Academic literature on the topic 'Quantum condensed matter'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Quantum condensed matter.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Quantum condensed matter"
Bramwell, Steven T., and Bernhard Keimer. "Neutron scattering from quantum condensed matter." Nature Materials 13, no. 8 (July 23, 2014): 763–67. http://dx.doi.org/10.1038/nmat4045.
Full textLaflorencie, Nicolas. "Quantum entanglement in condensed matter systems." Physics Reports 646 (August 2016): 1–59. http://dx.doi.org/10.1016/j.physrep.2016.06.008.
Full textD'Errico, C., S. Scaffidi Abbate, and G. Modugno. "Quantum phase slips: from condensed matter to ultracold quantum gases." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375, no. 2108 (October 30, 2017): 20160425. http://dx.doi.org/10.1098/rsta.2016.0425.
Full textBaranov, M. A., M. Dalmonte, G. Pupillo, and P. Zoller. "Condensed Matter Theory of Dipolar Quantum Gases." Chemical Reviews 112, no. 9 (August 9, 2012): 5012–61. http://dx.doi.org/10.1021/cr2003568.
Full textMiyashita, Seiji. "Quantum mechanical effects on condensed matter phenomena." Physica A: Statistical Mechanics and its Applications 281, no. 1-4 (June 2000): 420–31. http://dx.doi.org/10.1016/s0378-4371(00)00029-7.
Full textSchrieffer, J. R. "Novel quantum numbers in condensed matter physics." Current Applied Physics 4, no. 5 (August 2004): 465–72. http://dx.doi.org/10.1016/j.cap.2004.01.001.
Full textTsvelik, Alexi M., and Allan Macdonald. "Quantum Field Theory in Condensed Matter Physics." Physics Today 50, no. 2 (February 1997): 66. http://dx.doi.org/10.1063/1.881712.
Full textInoshita, T. "CONDENSED MATTER PHYSICS:Kondo Effect in Quantum Dots." Science 281, no. 5376 (July 24, 1998): 526–27. http://dx.doi.org/10.1126/science.281.5376.526.
Full textDovesi, Roberto, Alessandro Erba, Roberto Orlando, Claudio M. Zicovich-Wilson, Bartolomeo Civalleri, Lorenzo Maschio, Michel Rérat, et al. "Quantum-mechanical condensed matter simulations with CRYSTAL." Wiley Interdisciplinary Reviews: Computational Molecular Science 8, no. 4 (March 4, 2018): e1360. http://dx.doi.org/10.1002/wcms.1360.
Full textCHAPLINE, GEORGE. "QUANTUM PHASE TRANSITIONS AND EVENT HORIZONS: CONDENSED MATTER ANALOGIES." International Journal of Modern Physics B 20, no. 19 (July 30, 2006): 2647–50. http://dx.doi.org/10.1142/s0217979206035126.
Full textDissertations / Theses on the topic "Quantum condensed matter"
Zonzo, Giuseppe. "Quantum Information Theory in Condensed Matter Physics." Doctoral thesis, Universita degli studi di Salerno, 2017. http://hdl.handle.net/10556/2625.
