Academic literature on the topic 'Quantum computation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Quantum computation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Quantum computation"

1

Raussendorf, Robert. "Cohomological framework for contextual quantum computations." quantum Information and Computation 19, no. 13&14 (November 2019): 1141–70. http://dx.doi.org/10.26421/qic19.13-14-4.

Full text
Abstract:
We describe a cohomological framework for measurement-based quantum computation in which symmetry plays a central role. Therein, the essential information about the computation is contained in either of two topological invariants, namely two cohomology groups. One of them applies only to deterministic quantum computations, and the other to general probabilistic ones. Those invariants characterize the computational output, and at the same time witness quantumness in the form of contextuality. In result, they give rise to fundamental algebraic structures underlying quantum computation.
APA, Harvard, Vancouver, ISO, and other styles
2

SADAKANE, Kunihiko, Noriko SUGAWARA, and Takeshi TOKUYAMA. "Quantum Computation in Computational Geometry." Interdisciplinary Information Sciences 8, no. 2 (2002): 129–36. http://dx.doi.org/10.4036/iis.2002.129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gudder, Stan. "Quantum Computation." American Mathematical Monthly 110, no. 3 (March 2003): 181. http://dx.doi.org/10.2307/3647933.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ding, Dawei. "Quantum computation." XRDS: Crossroads, The ACM Magazine for Students 23, no. 1 (September 20, 2016): 7–8. http://dx.doi.org/10.1145/2983467.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hughes, R. "Quantum Computation." Computing in Science and Engineering 3, no. 2 (March 2001): 26. http://dx.doi.org/10.1109/mcise.2001.908998.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Grover, L. "Quantum computation." IEEE Potentials 18, no. 2 (1999): 4–8. http://dx.doi.org/10.1109/45.755839.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Deutsch, David, and Artur Ekert. "Quantum computation." Physics World 11, no. 3 (March 1998): 47–52. http://dx.doi.org/10.1088/2058-7058/11/3/31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

DiVincenzo, D. P. "Quantum Computation." Science 270, no. 5234 (October 13, 1995): 255–61. http://dx.doi.org/10.1126/science.270.5234.255.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Deutsch, David. "Quantum computation." Physics World 5, no. 6 (June 1992): 57–61. http://dx.doi.org/10.1088/2058-7058/5/6/38.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Patel, Apoorva. "Quantum computation." Resonance 16, no. 9 (September 2011): 821–35. http://dx.doi.org/10.1007/s12045-011-0100-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Quantum computation"

1

Giannakopoulos, Dimitrios. "Quantum computation." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1999. http://handle.dtic.mil/100.2/ADA365665.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Barenco, Adriano. "Quantum computation." Thesis, University of Oxford, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.360152.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gourlay, Iain. "Quantum computation." Thesis, Heriot-Watt University, 2000. http://hdl.handle.net/10399/568.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Barr, Katherine Elizabeth. "Quantum walks and quantum computation." Thesis, University of Leeds, 2013. http://etheses.whiterose.ac.uk/4975/.

Full text
Abstract:
The field of quantum information applies the concepts of quantum physics to problems in computer science, and shows great potential for allowing efficient computation. In this thesis I concentrate on a particular quantum information theoretic tool known as the quantum walk. There are two widely studied versions of the quantum walk, the continuous time walk, and the discrete time walk. The discrete time walk is particularly amenable to investigation using numerical methods, from which most of the results in this thesis are derived, and is the main focus of the work presented. Two aspects of the discrete time walk are investigated: their transport properties and their interpretation as quantum computers. I investigated the transport properties in two ways, by looking for a particular type of transport known as perfect state transfer, and examining the transport properties of a new type of coin operator. The search for perfect state transfer concentrated on modifications of small cycles. I found that perfect state transfer is rare for the choices of coin operators tested. The structures tested for perfect state transfer were based on cycles, and it appears that the type of modification has more of an effect than the size of the cycle. This makes intuitive sense, as the modifications found to lead to walks exhibiting perfect state transfer affected only the initial and target node of the cycle. I then investigated a new type of coin operator which does not allow amplitude to return to the node it has come from. This effectively simulates a dimer. Using the general form of this type of operator and random variables for each parameter, I found that the expected distance of the walker from the origin, and standard deviation, were independent of the initial condition. The second half of the thesis concentrates on computational applications of quantum walks using the language acceptance model. I first note their equivalence to a type of quantum automaton known as the QFA-WOM, and this provides an intuitive understanding of the role of the WOM. I then use a more direct construction to show that they can accept a range of formal languages. Using this construction allows us to use superpositions of words as inputs, and the insights provided by investigating these suggest a new way of approaching the problem of quantum state discrimination.
APA, Harvard, Vancouver, ISO, and other styles
5

