Academic literature on the topic 'Quantum communication systems'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Quantum communication systems.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Quantum communication systems"

1

Rezai, Mohammad, and Jawad A. Salehi. "Quantum CDMA Communication Systems." IEEE Transactions on Information Theory 67, no. 8 (August 2021): 5526–47. http://dx.doi.org/10.1109/tit.2021.3087959.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sengupta, Diganta, Ahmed Abd El‐Latif, Debashis De, Keivan Navi, and Nader Bagherzadeh. "Reversible quantum communication & systems." IET Quantum Communication 3, no. 1 (March 2022): 1–4. http://dx.doi.org/10.1049/qtc2.12037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Humble, Travis S., and Ronald J. Sadlier. "Software-defined quantum communication systems." Optical Engineering 53, no. 8 (August 12, 2014): 086103. http://dx.doi.org/10.1117/1.oe.53.8.086103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Marks, Paul. "Photon counter extends quantum communication systems." New Scientist 198, no. 2661 (June 2008): 32. http://dx.doi.org/10.1016/s0262-4079(08)61550-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

GAY, SIMON J., and RAJAGOPAL NAGARAJAN. "Types and typechecking for Communicating Quantum Processes." Mathematical Structures in Computer Science 16, no. 3 (June 2006): 375–406. http://dx.doi.org/10.1017/s0960129506005263.

Full text
Abstract:
We define a language CQP (Communicating Quantum Processes) for modelling systems that combine quantum and classical communication and computation. CQP combines the communication primitives of the pi-calculus with primitives for measurement and transformation of the quantum state; in particular, quantum bits (qubits) can be transmitted from process to process along communication channels. CQP has a static type system, which classifies channels, distinguishes between quantum and classical data, and controls the use of quantum states. We formally define the syntax, operational semantics and type system of CQP, prove that the semantics preserves typing, and prove that typing guarantees that each qubit is owned by a unique process within a system. We also define a typechecking algorithm and prove that it is sound and complete with respect to the type system. We illustrate CQP by defining models of several quantum communication systems, and outline our plans for using CQP as the foundation for formal analysis and verification of combined quantum and classical systems.
APA, Harvard, Vancouver, ISO, and other styles
6

Shkorkina, E. N., and E. B. Aleksandrova. "Securing Post-Quantum Resistance for Quantum-Protected Communication Systems." Automatic Control and Computer Sciences 54, no. 8 (December 2020): 949–51. http://dx.doi.org/10.3103/s0146411620080301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mumtaz, Shahid, and Mohsen Guizani. "An overview of quantum computing and quantum communication systems." IET Quantum Communication 2, no. 3 (September 2021): 136–38. http://dx.doi.org/10.1049/qtc2.12021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ban, Masashi. "Symmetric and asymmetric quantum channels in quantum communication systems." Journal of Physics A: Mathematical and General 38, no. 16 (April 6, 2005): 3595–609. http://dx.doi.org/10.1088/0305-4470/38/16/009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sharma, Vishal. "Effect of Noise on Practical Quantum Communication Systems." Defence Science Journal 66, no. 2 (March 23, 2016): 186. http://dx.doi.org/10.14429/dsj.66.9771.

Full text
Abstract:
<p>Entanglement is an important resource for various applications of quantum computation. Another important endeavor is to establish the role of entanglement in practical implementation where system of interest is affected by various kinds of noisy channels. Here, a single classical bit is used to send information under the influence of a noisy quantum channel. The entanglement content of quantum states is computed under noisy channels such as amplitude damping, phase damping, squeesed generalised amplitude damping, Pauli channels and various collective noise models on the protocols of quantum key distribution.</p><p> </p>
APA, Harvard, Vancouver, ISO, and other styles
10

Commissariat, Tushna. "The key to our quantum future." Physics World 34, no. 12 (December 1, 2021): 40–42. http://dx.doi.org/10.1088/2058-7058/34/12/37.

Full text
Abstract:
Safeguarding our communications data and infrastructures will become a much harder task in a quantum-enabled future. KETS Quantum Security chief executive Chris Erven talks to Tushna Commissariat about how integrating quantum-based systems into existing communication is key.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Quantum communication systems"

1

Zhang, Zheshen. "New techniques for quantum communication systems." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/42843.

