Academic literature on the topic 'Quantum Computational Timelock, QCT'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Quantum Computational Timelock, QCT.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Quantum Computational Timelock, QCT":

1

LIPING, JU, and LU RUIFENG. "COMPARATIVE STUDY OF REACTION RATE CONSTANTS FOR THE NH3 + H → NH2 + H2 REACTION WITH GLOBE DYNAMICS AND TRANSITION STATE THEORIES." Journal of Theoretical and Computational Chemistry 08, no. 06 (December 2009): 1227–33. http://dx.doi.org/10.1142/s0219633609005325.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The nine-dimension quasi-classical trajectory (QCT) calculations have been carried out for the title reaction with a global potential energy surface (PES) constructed by Corchado and Espinosa-García (J Chem Phys106:4013, 1997). The detailed dynamics calculations cover the specific collision energies falling in the range of 0.62–3.04 eV, which are sufficient to fit the calculated reactive cross-sections into a barrier-type excitation function and to obtain the thermal rate constants. The present QCT rate constants are in good agreement with the recent quantum dynamics (QD) results, both of which are much lower than that of the previous variational transition state theory (VTST).
2

DEFAZIO, PAOLO, and CARLO PETRONGOLO. "DYNAMICS OF THE N(2D)+H2 REACTION ON THE $\tilde{X}^2 A^{\prime\prime}$ SURFACE, PROPAGATING REAL WAVE PACKETS WITH AN ARCCOS MAPPING OF THE HAMILTONIAN." Journal of Theoretical and Computational Chemistry 02, no. 04 (December 2003): 547–51. http://dx.doi.org/10.1142/s0219633603000732.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
We have investigated the dynamics of the title reaction with the Gray and Balint-Kurti approach, which propagates real wave packets (WP) under an arccos mapping of a scaled and shifted Hamiltonian. We have considered H 2 rotational quanta j=0 and 1 and obtained reaction probabilities using reactant coordinates and the flux analysis. We have calculated accurate reaction probabilities for total angular momentum quantum number J=0, centrifugal-sudden probabilities for J>0, cross sections, and the room temperature rate constant. The present cross sections are in good agreement with previous quasiclassical trajectory (QCT) results and the theoretical rate constant compares rather well with that observed. WP snapshots show that the reaction occurs via a C2v insertion mechanism, confirming previous QCT calculations.
3

JI, LIN-BO, TING-XIAN XIE, and HONG-YAN WANG. "INVESTIGATION OF THE EXCHANGE REACTION H + H′S → HS + H′ ON THE 1A′ STATE POTENTIAL ENERGY SURFACE." Journal of Theoretical and Computational Chemistry 12, no. 04 (June 2013): 1350030. http://dx.doi.org/10.1142/s0219633613500302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The quantum time dependent wave packet (TDWP) and quasiclassical trajectory (QCT) calculations were carried out to study the exchange reaction H(2S) + H′S(2Π) → HS(2Π) + H′(2S) on the 1A′ potential energy surface (PES). The integral cross sections of the H + H′S (v = j = 0) → HS + H′ reaction calculated by the two methods were presented. The results reveal that the integral cross sections (ICS) decrease with the collision energy increasing. The result of the QCT calculations is reasonably consistent with the time-dependent wave packet. Moreover, the differential cross sections (DCS) were calculated by the QCT method at the four different collision energies, which display a forward–backward symmetry. A long-lifetime H2S intermediate complex of the exchange reaction was found according to the trajectories. In the stereodynamics investigation, the polar and dihedral angle distribution functions were calculated, which have the distinct oscillations. The oscillations could be attributed to the deep well on the 1A′ PES. However, based on the polar-angle and dihedral angle distribution functions, it could be predicted that the main product rotational angular momentum preferentially point to the positive or negative direction of y-axes.
4

YUE, XIAN-FANG, JIE CHENG, and HONG ZHANG. "QUASI-CLASSICAL TRAJECTORY STUDY OF THE REACTIONS N(2D) WITH H2, D2, AND HD." Journal of Theoretical and Computational Chemistry 09, no. 05 (October 2010): 919–24. http://dx.doi.org/10.1142/s0219633610006080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Quasi-classical trajectory (QCT) calculations are carried out for the title reactions on the potential energy surface (PES) of Ho et al.1 Our calculated integral cross-section values have been compared with the recent two quantum mechanics (QM) ones: they are close to those of one QM calculation in the high collision energy range, but they approach to another one in the low collision energy range. The product rotational alignments 〈P2 (J' ⋅ K)〉 have also been calculated.
5

Varandas, A. J. C. "Extrapolation in quantum chemistry: Insights on energetics and reaction dynamics." Journal of Theoretical and Computational Chemistry 19, no. 07 (September 2, 2020): 2030001. http://dx.doi.org/10.1142/s0219633620300013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Since there is no exact solution for problems in physics and chemistry, extrapolation methods may assume a key role in quantitative quantum chemistry. Two topics where it bears considerable impact are addressed, both at the heart of computational quantum chemistry: electronic structure and reaction dynamics. In the first, the problem of extrapolating the energy obtained by solving the electronic Schrödinger equation to the limit of the complete one-electron basis set is addressed. With the uniform-singlet-and-triplet-extrapolation (USTE) scheme at the focal point, the emphasis is on recent updates covering from the energy itself to other molecular properties. The second topic refers to extrapolation of quantum mechanical reactive scattering probabilities from zero total angular momentum to any of the values that it may assume when running quasiclassical trajectories, QCT/QM-[Formula: see text]J. With the extrapolation guided in both cases by physically motivated asymptotic theories, realism is seeked by avoiding unsecure jumps into the unknown. Although, mostly review oriented, a few issues are addressed for the first time here and there. Prospects for future work conclude the overview.
6

YANG, HERUN, ZUOYE LIU, SHAOHUA SUN, LU LI, HONGCHUAN DU, and BITAO HU. "QUASI-CLASSICAL STUDY OF STEREO-DYNAMICS FOR THE REACTION C + CH → C2 + H ON THE 12A′ POTENTIAL ENERGY SURFACE." Journal of Theoretical and Computational Chemistry 10, no. 01 (February 2011): 75–91. http://dx.doi.org/10.1142/s0219633611006323.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The quasi-classical trajectory (QCT) method and the 12A′ potential energy surface (PES) [Boggio-Pasqua et al., Phys Chem Chem Phys2:1693, 2000] have been employed to study the stereo-dynamics of the reaction C + CH (v = 0, j) → C2 + H at different collision energies over the range of 0.01–0.6 eV and for different rotational quantum number j = 0 - 3. The reactive total cross section with initial revibrational state of v = 0 and j = 0 as a function of collision energy is presented and compared with the quantum mechanics results. The forward-backward asymmetry phenomenon has been found in the angular distribution of the products. The calculated distribution of P(θr) indicates a strong product alignment perpendicular to k, but this kind of product alignment is found to be rather insensitive to the collision energy. The calculated distribution of P(ϕr) revealed that at low collision energy the products tend to be oriented along the negative direction of the y-axis, while at high collision energy, this product orientation tends to be pointed to the positive direction of the y-axis. Such product orientation tends generally to become stronger with the increase of collision energy. Further, product polarization (i.e. orientation and alignment) becomes weak with high rotational excitation of the reagent CH molecule.
7

Mokhtari, Majid, Samane Khoshbakht, Kobra Ziyaei, Mohammad Esmaeil Akbari, and Sayyed Sajjad Moravveji. "New classifications for quantum bioinformatics: Q-bioinformatics, QCt-bioinformatics, QCg-bioinformatics, and QCr-bioinformatics." Briefings in Bioinformatics 25, no. 2 (January 22, 2024). http://dx.doi.org/10.1093/bib/bbae074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Abstract Bioinformatics has revolutionized biology and medicine by using computational methods to analyze and interpret biological data. Quantum mechanics has recently emerged as a promising tool for the analysis of biological systems, leading to the development of quantum bioinformatics. This new field employs the principles of quantum mechanics, quantum algorithms, and quantum computing to solve complex problems in molecular biology, drug design, and protein folding. However, the intersection of bioinformatics, biology, and quantum mechanics presents unique challenges. One significant challenge is the possibility of confusion among scientists between quantum bioinformatics and quantum biology, which have similar goals and concepts. Additionally, the diverse calculations in each field make it difficult to establish boundaries and identify purely quantum effects from other factors that may affect biological processes. This review provides an overview of the concepts of quantum biology and quantum mechanics and their intersection in quantum bioinformatics. We examine the challenges and unique features of this field and propose a classification of quantum bioinformatics to promote interdisciplinary collaboration and accelerate progress. By unlocking the full potential of quantum bioinformatics, this review aims to contribute to our understanding of quantum mechanics in biological systems.
8

Popelier, Paul L. A. "Non-covalent interactions from a Quantum Chemical Topology perspective." Journal of Molecular Modeling 28, no. 9 (August 25, 2022). http://dx.doi.org/10.1007/s00894-022-05188-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Abstract About half a century after its little-known beginnings, the quantum topological approach called QTAIM has grown into a widespread, but still not mainstream, methodology of interpretational quantum chemistry. Although often confused in textbooks with yet another population analysis, be it perhaps an elegant but somewhat esoteric one, QTAIM has been enriched with about a dozen other research areas sharing its main mathematical language, such as Interacting Quantum Atoms (IQA) or Electron Localisation Function (ELF), to form an overarching approach called Quantum Chemical Topology (QCT). Instead of reviewing the latter’s role in understanding non-covalent interactions, we propose a number of ideas emerging from the full consequences of the space-filling nature of topological atoms, and discuss how they (will) impact on interatomic interactions, including non-covalent ones. The architecture of a force field called FFLUX, which is based on these ideas, is outlined. A new method called Relative Energy Gradient (REG) is put forward, which is able, by computation, to detect which fragments of a given molecular assembly govern the energetic behaviour of this whole assembly. This method can offer insight into the typical balance of competing atomic energies both in covalent and non-covalent case studies. A brief discussion on so-called bond critical points is given, highlighting concerns about their meaning, mainly in the arena of non-covalent interactions.