Roland, Jérémie. "Adiabatic quantum computation." Doctoral thesis, Universite Libre de Bruxelles, 2004. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/211148.

Full text
Abstract:
Le développement de la Théorie du Calcul Quantique provient de l'idée qu'un ordinateur est avant tout un système physique, de sorte que ce sont les lois de la Nature elles-mêmes qui constituent une limite ultime sur ce qui peut être calculé ou non. L'intérêt pour cette discipline fut stimulé par la découverte par Peter Shor d'un algorithme quantique rapide pour factoriser un nombre, alors qu'actuellement un tel algorithme n'est pas connu en Théorie du Calcul Classique. Un autre résultat important fut la construction par Lov Grover d'un algorithme capable de retrouver un élément dans une base de donnée non-structurée avec un gain de complexité quadratique par rapport à tout algorithme classique. Alors que ces algorithmes quantiques sont exprimés dans le modèle ``standard' du Calcul Quantique, où le registre évolue de manière discrète dans le temps sous l'application successive de portes quantiques, un nouveau type d'algorithme a été récemment introduit, où le registre évolue continûment dans le temps sous l'action d'un Hamiltonien. Ainsi, l'idée à la base du Calcul Quantique Adiabatique, proposée par Edward Farhi et ses collaborateurs, est d'utiliser un outil traditionnel de la Mécanique Quantique, à savoir le Théorème Adiabatique, pour concevoir des algorithmes quantiques où le registre évolue sous l'influence d'un Hamiltonien variant très lentement, assurant une évolution adiabatique du système. Dans cette thèse, nous montrons tout d'abord comment reproduire le gain quadratique de l'algorithme de Grover au moyen d'un algorithme quantique adiabatique. Ensuite, nous montrons qu'il est possible de traduire ce nouvel algorithme adiabatique, ainsi qu'un autre algorithme de recherche à évolution Hamiltonienne, dans le formalisme des circuits quantiques, de sorte que l'on obtient ainsi trois algorithmes quantiques de recherche très proches dans leur principe. Par la suite, nous utilisons ces résultats pour construire un algorithme adiabatique pour résoudre des problèmes avec structure, utilisant une technique, dite de ``nesting', développée auparavant dans le cadre d'algorithmes quantiques de type circuit. Enfin, nous analysons la résistance au bruit de ces algorithmes adiabatiques, en introduisant un modèle de bruit utilisant la théorie des matrices aléatoires et en étudiant son effet par la théorie des perturbations.
Doctorat en sciences appliquées
info:eu-repo/semantics/nonPublished
APA, Harvard, Vancouver, ISO, and other styles
6

Dodd, Jennifer L. "Universality in quantum computation /." [St. Lucia, Qld], 2004. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe18197.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Block, Aaron. "Quantum computation an introduction /." Diss., Connect to the thesis, 2002. http://hdl.handle.net/10066/1468.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Grimmelmann, James Taylor Lewis. "Quantum Computation: An Introduction." Thesis, Harvard University, 1999. http://nrs.harvard.edu/urn-3:HUL.InstRepos:14485381.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Smith, Adam (Adam Davidson) 1977. "Multi-party quantum computation." Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/86782.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wootton, James Robin. "Dissecting topological quantum computation." Thesis, University of Leeds, 2010. http://etheses.whiterose.ac.uk/1163/.