Full text
Abstract:
Although mathematical cryptography has been widely used, its security has only been proven under certain assumptions such as the computational power of opponents. As an alternative, quantum communication, in particular quantum key distribution (QKD) can get around unproven assumptions and achieve unconditional security. However, the key generation rate of practical QKD systems is limited by device imperfections, excess noise from the quantum channel, limited rate of true random-number generation, quantum entanglement preparation, and/or post-processing efficiency. This dissertation contributes to improving the performance of quantum communication systems. First, it proposes a new continuous-variable QKD (CVQKD) protocol that loosens the efficiency requirement on post-processing, a bottleneck for long-distance CVQKD systems. It also demonstrates an experimental implementation of the proposed protocol. To achieve high rates, the CVQKD experiment uses a continuous-wave local oscillator (CWLO). The excess noise caused by guided acoustic-wave Brillioun scattering (GAWBS) is avoided by a frequency-shift scheme, resulting in a 32 dB noise reduction. The statistical distribution of the GAWBS noise is characterized by quantum tomography. Measurements show Gaussian statistics upto 55 dB of dynamical range, which validates the security calculations in the proposed CVQKD protocol. True random numbers are required in quantum and classical cryptography. A second contribution of this thesis is that it experimentally demonstrates an ultrafast quantum random-number generator (QRNG) based on amplified spontaneous emission (ASE). Random numbers are produced by a multi-mode photon counting measurement on ASE light. The performance of the QRNG is analyzed with quantum information theory and verified with NIST standard random-number test. The QRNG experiment demonstrates a random-number generation rate at 20 Gbits/s. Theoretical studies show fundamental limits for such QRNGs. Quantum entanglement produced in nonlinear optical processes can help to increase quantum communication distance. A third contribution is the research on nonlinear optics of graphene, a novel 2D material with unconventional physical properties. Based on a quantum-dynamical model, optical responses of graphene are derived, showing for the first time a link between the complex linear optical conductivity and the quantum decoherence. Nonlinear optical responses, in particular four-wave mixing, is studied for the first time. The theory predicts saturation effects in graphene and relates the saturation threshold to the ultrafast quantum decoherence and carrier relaxation in graphene. For the experimental part, four-wave mixing in graphene is demonstrated. Twin-photon production in graphene is under investigation.
APA, Harvard, Vancouver, ISO, and other styles
2

Mower, Jacob. "Photonic quantum computers and communication systems." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/103851.

Full text
Abstract:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2015.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 123-137).
Quantum information processors have been proposed to solve classically intractable or unsolvable problems in computing, sensing, and secure communication. There has been growing interest in photonic implementations of quantum processors as they offer relatively long coherence lengths, precise state manipulation, and efficient measurement. In this thesis, we first present experimental techniques to generate on-chip, photonic quantum processors and then discuss protocols for fast and secure quantum communication. In particular, we describe how -to combine the outputs of multiple stochastic single-photon sources using a photonic integrated circuit to generate an efficient source of single photons. We then show designs for silicon-based quantum photonic processors that can be programmed to implement a large class of existing quantum algorithms and can lead to quicker testing of new algorithms than was previously possible. We will then present the integration of large numbers of high-efficiency, low-timing jitter single-photon detectors onto a silicon photonic integrated circuit. To conclude, we will present a quantum key distribution protocol that uses the robust temporal degree of freedom of entangled photons to enable fast, secure key exchange, as well as experimental results for implementing key distribution protocols using silicon photonic integrated circuits.
by Jacob Mower.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
3

Antonio, R. G. "Quantum computation and communication in strongly interacting systems." Thesis, University College London (University of London), 2015. http://discovery.ucl.ac.uk/1469437/.