Full textInthe“standard”Gizburg-Landauapproach,aphasetransitionisintimately connected to a local order parameter, that spontaneously breaks some symmetries. In addition to the “traditional” symmetry-breaking ordered phases, a complex quantum system exhibits exotic phases, without classical counterpart, that can be described, for example, by introducing non-local order parameters that preserve symmetries. In this scenario, this thesis aims to shed light on open problems, such as the localdistinguishabilitybetweengroundstatesofasymmetry-breakingordered phase and the classification of one dimensional quantum orders, in terms of entanglement measures, in systems for which the Gizburg-Landau approach fails. In particular, I briefly introduce the basic tools that allow to understand the nature of entangled states and to quantify non-classical correlations. Therefore, I analyze the conjecture for which the maximally symmetry-breaking ground states (MSBGSs) are the most classical ones, and thus the only ones selected in real-world situations, among all the ground states of a symmetry-breaking ordered phase. I make the conjecture quantitatively precise, by proving that the MSBGSs are the only ones that: i) minimize pairwise quantum correlations, as measured by the quantum discord; ii) are always local convertible, by only applying LOCC transformations; iii) minimize the residual tangle, satisfying at its minimum the monogamy of entanglement. Moreover,Ianalyzehowevolvesthedistinguishability,afterasuddenchange of the Hamiltonian parameters. I introduce a quantitative measure of distinguishability, in terms of the trace distance between two reduced density matrices. Therefore, in the framework of two integrable models that falls in two different classes of symmetries, i.e. XY models in a transverse magnetic field and the N-cluster Ising models, I prove that the maximum of the distinguishability shows a time-exponential decay. Hence, in the limit of diverging time, all the informations about the particular initial ground state disappear, even if a system is integrable. Far away from the Gizburg-Landau scenario, I analyze a family of fullyanalyticalsolvableonedimensionalspin-1/2models,namedtheN-clustermodels in a transverse magnetic field. Regardless of the cluster size N + 2, these modelsexhibitaquantumphasetransition,thatseparatesaparamagneticphase from a cluster one. The cluster phase coresponds to a nematic ordered phase or a symmetry-protected topological ordered one, for even or odd N respectively. Using the Jordan-Wigner transformations, it is possible to diagonalize these models and derive all their spin correlation functions, with which reconstruct their entanglement properties. In particular, I prove that these models have only a non-vanishing bipartite entanglement, as measured by the concurrence, between spins at the endpoints of the cluster, for a magnetic field strong enough. Moreover, I introduce the minimal set of nonlinear ground-states functionals to detect all 1-D quantum orders for systems of spin-1/2 and fermions. I show that the von Neumann entanglement entropy distinguishes a critical systemfromanoncriticalone,becauseofthelogarithmicdivergenceataquantum critical point. The Schmidt gap detect the disorder of a system , because it saturates to a constant value in a paramagnetic phase and goes to zero otherwise. The mutual information, between two subsystems macroscopically separated, identifiesthesymmetry-breakingorderedphases,becauseofitsdependenceon the order parameters. The topological order phases, instead, via their deeply non-locality, can be characterized by analyzing all three functionals. [edited by author]
In aggiunta alle tradizionali fasi ordinate con rottura spontanea di simmetria, ben descritte con un approccio alla Gizburg-Landau, dove una transizione di fase `e intimamente connessa alla rottura spontanea di qualche simmetria e ad un parametro d’ordine locale, un sistema quantistico presenta anche fasi esotiche,senzaanalogoclassico,chesonoperesempiocaratterizzatedaparametri d’ordine non locali, senza una necessaria rottura di simmetria. Partendo da questi presupposti, questa tesi si pone come obiettivo quello di fare luce su alcuni problemi ancora aperti, come la distinguibilit`a tra stati fondamentaliinsistemiquantisticiconrotturaspontaneadisimmetriaelaclassificazionedituttelefasipresentiinsistemiunidimensionalidispin-1/2efermioni, per i quali l’approccio alla Gizburg-Landau non fornisce una descrizione adeguata. Inparticolare,sid`aunaspiegazioneall’ipotesisecondolaqualeglistatifondamentali che rompono massimamente la simmetria sono quelli pi`u classici, e quindi selezionati dalla decoerenza dell’ambiente, tra tutti gli stati fondamentali,edenergeticamenteequivalenti,diunafaseordinataconrotturaspontanea di simmetria. Si dimostra, infatti, che gli stati che rompono massimamente la simmetria sono gli unici stati che soddisfano tre criteri di classicalit`a: i) minimizzano l’entanglement bipartito, come quantificato dalla discord; ii) sono gli uniciversocuituttiglialtristatifondamentalisonolocalmenteconvertibili,mediante LOCC; iii) minimizzano il tangle residuo, soddisfacendo al minimo la monogamia dell’entanglement. Viene analizzato, inoltre, come evolve la distinguibilit`a tra stati fondamentali, dopo un quench dei parametri Hamiltoniani. Dopo aver introdotto una misura quantitativa della distinguibilit`a, in termini della distanza tra due matrici densit`a ridotte, si dimostra, per due sistemi integrabili con diverse classi di simmetria, nel dettaglio il modello XY in campo magnetico e i modelli NclusterIsing,cheladistinguibilit`adecadeesponenzialmenteneltempoequindi, nel limite di tempi lunghi, tutte le informazioni sullo stato fondamentale di partenza si perdono, anche per sistemi integrabili, nei quali la termalizzazione non si verifica. LontanodalloscenarioGizburg-Landau,sianalizzaunafamigliadimodelli di spin-1/2 esattamente risolvibili, nel dettaglio i modelli N-cluster in campo magnetico, che mostrano una transizione tra una fase disordinata e una di tipo cluster, che pu`o essere nematica o topologica, rispettivamente per N pari o dispari. Usando le trasformazioni di Jordan-Wigner `e possibile diagonalizzare questi modelli, ricavare lo stato fondamentale, le funzioni di correlazione fermioniche e tutte le loro propriet`a di entanglement di. Si dimostra che questi modellinonhannoentanglementmultipartito,masoloentanglementbipartito, come misurato dalla concurrence, tra due spin alle estremit`a del cluster, per un campo magnetico sufficientemente intenso. Inoltre, sidimostrachel’entropiadivonNeumann,loSchmidtgapelamutualinformationrappresentanoilsetminimodifunzionalinonlinearidellamatrice densit`a ridotta, mediante le quali caratterizzare tutte le fasi presenti in sistemi unidimensionali di spin -1/2 e fermioni. In particolare, l’entropia di von Neumann caratterizza la criticalit`a del sistema, per la sua divergenza logaritmica al punto critico; lo Schmidt gap caratterizza il disordine di un sistema, perch´e satura ad un valore costante nelle fasi disordinate e va rapidamente a zero altrove; la mutual information cattura le fasi ordinate con rottura spontanea di simmetria, per le quali cio` e `e possibile definire un parametro d’ordine diverso da zero su un supporto finito. Le fasi topologiche, per via della loro natura fortemente non locale, necessitano di tutte e tre i funzionali per essere individuate. [a cura dell'autore]
XV n.s.
Gauger, E. M. "Applications of quantum coherence in condensed matter nanostructures." Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:fb792980-bfc4-4771-b5d5-b9ecc7d40cd8.
Full textBaggioli, Matteo. "Gravity, holography and applications to condensed matter." Doctoral thesis, Universitat Autònoma de Barcelona, 2016. http://hdl.handle.net/10803/395205.
Full textStrongly coupled physical systems along with their corresponding, and usually exotic, features are elusive and not suitable to be described by conventional and perturbative approaches, which in those cases are not able to provide a controllable and robust tool for computations. Nevertheless non perturbative effects and strongly correlated frameworks are ubiquitous in nature, expecially in Condensed Matter physics. The AdS/CFT correspondence, born from the excitement of ideas and efforts employed in finding out a possible description of Quantum Gravity, lead to a flurry of fresh air into the subject, introducing an unexpected and brandnew perspective for dealing with strongly coupled field theories. In its more general formulation, known as Gauge-Gravity duality, this setup accounts for an effective and efficient weapon to tackle those kind of problems using a dual gravitational description which turns out to be way easier than the original one. In the last years, a huge number of developments have been achieved in applying the duality towards modern and hot condensed matter misteries, such as the Strange Metals nature or the mechanism underlying the High-Tc Superconductivity.\\ Momentum relaxation is an ever-present and unavoidable ingredient of any realistic Condensed Matter system. In real-world materials the presence of a lattice, impurities or disorder forces momentum to dissipate and leads to relevant physical effects such as the finiteness of the DC transport properties, i.e. conductivities. Several open questions are connected to those quantities expecially in the limit of strong momentum relaxation where novel insulating states appear and unexpected quantum phase transitions between the latter and metallic states (MIT) arise.\\[0.2cm] The main purpose of this thesis is the introduction of momentum dissipation and its consequent effects into the framework of AdS/CMT, namely the applications of the Gauge-Gravity duality to Condensed Matter. \\ A convenient and effective way of breaking translational symmetry of the the dual quantum field theory is provided by Massive Gravity (MG) theories, which constitues a tractable and easy tool to adress several interesting questions in strongly coupled systems with momentum dissipation. Born to solve cosmological puzzles, MG can now be reconsidered under a completely new perspective and could become a useful framework for ''Real-world" phenomena and "low energy" applications. We consider generic massive gravity models embedded into asymptotically Anti de Sitter spacetime and we analyze them using holographic techniques.
Babadi, Mehrtash. "Non-equilibrium dynamics of artificial quantum matter." Thesis, Harvard University, 2013. http://dissertations.umi.com/gsas.harvard:11114.
Full textPhysics
Liu, Wensheng. "Applications of effective field theory to condensed matter /." Digital version accessible at:, 1999. http://wwwlib.umi.com/cr/utexas/main.
Full textKorkusinski, Marek. "Correlations in semiconductor quantum dots." Thesis, University of Ottawa (Canada), 2004. http://hdl.handle.net/10393/29128.
Full textGibb, Kevin. "The quantum confined Stark effect and Wannier Stark ladders in InxGa1-xAs quantum wells and superlattices." Thesis, University of Ottawa (Canada), 1992. http://hdl.handle.net/10393/7704.
Full textMorris, Richard. "Studies towards quantum magnonics." Thesis, University of Oxford, 2017. http://ora.ox.ac.uk/objects/uuid:89784b64-de31-457f-b9b2-54125c862632.
Full textEastmond, John F. G. "Numerical studies of two problems in condensed matter physics : quantum transport and quantum antiferromagnets." Thesis, University of Oxford, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.315716.
Full textFidkowski, Lukasz. "Singularity resolution in string theory and new quantum condensed matter phases /." May be available electronically:, 2007. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.
Full textBooks on the topic "Quantum condensed matter"
Inc, ebrary, ed. Condensed matter theories. Singapore: World Scientific Pub., 2009.
Find full textAccurate condensed-phase quantum chemistry. Boca Raton: Taylor & Francis, 2011.
Find full textManby, Frederick R., and Frederick R. Manby. Accurate condensed-phase quantum chemistry. Boca Raton: Taylor & Francis, 2011.
Find full textI͡U︡, Kagan, and Leggett A. J, eds. Quantum tunnelling in condensed media. Amsterdam: North-Holland, 1992.
Find full textAgarwala, Adhip. Excursions in Ill-Condensed Quantum Matter. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-21511-8.
Full textMusser, George. Emergence in Condensed Matter and Quantum Gravity. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-09895-6.
Full textNagaosa, Naoto. Quantum Field Theory in Condensed Matter Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03774-4.
Full textQuantum field theory in condensed matter physics. Cambridge: Cambridge University Press, 1995.
Find full textQuantum field theory in condensed matter physics. 2nd ed. Cambridge: Cambridge University Press, 2003.
Find full text1929-, Bassani G. F., Liedl G. L, and Wyder Peter 1934-, eds. Encyclopedia of condensed matter physics. Amsterdam: Elsevier, 2005.
Find full textBook chapters on the topic "Quantum condensed matter"
Silver, R. N. "Quantum Statistical Inference." In Condensed Matter Theories, 315–29. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-2934-7_27.
Full textAliaga, J., G. Crespo, and A. N. Proto. "Dissipative Evolutions in Quantum Mechanics." In Condensed Matter Theories, 317–25. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0605-4_33.
Full textLyo, S. K. "Multiple Scattering in Semiconductor Quantum-Wells." In Condensed Matter Physics, 98–102. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4612-4772-2_8.
Full textCanosa, N., R. Rossignoli, and A. Plastino. "Information Theory and Quantum Wave Functions." In Condensed Matter Theories, 69–77. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3352-8_7.
Full textBrown, R. G., and M. Ciftan. "Quantum Statistical Microdynamics and Critical Phenomena." In Condensed Matter Theories, 25–35. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3686-4_2.
Full textAguilera-Navarro, V. C. "Quantum Many-Body Systems: Orthogonal Coordinates." In Condensed Matter Theories, 309–15. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0605-4_32.
Full textProto, Araceli N. "Maximum Entropy Principle and Quantum Mechanics." In Condensed Matter Theories, 355–64. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0605-4_37.
Full textClark, John W., and Manfred L. Ristig. "Generalized Momentum Distributions of Quantum Fluids." In Condensed Matter Theories, 47–60. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0605-4_6.
Full textSolís, M. A., R. Guardiola, and M. de Llano. "Quantum Thermodynamic Perturbation Theory for Fermions." In Condensed Matter Theories, 215–26. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-2934-7_20.
Full textFortes, M., M. de Llano, and J. del Río. "Hard Core Square Well Quantum Matter." In Condensed Matter Theories, 139–52. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4615-6707-3_14.
Full textConference papers on the topic "Quantum condensed matter"
Doll, J. D., and J. E. Gubernatis. "Quantum Simulations of Condensed Matter Phenomena." In International Workshop on Quantum Simulations of Condensed Matter Phenomena. WORLD SCIENTIFIC, 1989. http://dx.doi.org/10.1142/9789814541022.
Full textShimano, Ryo. "Terahertz Frequency Magnetoelectric Phenomena in Condensed Matter." In Quantum Electronics and Laser Science Conference. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/qels.2011.qwd5.
Full textRandjbar-Daemi, S., and Yu Lu. "Quantum Field Theory and Condensed Matter Physics." In Fourth Trieste Conference. WORLD SCIENTIFIC, 1994. http://dx.doi.org/10.1142/9789814534826.
Full textHalperin, Betrand. "On the Quantum Theory of Condensed Matter." In Proceedings of the 24th Solvay Conference on Physics. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814304474_0001.
Full textBüttiker, M. "The quantum Hall effect in open conductors." In Frontiers in condensed matter theory. AIP, 1990. http://dx.doi.org/10.1063/1.39729.
Full textAngelakis, D. G. "Photonic Quantum Simulators: Mimicking Condensed Matter Physics Using Photons." In International Quantum Electronics Conference. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/iqec.2011.i1103.
Full textImada, Masatoshi. "Tools for Studying Quantum Emergence near Phase Transitions." In HIGHLIGHTS IN CONDENSED MATTER PHYSICS. AIP, 2003. http://dx.doi.org/10.1063/1.1639578.
Full textKhalatnikov, I. M. "Hydrodynamics of classical and quantum liquids with free surfaces." In Frontiers in condensed matter theory. AIP, 1990. http://dx.doi.org/10.1063/1.39720.
Full textStone, A. Douglas, A. Szafer, P. L. McEuen, and J. K. Jain. "Understanding the quantum Hall effect using the s-matrix approach." In Frontiers in condensed matter theory. AIP, 1990. http://dx.doi.org/10.1063/1.39736.
Full textAnderson, P. W., and Y. Ren. "The normal state of high Tc superconductors: A new quantum liquid." In Frontiers in condensed matter theory. AIP, 1990. http://dx.doi.org/10.1063/1.39744.
Full textReports on the topic "Quantum condensed matter"
Privman, Vladimr. Quantum Computing in Condensed Matter Systems. Fort Belvoir, VA: Defense Technical Information Center, April 1997. http://dx.doi.org/10.21236/ada327465.
Full textPrivman, Vladimir, and Lawrence S. Schulman. Quantum Mechanics of Computing in Condensed Matter Systems. Fort Belvoir, VA: Defense Technical Information Center, April 1998. http://dx.doi.org/10.21236/ada345671.
Full textGreiner, Markus. Quantum Simulations of Condensed Matter Systems Using Ultra-Cold Atomic Gases. Fort Belvoir, VA: Defense Technical Information Center, March 2013. http://dx.doi.org/10.21236/ada583520.
Full text