Full text
Abstract:
Anyons are quasiparticles that may be realized in two dimensional systems. They come in two types, the simpler Abelian anyons and the more complex non-Abelian anyons. Both of these have been considered as a means for quantum computation, but non-Abelian anyons are usually assumed to be better suited to the task. Here we challenge this view, demonstrating that Abelian anyon models have as much potential as some simple non-Abelian models. First the means to perform quantum computation with Abelian anyon models is considered. These models, like many non-Abelian models, cannot realize universal quantum computation by braiding alone. Non-topological operations must be used in addition, whose complexity depends on the physical means by which the anyons are realized. Here we consider anyons based on spin lattice models, with single spin measurements playing the role of non-topological operations. The computational power achieved by various kinds of measurement is explored and the requirements for universality are determined. The possibility to simulate non-Abelian anyons using Abelian ones is then considered. Finally, a non-Abelian quantum memory is dissected in order to determine the means by which it provides fault-tolerant storage of information. This understanding is then employed to build equivalent quantum memories with Abelian anyon models. The methodology provides with the means to demonstrate that Abelian models have the capability to simulate non-Abelian anyons, and to realize the same computational power and fault-tolerance as non Abelian models. Apart from the intellectual interest in relating topological models with each other, and of understanding the properties of non-Abelian anyons in terms of the simpler Abelian ones, these results can also be applied in the lab. The simpler structure of Abelian anyons means that their physical realization is more straightforward. The demonstration of non-Abelian properties with Abelian models therefore allows features of non-Abelian anyons to be realized with present and near future technology. Based on this possibility, proposals are made here for proof of principle experiments.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Quantum computation"

1

Lomonaco, Samuel, ed. Quantum Computation. Providence, Rhode Island: American Mathematical Society, 2002. http://dx.doi.org/10.1090/psapm/058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nielsen, Michael A. Quantum computation and quantum information. Cambridge: Cambridge University Press, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nielsen, Michael A. Quantum computation and quantum information. Daryaganj, New Delhi-110002: Foundation Books, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ivancevic, Vladimir G., and Tijana T. Ivancevic. Quantum Neural Computation. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-3350-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zhenghan, Wang, ed. Topological quantum computation. Providence, R.I: Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

McGeoch, Catherine C. Adiabatic Quantum Computation and Quantum Annealing. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-031-02518-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Albuquerque, Clarice Dias de, Eduardo Brandani da Silva, and Waldir Silva Soares. Quantum Codes for Topological Quantum Computation. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-06833-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

K, Brylinski Ranee, and Chen Goong 1950-, eds. Mathematics of quantum computation. Boca Raton: CRC Press, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lomonaco, Samuel J., and Howard E. Brandt, eds. Quantum Computation and Information. Providence, Rhode Island: American Mathematical Society, 2002. http://dx.doi.org/10.1090/conm/305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Choi, Mahn-Soo. A Quantum Computation Workbook. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-91214-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Quantum computation"

1

Barenco, Adriano, Artur Ekert, G. Massimo Palma, and Kalle-Antti Suominen. "Quantum Computation." In Coherence and Quantum Optics VII, 113–22. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-9742-8_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yamamoto, Y., and F. Yamaguchi. "Quantum Computation." In Springer Proceedings in Physics, 20–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-59484-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Berthiaume, André. "Quantum Computation." In Complexity Theory Retrospective II, 23–51. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-1872-2_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bellac, Michel Le. "Quantum Computation." In Compendium of Quantum Physics, 533–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-70626-7_161.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Braunstein, Samuel L. "Quantum Computation." In Mathematical Tools for Physicists, 417–38. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527607773.ch12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Braunstein, Samuel L. "Quantum Computation." In Quantum Computing, 1–21. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2004. http://dx.doi.org/10.1002/3527603093.ch1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Auletta, Gennaro. "Quantum Computation." In The Quantum Mechanics Conundrum, 365–404. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-16649-6_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dittrich, Thomas. "Quantum Computation." In Information Dynamics, 459–526. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96745-1_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Banks, Thomas. "Quantum Computation?" In Quantum Mechanics: An Introduction, 339–416. Boca Raton: CRC Press, Taylor & Francis Group, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/9780429438424-20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kitaev, A., A. Shen, and M. Vyalyi. "Quantum computation." In Graduate Studies in Mathematics, 53–54. Providence, Rhode Island: American Mathematical Society, 2002. http://dx.doi.org/10.1090/gsm/047/08.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Quantum computation"