Full text
Abstract:
Each year, the gap between theoretical proposals and experimental endeavours to create quantum computers gets smaller, driven by the promise of fundamentally faster algorithms and quantum simulations. This occurs by the combination of experimental ingenuity and ever simpler theoretical schemes. This thesis comes from the latter perspective, aiming to find new, simpler ways in which components of a quantum computer could be built. We first search for ways to create quantum gates, the primitive building blocks of a quantum computer. We find a novel, low-control way of performing a two-qubit gate on qubits encoded in a decoherence-free subspace, making use of many-body interactions that may already be present. This includes an analysis of the effect of control errors and magnetic field fluctuations on the gate. We then present novel ways to create three-qubit Toffoli and Fredkin gates in a single step using linear arrays of qubits, including an assessment of how well these gates could perform, for quantum or classical computation, using state-of-the-art ion trap and silicon donor technology. We then focus on a very different model from the normal circuit model, combining ideas from measurement-based quantum computation (MBQC) and holonomic quantum computation. We generalise an earlier model to show that all MBQC patterns with a property called gflow can be converted into a holonomic computation. The manifestation of the properties of MBQC in this adiabatically driven model is then explored. Finally, we investigate ways in which quantum information can be communicated between distant parties, using minimally engineered spin chains. The viability of using 1D Wigner crystals as a quantum channel is analysed, as well as schemes using ideal uniform spin chains with nextneighbour interactions, and edge-locking effects.
APA, Harvard, Vancouver, ISO, and other styles
4

Lou, Hanqing. "LDGM codes for wireless and quantum systems." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file 3.92 Mb., 138 p, 2006. http://wwwlib.umi.com/dissertations/fullcit?3220802.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rodó, Sarró Carles. "Quantum Information with Continuous Variable systems." Doctoral thesis, Universitat Autònoma de Barcelona, 2010. http://hdl.handle.net/10803/3426.

Full text
Abstract:
Aquesta tesi tracta l'estudi de protocols de comunicació quàntica amb sistemes devariable continua (CV). Els sistemes de CV són aquells descrits per coordenades canòniques conjugades $x$ i $p$ dotades amb un espai de Hilbert de dimensió infinita. Una classe especial de sistemes CV són, els anomenats estats Gaussians.Contràriament als sistemes discrets, els estats Gaussians entrellaçats no es podendestil·lar només amb operacions Gaussianes. No obstant va ser mostrat que, és possible extreure bits clàssics perfectament correlacionats per establir claus secretes aleatòries. Apropiadament modifiquem el protocol usant entrellaçament Gaussià bipartit per assolir la distribució de claus quàntiques de manera eficient i realista. Descrivim i demostrem la seguretat en front de diversos possibles atacs enla comunicació, detallant els recursos necessaris. També hem considerat un protocol tripartit simple conegut com Acord Bizantí. És un vell protocol de comunicació clàssica en el què els participants (amb possibles traïdors entre ells)només podem comunicar-se en parelles, mentre intenten arribar a una decisiócomú. Clàssicament hi ha un límit en el nombre màxim de traïdors que poden estar involucrats dins el joc. No obstant, una solució quàntica existeix. Mostrem aquestasolució dins els CV usant estats entrellaçats Gaussians multipartits i operacionsGaussianes. A més, mostrem sota quines premisses, entrellaçament contingut als estats, soroll, detectors ineficients, el nostre protocol és eficient i aplicable amb tecnologia actual.
És conegut que tot i que el seu rol excepcional dins els estats CV, de fet, els estats Gaussians no són sempre els millors candidats per desenvolupar tasquesd'informació quàntica. Així, ataquem el problema de la quantificació de correlacions(clàssiques i/o quàntiques) entre dos modes CV (Gaussians i no Gaussians).Proposem definir les correlacions entre dos modes com el màxim numero de bits correlacionats extrets a través de mesures locals en les quadratures de cadamode. En els estats Gaussians, on l'entrellaçament és accessible a través de la seva matriu de covariança la nostra quantificació majoritza l'entrellaçament, reduint¬se a un monotó d'entrellaçament per estats purs. Per estats no Gaussians, com estats fotònics de Bell, estats foto-substrets i mescles d'estats Gaussians, la correlació de bits en quadratures mostra ser també una funció monòtona amb la negativitat. Aquesta quantificació dóna una operacional i factible manera de mesurar l'entrellaçament no Gaussià en experiments actuals mitjançant detecció homodine directa i sense necessitar una tomografia completa de l'estat amb lamateixa dificultat que si es tractes d'estats Gaussians.
Finalment ens hem focalitzat amb col·lectivitats atòmiques descrites com CV. L'entrellaçament induït per la mesura entre dos col·lectivitats atòmiques macroscòpiques va ser reportat experimentalment al 2001. Allà, la interacció entreun únic pols làser apropant-se a través de dos col·lectivitats atòmiques separades espacialment combinat amb una mesura projectiva final en la llum permetia la creació d'entrellaçament EPR pur entre les dues col·lectivitats. Mostrem com generar, manipular i detectar entrellaçament mesoscopic entre un nombre arbitraride col·lectivitats a través d'una interfície llum-matèria quàntica no demolidora. Lanostra proposta s'extén d'una manera no trivial per entrellaçament multipartit (GHZ ide tipus clúster) sense la necessitat de camps magnètics locals. A més mostrem sorprenentment que, donat el caràcter irreversible de la mesura, la interacció de la col·lectivitat atòmica amb un segon feix de llum pot modificar e inclús revertir la acció d'entrellaçament del primer deixant la col·lectivitat en un estat separable.
This thesis deals with the study of quantum communication protocols with Continuous Variable (CV) systems. CV systems are those described by canonical conjugated coordinates $x$ and $p$ endowed with infinite dimensional Hilbertspaces, thus involving a complex mathematical structure. A special class of CVstates, are the so-called Gaussian states. We present a protocol that permits toextract quantum keys from entangled Gaussian states. Differently from discretesystems, Gaussian entangled states cannot be distilled with Gaussian operations only. However it was already shown, that it is still possible to extract perfectly correlated classical bits to establish secret random keys. We properly modify theprotocol using bipartite Gaussian entanglement to perform quantum key distribution in an efficient and realistic way. We describe and demonstrate security in front of different possible attacks on the communication, detailing the resources demanded. We also consider a simple 3-partite protocol known as Byzantine Agreement. It is anold classical communication problem in which parties (with possible traitors amongthem) can only communicate pairwise, while trying to reach a common decision. Classically, there is a bound in the maximal number of possible traitors that can be involved in the game. Nevertheless, a quantum solution exist. We show that solution within CV using multipartite entangled Gaussian states and Gaussian operations. Furthermore, we show under which premises concerning entanglement content of the state, noise, inefficient homodyne detectors, our protocol is efficient and applicable with present technology.
It is known that in spite of their exceptional role within the space of all CV states, in fact, Gaussian states are not always the best candidates to perform quantum information tasks. Thus, we tackle the problem of quantification of correlations (quantum and/or classical) between two CV modes (Gaussian and non-Gaussian). We propose to define correlations between the two modes as the maximal number of correlated bits extracted via local quadrature measurements on each mode. On Gaussian states, where entanglement is accessible via their covariance matrix ourquantification majorizes entanglement, reducing to an entanglement monotone for pure states. For non-Gaussian states, such as photonic Bell states, photon subtracted states and mixtures of Gaussian states, the bit quadrature correlationsare shown to be also a monotonic function of the negativity. This quantification yields a feasible, operational way to measure non-Gaussian entanglement in currentexperiments by means of direct homodyne detection, without needing a complete state tomography with the same complexity as if dealing with Gaussian states.
Finally we focus to atomic ensembles described as CV. Measurement induced entanglement between two macroscopical atomic samples was reported experimentally in 2001. There, the interaction between a single laser pulsepropagating through two spatially separated atomic samples combined with a final projective measurement on the light led to the creation of pure EPR entanglement between the two samples. We show how to generate, manipulate and detect mesoscopic entanglement between an arbitrary number of atomic samples through a quantum non-demolition matter-light interface. Our proposal extends in a non-trivialway for multipartite entanglement (GHZ and cluster-like) without needing local magnetic fields. Moreover, we show quite surprisingly that given the irreversiblecharacter of a measurement, the interaction of the atomic sample with a secondpulse light can modify and even reverse the entangling action of the first one leavingthe samples in a separable state.
APA, Harvard, Vancouver, ISO, and other styles
6

Tsang, Hon Ki. "Optical nonlinearities in quantum well waveguides." Thesis, University of Cambridge, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.385896.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Quinn, Niall. "Gaussian non-classical correlations in bipartite dissipative continuous variable quantum systems." Thesis, University of St Andrews, 2015. http://hdl.handle.net/10023/6915.

Full text
Abstract:
This thesis probes the usefulness of non-classical correlations within imperfect continuous variable decoherent quantum systems. Although a consistent function and practical usefulness of these correlations is largely unknown, it is important to examine their characteristics in more realistic dissipative systems, to gain further insight into any possible advantageous behaviour. A bipartite separable discordant state under the action of controlled loss on one subsystem was considered. Under these conditions the Gaussian quantum discord not only proved to be robust against loss, but actually improves as loss is intensified. Harmful imperfections which reduce the achievable level of discord can be counteracted by this controlled loss. Through a purification an explanation of this effect was sought by considering system-environment correlations, and found that a flow of system-environment correlations increases the quantumness of the state. Entanglement recovery possibilities were discussed and revealed the importance of hidden quantum correlations along bi-partitions across the discordant state and a classically prepared "demodulating" system, acting in such a way as to partially cancel the entanglement preventing noise. Entanglement distribution by separable states was studied by a similar framework, in an attempt to explain the emergence of quantum entanglement by a specific flow of correlations in the globally pure system. Discord appears to play a less fundamental role compared to the qubit version of the protocol. The strengthening of non-classical correlations can be attributed to a flow of classical and quantum correlations. This work proves that discord can be created in unique ways and, in select circumstances, can act to counteract harmful imperfections in the apparatus. Due to this advantageous behaviour discord indeed may ultimately aid in more applicable "real world" applications, which are by definition decoherent.
APA, Harvard, Vancouver, ISO, and other styles
8

Jogenfors, Jonathan. "Breaking the Unbreakable : Exploiting Loopholes in Bell’s Theorem to Hack Quantum Cryptography." Doctoral thesis, Linköpings universitet, Informationskodning, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-140912.

Full text
Abstract:
In this thesis we study device-independent quantum key distribution based on energy-time entanglement. This is a method for cryptography that promises not only perfect secrecy, but also to be a practical method for quantum key distribution thanks to the reduced complexity when compared to other quantum key distribution protocols. However, there still exist a number of loopholes that must be understood and eliminated in order to rule out eavesdroppers. We study several relevant loopholes and show how they can be used to break the security of energy-time entangled systems. Attack strategies are reviewed as well as their countermeasures, and we show how full security can be re-established. Quantum key distribution is in part based on the profound no-cloning theorem, which prevents physical states to be copied at a microscopic level. This important property of quantum mechanics can be seen as Nature's own copy-protection, and can also be used to create a currency based on quantummechanics, i.e., quantum money. Here, the traditional copy-protection mechanisms of traditional coins and banknotes can be abandoned in favor of the laws of quantum physics. Previously, quantum money assumes a traditional hierarchy where a central, trusted bank controls the economy. We show how quantum money together with a blockchain allows for Quantum Bitcoin, a novel hybrid currency that promises fast transactions, extensive scalability, and full anonymity.
En viktig konsekvens av kvantmekaniken är att okända kvanttillstånd inte kan klonas. Denna insikt har gett upphov till kvantkryptering, en metod för två parter att med perfekt säkerhet kommunicera hemligheter. Ett komplett bevis för denna säkerhet har dock låtit vänta på sig eftersom en attackerare i hemlighet kan manipulera utrustningen så att den läcker information. Som ett svar på detta utvecklades apparatsoberoende kvantkryptering som i teorin är immun mot sådana attacker. Apparatsoberoende kvantkryptering har en mycket högre grad av säkerhet än vanlig kvantkryptering, men det finns fortfarande ett par luckor som en attackerare kan utnyttja. Dessa kryphål har tidigare inte tagits på allvar, men denna avhandling visar hur även små svagheter i säkerhetsmodellen läcker information till en attackerare. Vi demonstrerar en praktisk attack där attackeraren aldrig upptäcks trots att denne helt kontrollerar systemet. Vi visar också hur kryphålen kan förhindras med starkare säkerhetsbevis. En annan tillämpning av kvantmekanikens förbud mot kloning är pengar som använder detta naturens egna kopieringsskydd. Dessa kvantpengar har helt andra egenskaper än vanliga mynt, sedlar eller digitala banköverföringar. Vi visar hur man kan kombinera kvantpengar med en blockkedja, och man får då man en slags "kvant-Bitcoin". Detta nya betalningsmedel har fördelar över alla andra betalsystem, men nackdelen är att det krävs en kvantdator.
APA, Harvard, Vancouver, ISO, and other styles
9

Li, Ling Feng. "An image encryption system based on two-dimensional quantum random walks." Thesis, University of Macau, 2018. http://umaclib3.umac.mo/record=b3950660.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jabbour, Michael. "Bosonic systems in quantum information theory: Gaussian-dilatable channels, passive states, and beyond." Doctoral thesis, Universite Libre de Bruxelles, 2018. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/272099.

Full text
Abstract:
The symplectic formalism applied to the phase-space representation of bosonic quantum systems provides us with a powerful mathematical tool for the characterisation of Gaussian states and transformations. As a consequence, quantum information protocols involving the latter are very well understood from a theoretical point of view. Nevertheless, it has become clear in recent years that the use of non-Gaussian resources is necessary in order to perform various crucial information-processing tasks. An illustration of this fact can for instance be found in situations where a Gaussian no-go theorem precludes the use of Gaussian transformations in order to achieve a task involving Gaussian states, such as quantum entanglement distillation, quantum error correction, or universal quantum computation. In the first part of this thesis, we develop a new method based on the generating function of a sequence, which gives rise to an elegant description of intrinsically non-Gaussian objects. Building on the generating function of the matrix elements of Gaussian unitaries in Fock basis, our approach gives access to the multi-photon transition probabilities via unexpectedly simple recurrence equations. The method is developed for Gaussian unitaries effecting both passive and active linear coupling between two bosonic modes. It predicts an interferometric suppression term which generalises the Hong-Ou-Mandel effect for more than two indistinguishable photons impinging on a balanced beam splitter. Furthermore, it exhibits an unsuspected 2-photon suppression effect in optical parametric amplification of gain 2, which originates from the indistinguishability between the input and output photon pairs. Finally, we extend our method to Bogoliubov transformations acting on an arbitrary number of modes. In the second part of this thesis, we introduce a class of Gaussian-dilatable bosonic quantum channels (characterised by a Gaussian unitary in their Stinespring dilation) called passive-environment channels. These channels are interesting from a quantum thermodynamical viewpoint because they correspond to the coupling of a bosonic system with a bosonic environment that is passive in the Fock-basis (that is, no energy can be extracted from it by using unitary transformations) followed by discarding the environment. Making use of the generating function, we provide a description of these channels in terms of Gaussian bosonic channels. We then introduce a new preorder relation called Fock-majorization, which coincides with regular majorization for passive states but also induces another relation in terms of mean boson number, thereby connecting the concepts of energy and disorder of a quantum state. We prove various properties of Fock-majorization, showing in particular that the latter can be interpreted as a relation indicating the existence of a heating or amplifying map between two quantum states. This new preorder relation happens to be relevant in the context of passive-environment bosonic channels. Indeed, we show that these channels are Fock-majorization-preserving, so that any two input states that obey a Fock-majorization relation are transformed into output states respecting a similar relation. As a consequence, it also implies that passive-environment channels are majorization-preserving over the set of passive states of the harmonic oscillator. The consequences of majorization preservation are discussed in the context of the so-called entropy photon-number inequality. Most of our results being independent of the specific nature of the system under investigation, they could be generalised to other quantum systems and Hamiltonians, providing new tools that may prove useful in quantum information theory. In the last part of our thesis, we lay out a resource theory of local activity for bosonic systems. We introduce a notion of local-activity distance, and compare it with the work that can be extracted from a quantum state under local unitaries assisted by passive global unitaries. With this framework, we hope to connect the area of continuous-variable bosonic channels together with quantum thermodynamics.
Le formalisme symplectique appliqué à la représentation des systèmes bosoniques dans l'espace des phases donne accès à un outil mathématique puissant pour la caractérisation des états gau-ssiens et transformations gaussiennes. Les protocoles d'information quantique impliquant ces derniers sont d'ailleurs très bien compris d'un point de vue théorique. Toutefois, il s'est avéré clair durant ces dernières années que l'utilisation de ressources non-gaussiennes est nécessaire afin d'effectuer des tâches cruciales de traitement de l'information. En effet, certaines tâches — telles que la distillation d’intrication quantique, le codage quantique ou encore le calcul quantique — impliquant des états gaussiens ne peuvent être effectuées avec des transformations gaussiennes. Dans la première partie de cette thèse, nous développons une nouvelle méthode basée sur la fonction génératrice d'une suite qui donne lieu à une description élégante d'objets intrinsèquement non-gaussiens. Se basant sur la fonction génératrice des éléments de matrice d'unitaires gaussiens dans la base de Fock, notre approche donne