Dissertations / Theses on the topic "Quantum Computational Timelock, QCT":

1

Vyas, Nilesh. "Quantum cryptography in a hybrid security model." Electronic Thesis or Diss., Institut polytechnique de Paris, 2021. http://www.theses.fr/2021IPPAT049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
L'extension des fonctionnalités et le dépassement des limitations de performances de QKD nécessitent soit des répéteurs quantiques, soit de nouveaux modèles de sécurité. En étudiant cette dernière option, nous introduisons le modèle de sécurité Quantum Computational Timelock (QCT), en supposant que le cryptage sécurisé informatiquement ne peut être rompu qu'après un temps beaucoup plus long que le temps de cohérence des mémoires quantiques disponibles. Ces deux hypothèses, à savoir la sécurité informatique à court terme et le stockage quantique bruité, ont jusqu'à présent déjà été prises en compte en cryptographie quantique, mais seulement de manière disjointe. Une limite inférieure pratique du temps, pour laquelle le cryptage est sécurisé du point de vue informatique, peut être déduite de la sécurité à long terme supposée du schéma de cryptage AES256 (30 ans) et de la valeur du temps de cohérence dans les démonstrations expérimentales de stockage puis de récupération de quantum optiquement codé. l'information, au niveau d'un seul photon, va de quelques nanosecondes à quelques microsecondes. Compte tenu du grand écart entre la borne supérieure du temps de cohérence et la borne inférieure du temps de sécurité de calcul d'un schéma de chiffrement, la validité du modèle de sécurité QCT peut être supposée avec une très grande confiance aujourd'hui et laisse également une marge considérable pour sa validité dans le futur. En utilisant le modèle de sécurité QCT, nous proposons un protocole d'accord de clé explicite à dimension d que nous appelons MUB-Quantum Computational Timelock (MUB-QCT), où un bit est codé sur un état qudit en utilisant un ensemble complet de bases mutuellement impartiales (MUB ) et une famille de permutations indépendantes par paires. La sécurité est prouvée en montrant que la borne supérieure sur les échelles d'information d'Eve est O(1=d). Nous montrons que MUB-QCT offre : une haute résilience aux erreurs (jusqu'à 50 % pour les grands d) avec des exigences matérielles fixes ; La sécurité MDI car la sécurité est indépendante de la surveillance des canaux et ne nécessite pas de faire confiance aux appareils de mesure. Nous prouvons également la sécurité du protocole MUB-QCT, avec plusieurs photons par utilisation de canal, contre les attaques non adaptatives, en particulier la mesure MUB proactive où eve mesure chaque copie dans un MUB différent suivi d'un décodage post-mesure. Nous prouvons que le protocole MUB-QCT permet une distribution sécurisée des clés avec des états d'entrée contenant jusqu'à O(d) photons, ce qui implique une amélioration significative des performances, caractérisée par une multiplication O(d) du taux de clé et une augmentation significative de la distance accessible. Ces résultats illustrent la puissance du modèle de sécurité QCT pour augmenter les performances de la cryptographie quantique tout en gardant un net avantage de sécurité par rapport à la cryptographie classique
Extending the functionality and overcoming the performance limitation of QKD requires either quantum repeaters or new security models. Investigating the latter option, we introduce the Quantum Computational Timelock (QCT) security model, assuming that computationally secure encryption may only be broken after time much longer than the coherence time of available quantum memories. These two assumptions, namely short-term computational security and noisy quantum storage, have so far already been considered in quantum cryptography, yet only disjointly. A practical lower bound on time, for which encryption is computationally secure, can be inferred from assumed long-term security of the AES256 encryption scheme (30 years) and the value of coherence time in experimental demonstrations of storage and then retrieval of optically encoded quantum information, at single-photon level range from a few nanoseconds to microseconds. Given the large gap between the upper bound on coherence time and lower bound on computational security time of an encryption scheme, the validity of the QCT security model can be assumed with a very high confidence today and also leaves a considerable margin for its validity in the future. Using the QCT security model, we propose an explicit d-dimensional key agreement protocol that we call MUB-Quantum Computational Timelock (MUB-QCT), where a bit is encoded on a qudit state using a full set of mutually unbiased bases (MUBs) and a family of pair-wise independent permutations. Security is proved by showing that upper bound on Eve's information scales as O(1=d). We show MUB-QCT offers: high resilience to error (up to 50% for large d) with fixed hardware requirements; MDI security as security is independent of channel monitoring and does not require to trust measurement devices. We also prove the security of the MUB-QCT protocol, with multiple photons per channel use, against non-adaptive attacks, in particular, proactive MUB measurement where eve measures each copy in a different MUB followed by post-measurement decoding. We prove that the MUB-QCT protocol allows secure key distribution with input states containing up to O(d) photons which implies a significant performance boost, characterized by an O(d) multiplication of key rate and a significant increase in the reachable distance. These results illustrate the power of the QCT security model to boost the performance of quantum cryptography while keeping a clear security advantage over classical cryptography

To the bibliography