1

Ekert, Artur. "Quantum computation." In 17th Congress of the International Commission for Optics: Optics for Science and New Technology. SPIE, 1996. http://dx.doi.org/10.1117/12.2316052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ekert, Artur, D. J. Wineland, C. E. Wieman, and S. J. Smith. "Quantum Computation." In ATOMIC PHYSICS 14: Fourteenth International Conference on Atomic Physics. AIP, 1994. http://dx.doi.org/10.1063/1.2946023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

PRESKILL, JOHN. "QUANTUM COMPUTATION." In Proceedings of the 17th International Conference. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701688_0014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Grover, L. K. "Quantum computation." In Proceedings Twelfth International Conference on VLSI Design. (Cat. No.PR00013). IEEE, 1999. http://dx.doi.org/10.1109/icvd.1999.745212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rarity, J. G. "Quantum Cryptography and Quantum Computation." In Proceedings of European Meeting on Lasers and Electro-Optics. IEEE, 1996. http://dx.doi.org/10.1109/cleoe.1996.562017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rarity, J. G. "Quantum Cryptography and Quantum Computation." In EQEC'96. 1996 European Quantum Electronic Conference. IEEE, 1996. http://dx.doi.org/10.1109/eqec.1996.561540.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kendon, Viv. "Quantum walk computation." In INTERNATIONAL CONFERENCE ON QUANTITATIVE SCIENCES AND ITS APPLICATIONS (ICOQSIA 2014): Proceedings of the 3rd International Conference on Quantitative Sciences and Its Applications. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4903129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nemoto, Kae, W. J. Munro, and T. P. Spiller. "Optical Quantum Computation." In Physical Realizations of Quantum Computing — Are the DiVincenzo Criteria Fulfilled in 2004? WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774705_0006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mermin, D. "Contemplating quantum computation." In International Conference on Quantum Information. Washington, D.C.: OSA, 2001. http://dx.doi.org/10.1364/icqi.2001.t2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Durr, C. "Formalizing quantum computation." In IEE Colloquium on Quantum Computing: Theory, Applications and Implications. IEE, 1997. http://dx.doi.org/10.1049/ic:19970791.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Quantum computation"

1

Raychev, Nikolay, and Isaac Chuang. Quantum computation and quantum information. Web of Open Science, July 2020. http://dx.doi.org/10.37686/qrl.v1i1.57.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Traub, Joseph F. Continuous Quantum Computation. Fort Belvoir, VA: Defense Technical Information Center, March 2007. http://dx.doi.org/10.21236/ada465614.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nenoff, Tina M., Tina M. Nenoff, Tina M. Nenoff, Tina M. Nenoff, Stanley Shihyao Chou, Stanley Shihyao Chou, Peter Dickens, et al. Topological Quantum Materials for Quantum Computation. Office of Scientific and Technical Information (OSTI), October 2019. http://dx.doi.org/10.2172/1569786.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Orlando, Terry P. Quantum Computation with Superconducting Quantum Devices. Fort Belvoir, VA: Defense Technical Information Center, April 2008. http://dx.doi.org/10.21236/ada480997.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cristoforides, Andreas, and Aaaron Miller. Linear optical quantum computation. Web of Open Science, July 2020. http://dx.doi.org/10.37686/qrl.v1i2.58.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Coffrin, Carleton James. Debugging Your Quantum Computation. Office of Scientific and Technical Information (OSTI), February 2017. http://dx.doi.org/10.2172/1343695.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Alsing, Paul, Michael Fanto, and Gordon Lott. Cluster State Quantum Computation. Fort Belvoir, VA: Defense Technical Information Center, February 2014. http://dx.doi.org/10.21236/ada595247.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Brickson, Mitchell Ian, and Andrew David Baczewski. Lithographic quantum dots for quantum computation and quantum simulation. Office of Scientific and Technical Information (OSTI), November 2019. http://dx.doi.org/10.2172/1592975.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ruskai, Mary B. Noisy Quantum Computation and Communication. Fort Belvoir, VA: Defense Technical Information Center, March 2003. http://dx.doi.org/10.21236/ada412013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lukens, James. Superconducting Qubits for Quantum Computation. Fort Belvoir, VA: Defense Technical Information Center, November 2003. http://dx.doi.org/10.21236/ada422633.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography