantum Electronics Conference. EQEC 2003 (IEEE Cat No.03TH8665). IEEE, 2003. http://dx.doi.org/10.1109/eqec.2003.1314140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bagnato, V. S., K. M. F. Magalhães, J. A. Seman, E. A. L. Henn, E. R. F. Ramos, Rocio R. Jauregui, Jose A. Recamier, and Oscar Rosas-Ortiz. "Introduction to the Basic-Concepts of Bose-Einstein Condensation." In LATIN-AMERICAN SCHOOL OF PHYSICS XXXVIII ELAF: Quantum Information and Quantum Cold Matter. AIP, 2008. http://dx.doi.org/10.1063/1.2907761.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Davis, K. B., M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle. "Bose-Einstein Condensation in a Gas of Sodium Atoms." In EQEC'96. 1996 European Quantum Electronic Conference. IEEE, 1996. http://dx.doi.org/10.1109/eqec.1996.561567.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sarchi, Davide, and Vincenzo Savona. "Kinetics of quantum fluctuations in polariton Bose Einstein condensation." In PHYSICS OF SEMICONDUCTORS: 28th International Conference on the Physics of Semiconductors - ICPS 2006. AIP, 2007. http://dx.doi.org/10.1063/1.2729935.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Quantum degeneracy; Bose-Einstein condensation"

1

Zapf, Vivien. Bose-Einstein Condensation and Bose Glasses in an S = 1 Organo-metallic quantum magnet. Office of Scientific and Technical Information (OSTI), June 2012. http://dx.doi.org/10.2172/1042992.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography