Journal articles on the topic 'Quantum Confinement Effect (QCE)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Quantum Confinement Effect (QCE).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
RATH, S., A. K. DASH, S. N. SAHU, and S. NOZAKI. "QUANTUM CONFINEMENT EFFECT IN HgTe NANOCRYSTALS AND VISIBLE LUMINESCENCE." International Journal of Nanoscience 03, no. 03 (June 2004): 393–401. http://dx.doi.org/10.1142/s0219581x04002176.
Full textLiao, Lianxing, Kunhua Quan, Xiangshi Bin, Ruosheng Zeng, and Tao Lin. "Bandgap and Carrier Dynamic Controls in CsPbBr3 Nanocrystals Encapsulated in Polydimethylsiloxane." Crystals 11, no. 9 (September 17, 2021): 1132. http://dx.doi.org/10.3390/cryst11091132.
Full textFan, Libo, Hongwei Song, Haifeng Zhao, Guohui Pan, Lina Liu, Biao Dong, Fang Wang, et al. "CdS/Cyclohexylamine Inorganic–Organic Hybrid Semiconductor Nanofibers with Strong Quantum Confinement Effect." Journal of Nanoscience and Nanotechnology 8, no. 8 (August 1, 2008): 3914–20. http://dx.doi.org/10.1166/jnn.2008.18345.
Full textIqbal, Anwar, Usman Saidu, Farook Adam, Srimala Sreekantan, Normawati Jasni, and Mohammad Norazmi Ahmad. "The Effects of Zinc Oxide (ZnO) Quantum Dots (QDs) Embedment on the Physicochemical Properties and Photocatalytic Activity of Titanium Dioxide (TiO2) Nanoparticles." Journal of Physical Science 32, no. 2 (August 25, 2021): 71–85. http://dx.doi.org/10.21315/jps2021.32.2.6.
Full textShim, Jae Hyun, and Nam Hee Cho. "Photo- and Electroluminescence of Hydrogenated Nanocrystalline Si Prepared by Plasma Enhanced Chemical Vapor Deposition Techniques." Materials Science Forum 510-511 (March 2006): 958–61. http://dx.doi.org/10.4028/www.scientific.net/msf.510-511.958.
Full textCao, Yunqing, Ping Zhu, Dongke Li, Xianghua Zeng, and Dan Shan. "Size-Dependent and Enhanced Photovoltaic Performance of Solar Cells Based on Si Quantum Dots." Energies 13, no. 18 (September 16, 2020): 4845. http://dx.doi.org/10.3390/en13184845.
Full textFariborz, Amir H., and Renata Jora. "Examining a possible cascade effect in chiral symmetry breaking." Modern Physics Letters A 32, no. 02 (December 29, 2016): 1750008. http://dx.doi.org/10.1142/s0217732317500080.
Full textKuvshinov, V. I., and E. G. Bagashov. "Evolution of Colour in QCD and Informational Approach to Quantum Measurement." Nonlinear Phenomena in Complex Systems 22, no. 4 (December 10, 2019): 330–35. http://dx.doi.org/10.33581/1561-4085-2019-22-4-330-335.
Full textMir, Feroz A., Owais I. Mir, and Rayees A. Zargar. "Structural, Morphological, Vibrational, Thermal and Optical Properties of ZnS Quantum Dots in the Polymer Matrix." Current Alternative Energy 3, no. 1 (November 28, 2019): 50–58. http://dx.doi.org/10.2174/2405463103666190704160914.
Full textCetinel, A., N. Artunç, G. Sahin, and E. Tarhan. "Influence of applied current density on the nanostructural and light emitting properties of n-type porous silicon." International Journal of Modern Physics B 29, no. 15 (May 25, 2015): 1550093. http://dx.doi.org/10.1142/s0217979215500939.
Full textIqbal, Anwar, Usman Saidu, Srimala Sreekantan, Mohammad Norazmi Ahmad, Marzaini Rashid, Naser M. Ahmed, Wan Hazman Danial, and Lee D. Wilson. "Mesoporous TiO2 Implanted ZnO QDs for the Photodegradation of Tetracycline: Material Design, Structural Characterization and Photodegradation Mechanism." Catalysts 11, no. 10 (October 8, 2021): 1205. http://dx.doi.org/10.3390/catal11101205.
Full textAlrajhi, Adnan H., Naser M. Ahmed, Mohd Mahadi Halim, Abeer S. Altowyan, Mohamad Nurul Azmi, and Munirah A. Almessiere. "Distinct Optical and Structural (Nanoyarn and Nanomat-like Structure) Characteristics of Zinc Oxide Nanofilm Derived by Using Salvia officinalis Leaves Extract Made without and with PEO Polymer." Materials 16, no. 13 (June 21, 2023): 4510. http://dx.doi.org/10.3390/ma16134510.
Full textARNOLD, PETER. "QUARK-GLUON PLASMA AND THERMALIZATION." International Journal of Modern Physics E 16, no. 09 (October 2007): 2555–94. http://dx.doi.org/10.1142/s021830130700832x.
Full textCHANDOLA, H. C., and H. C. PANDEY. "DYONIC FLUX TUBE STRUCTURE OF NONPERTURBATIVE QCD VACUUM." International Journal of Modern Physics A 18, no. 09 (April 10, 2003): 1623–35. http://dx.doi.org/10.1142/s0217751x03014083.
Full textDiamantini, Maria Cristina, and Carlo A. Trugenberger. "Superinsulators: An Emergent Realisation of Confinement." Universe 7, no. 6 (June 17, 2021): 201. http://dx.doi.org/10.3390/universe7060201.
Full textUMNIKOV, A. YU, and F. C. KHANNA. "THE SPECTRUM AND CONFINEMENT FOR THE BETHE-SALPETER EQUATION." International Journal of Modern Physics A 11, no. 21 (August 20, 1996): 3935–55. http://dx.doi.org/10.1142/s0217751x9600184x.
Full textLadrem, Madjid Lakhdar Hamou, Mohammed Abdulmalek Abdulraheem Ahmed, Salah Cherif, Zainab Zaki Mohammed Alfull, and Mosleh M. Almarashi. "Detailed study of the QCD Equation of State of a colorless partonic plasma in finite volume." International Journal of Modern Physics A 34, no. 09 (March 30, 2019): 1950051. http://dx.doi.org/10.1142/s0217751x19500519.
Full textGibilisco, Marina. "The Influence of Quarks and Gluons Jets Coming from Primordial Black Holes on the Reionization of the Universe." International Journal of Modern Physics A 12, no. 23 (September 20, 1997): 4167–98. http://dx.doi.org/10.1142/s0217751x97002280.
Full textCreutz, Michael. "QCD beyond diagrams." International Journal of Modern Physics A 36, no. 21 (July 30, 2021): 2130012. http://dx.doi.org/10.1142/s0217751x2130012x.
Full textKuvshinov, Viatcheslav, Valery Shaparau, and Eugene Bagashov. "Interaction of quantum systems with environment in QCD." EPJ Web of Conferences 204 (2019): 01002. http://dx.doi.org/10.1051/epjconf/201920401002.
Full textXia, Jian-Bai, and K. W. Cheah. "Quantum confinement effect in thin quantum wires." Physical Review B 55, no. 23 (June 15, 1997): 15688–93. http://dx.doi.org/10.1103/physrevb.55.15688.
Full textChakravorty, D., S. Banerjee, and T. K. Kundu. "Quantum confinement effect in nanocomposites." Applied Surface Science 182, no. 3-4 (October 2001): 251–57. http://dx.doi.org/10.1016/s0169-4332(01)00441-x.
Full textBrodsky, Stanley J., and Robert Shrock. "Condensates in quantum chromodynamics and the cosmological constant." Proceedings of the National Academy of Sciences 108, no. 1 (December 15, 2010): 45–50. http://dx.doi.org/10.1073/pnas.1010113107.
Full textXia, Jian-Bai, and K. W. Cheah. "Quantum confinement effect in silicon quantum-well layers." Physical Review B 56, no. 23 (December 15, 1997): 14925–28. http://dx.doi.org/10.1103/physrevb.56.14925.
Full textJe, Koo-Chul, and Chang-Ho Cho. "Quantum Confinement Effect of Thermoelectric Properties." Journal of the Korean Physical Society 54, no. 1 (January 15, 2009): 105–8. http://dx.doi.org/10.3938/jkps.54.105.
Full textMercier, B., G. Ledoux, C. Dujardin, D. Nicolas, B. Masenelli, P. Mélinon, and G. Bergeret. "Quantum confinement effect on Gd2O3 clusters." Journal of Chemical Physics 126, no. 4 (January 28, 2007): 044507. http://dx.doi.org/10.1063/1.2431366.
Full textChellammal, S., and S. Manivannan. "Determination of Quantum Confinement Effect of Nanoparticles." Advanced Materials Research 1051 (October 2014): 17–20. http://dx.doi.org/10.4028/www.scientific.net/amr.1051.17.
Full textSorokin, Pavel B., Pavel V. Avramov, Leonid A. Chernozatonskii, Dmitri G. Fedorov, and Sergey G. Ovchinnikov. "Atypical Quantum Confinement Effect in Silicon Nanowires." Journal of Physical Chemistry A 112, no. 40 (October 9, 2008): 9955–64. http://dx.doi.org/10.1021/jp805069b.
Full textKurisu, Hiroki, Setsuo Yamamoto, Osamu Sueoka, and Mitsuru Matsuura. "Preparation and quantum confinement effect of superlattices." Solid State Communications 99, no. 8 (August 1996): 541–45. http://dx.doi.org/10.1016/0038-1098(96)00352-3.
Full textWang, Rongqiu, Jingjian Li, Yong Chen, Ming Tang, Yu Wang, Shengmin Cai, and Zhongfan Liu. "Quantum confinement effect in electroluminescent porous silicon." Science in China Series B: Chemistry 41, no. 4 (August 1998): 337–44. http://dx.doi.org/10.1007/bf02877811.
Full textThambidurai, M., N. Muthukumarasamy, S. Agilan, N. Murugan, S. Vasantha, R. Balasundaraprabhu, and T. S. Senthil. "Strong quantum confinement effect in nanocrystalline CdS." Journal of Materials Science 45, no. 12 (March 5, 2010): 3254–58. http://dx.doi.org/10.1007/s10853-010-4333-7.
Full textQiu, Ying Ning, Wei Sheng Lu, and Stephane Calvez. "Quantum Confinement Stark Effect of Different Gainnas Quantum Well Structures." Advanced Materials Research 773 (September 2013): 622–27. http://dx.doi.org/10.4028/www.scientific.net/amr.773.622.
Full textLo, Ikai, K. H. Lee, Li-Wei Tu, J. K. Tsai, W. C. Mitchel, R. C. Tu, and Y. K. Su. "Thermal effect on quantum confinement in ZnS0.06Se0.94/Zn0.8Cd0.2Se quantum wells." Solid State Communications 120, no. 4 (October 2001): 155–60. http://dx.doi.org/10.1016/s0038-1098(01)00369-6.
Full textKeiper, R., W. Wang, and I. P. Zvyagin. "Effect of Quantum confinement on impurity hopping in quantum wells." physica status solidi (b) 193, no. 1 (January 1, 1996): 113–18. http://dx.doi.org/10.1002/pssb.2221930111.
Full textFerry, David K., Josef Weinbub, Mihail Nedjalkov, and Siegfried Selberherr. "A review of quantum transport in field-effect transistors." Semiconductor Science and Technology 37, no. 4 (February 23, 2022): 043001. http://dx.doi.org/10.1088/1361-6641/ac4405.
Full textHai-Jun, Wang, and Geng Wen-Tong. "Quark confinement and the fractional quantum Hall effect." Chinese Physics C 32, no. 9 (September 2008): 705–9. http://dx.doi.org/10.1088/1674-1137/32/9/006.
Full textJun, Shen, Zhu Lei, Wang Jue, Li Yufen, and Wu Xiang. "Quantum Confinement Effect of Fullerenes in Silica Aerogel." Chinese Physics Letters 12, no. 11 (November 1995): 693–96. http://dx.doi.org/10.1088/0256-307x/12/11/014.
Full textArul, N. Sabari, D. Mangalaraj, Pao Chi Chen, N. Ponpandian, and C. Viswanathan. "Strong quantum confinement effect in nanocrystalline cerium oxide." Materials Letters 65, no. 17-18 (September 2011): 2635–38. http://dx.doi.org/10.1016/j.matlet.2011.05.022.
Full textXIAO, YANG, CHAOBIN HE, XUEHONG LU, and XINHAI ZHANG. "ORGANIC–INORGANIC HYBRID NANOPARTICLES WITH QUANTUM CONFINEMENT EFFECT." International Journal of Nanoscience 08, no. 01n02 (February 2009): 185–90. http://dx.doi.org/10.1142/s0219581x09005980.
Full textYang, Leon, Devon Reed, Kofi W. Adu, and Ana Laura Elias Arriaga. "Quantum Confinement Effect in the Absorption Spectra of Graphene Quantum Dots." MRS Advances 4, no. 3-4 (2019): 205–10. http://dx.doi.org/10.1557/adv.2019.18.
Full textKang, Kicheon, and B. I. Min. "Effect of quantum confinement on electron tunneling through a quantum dot." Physical Review B 55, no. 23 (June 15, 1997): 15412–15. http://dx.doi.org/10.1103/physrevb.55.15412.
Full textZhong, Guyue, Q. Xie, and Gang Xu. "Confinement Effect Driven Quantum Spin Hall Effect in Monolayer AuTe2Cl." SPIN 09, no. 04 (December 2019): 1940014. http://dx.doi.org/10.1142/s2010324719400149.
Full textLotin, A. A., O. A. Novodvorsky, L. S. Parshina, E. V. Khaydukov, O. D. Khramova, and V. Ya Panchenko. "The quantum confinement effect observed in the multiple quantum wells Mg0.27Zn0.73O/ZnO." Laser Physics 21, no. 3 (February 2, 2011): 582–87. http://dx.doi.org/10.1134/s1054660x11050215.
Full textDing, S. A., M. Ikeda, M. Fukuda, S. Miyazaki, and M. Hirose. "Quantum confinement effect in self-assembled, nanometer silicon dots." Applied Physics Letters 73, no. 26 (December 28, 1998): 3881–83. http://dx.doi.org/10.1063/1.122923.
Full textJang, Eue-Soon, Jun Young Bae, Jinkyoung Yoo, Won Il Park, Dong-Wook Kim, Gyu-Chul Yi, T. Yatsui, and M. Ohtsu. "Quantum confinement effect in ZnO∕Mg0.2Zn0.8O multishell nanorod heterostructures." Applied Physics Letters 88, no. 2 (January 9, 2006): 023102. http://dx.doi.org/10.1063/1.2162695.
Full textKumar, V., K. Saxena, and A. K. Shukla. "Size‐dependent photoluminescence in silicon nanostructures: quantum confinement effect." Micro & Nano Letters 8, no. 6 (June 2013): 311–14. http://dx.doi.org/10.1049/mnl.2012.0910.
Full textBanerjee, S., A. K. Maity, and D. Chakravorty. "Quantum confinement effect in heat treated silver oxide nanoparticles." Journal of Applied Physics 87, no. 12 (June 15, 2000): 8541–44. http://dx.doi.org/10.1063/1.373575.
Full textZhang, Depeng, Zhiyuan Zhang, Wanrun Jiang, Yi Gao, and Zhigang Wang. "Effect of confinement on water rotation via quantum tunnelling." Nanoscale 10, no. 39 (2018): 18622–26. http://dx.doi.org/10.1039/c8nr05137b.
Full textFeng, Sunqi, Dapeng Yu, Hongzhou Zhang, Zhigang Bai, Yu Ding, Qingling Hang, Yinghua Zou, and Jingjing Wang. "Growth mechanism and quantum confinement effect of silicon nanowires." Science in China Series A: Mathematics 42, no. 12 (December 1999): 1316–22. http://dx.doi.org/10.1007/bf02876033.
Full textRahmani, Meisam, Razali Ismail, M. T. Ahmadi, and M. H. Ghadiry. "Quantum confinement effect on trilayer graphene nanoribbon carrier concentration." Journal of Experimental Nanoscience 9, no. 1 (June 8, 2013): 51–63. http://dx.doi.org/10.1080/17458080.2013.794309.
Full text