accès aux probabilités de transition multi-photon via des équations de récurrence étonnamment simples. La méthode est développée pour des unitaires gaussiens produisant des couplages linéaires passifs et actifs entres deux modes bosoniques. Elle prédit un terme d'interférence destructive qui généralise l'effet Hong-Ou-Mandel pour plus de deux photons indistinguables pénétrant dans un diviseur de faisceau équilibré. De plus, elle met en évidence un effet inattendu de suppression de deux photons dans un amplificateur paramétrique optique de gain 2. Cette suppression résulte de l’indistinguabilité entre les paires de photons d’entrée et de sortie. Finalement, nous étendons notre méthode à des transformations de Bogoliubov agissant sur un nombre de modes arbitraire. Dans la seconde partie de cette thèse, nous introduisons une classe de canaux quantiques bosoniques gaussiens-dilatables (caractérisés par un unitaire gaussien dans leur ``Stinespring dilation") appelés canaux à environnement passif. Ces canaux sont intéressants du point de vue de la thermodynamique quantique puisqu’ils correspondent au couplage d’un système bosonique avec un environnement bosonique qui est passif dans la base de Fock (en d’autres termes, il est impossible d’en extraire de l’énergie avec des transformations unitaires), suivi du rejet de l’environnement. Grâce à la fonction génératrice, nous fournissons une description de ces transformations en termes de canaux quantiques bosoniques gaussiens limités par le bruit du vide. Nous introduisons ensuite une nouvelle relation de pré-ordre appelé ``majorization" de Fock, qui coïncide avec la ``majorization" usuelle pour les états passifs mais induit une autre relation en terme du nombre moyen de bosons, connectant ainsi les concepts d’énergie et de désordre d’un état quantique. Dans ce contexte, nous prouvons des propriétés variées de la ``majorization" de Fock et montrons en particulier que cette dernière peut être interprétée comme une relation indiquant l’existence d’une transformation d’amplification entre deux états quantiques. Cette nouvelle relation de pré-ordre s’avère appropriée dans le contexte des canaux bosonique à environnement passif. En effet, nous montrons que ces canaux conservent la ``majorization" de Fock, de sorte que n’importe quels deux états d’entrée obéissant une relation de ``majorization" de Fock sont transformés en états de sortie vérifiant une relation similaire. En particulier, cela implique que les canaux à environnement passif préservent la ``majorization" pour l'ensemble des états passifs de l’oscillateur harmonique. Les conséquences de la préservation de la ``majorization" sont examinées dans le contexte de la ``entropy photon-number inequality". Étant indépendants de la nature spécifique du système étudié, la plupart de nos résultats peuvent être généralisés à d’autres systèmes et hamiltoniens quantiques, donnant lieu à de nouveaux outils qui pourraient s’avérer utiles en théorie de l’information quantique. Dans la dernière partie de notre thèse, nous mettons en place une théorie de l’activité locale pour les système bosoniques. Nous introduisons une notion de distance en terme d'activité locale et la comparons avec le travail qui peut être extrait d'un état quantique avec des unitaires locaux assistés par des unitaires globaux passifs. Le but à long terme est de se baser sur cette théorie afin de connecter les domaines des canaux bosoniques à variables continues et de la thermodynamique quantique.
Doctorat en Sciences de l'ingénieur et technologie
info:eu-repo/semantics/nonPublished
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Quantum communication systems"

1

Broadband quantum cryptography. San Rafael, Calif. (1537 Fourth Street, San Rafael, CA 94901 USA): Morgan & Claypool, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Benslama, Malek, Achour Benslama, and Skander Aris. Quantum Communications in New Telecommunications Systems. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119332510.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tulane University. Dept. of Mathematics, ed. Mathematical foundations of information flow: Clifford lectures on information flow in physics, geometry and logic and computation, March 12-15, 2008, Tulane University, New Orleans, Louisiana. Providence, R.I: American Mathematical Society, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Quantum Communication And Quantum Networking First International Conference Quantumcomm 2009 Naples Italy October 2630 2009 Revised Selected Papers. Springer, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Brain Theory From A Circuits And Systems Perspective How Electrical Science Explains Neurocircuits Neurosystems And Qubits. Springer-Verlag New York Inc., 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tiwari, Sandip. Phenomena and devices at the quantum scale and the mesoscale. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198759874.003.0003.

Full text
Abstract:
Unique nanoscale phenomena arise in quantum and mesoscale properties and there are additional intriguing twists from effects that are classical in origin. In this chapter, these are brought forth through an exploration of quantum computation with the important notions of superposition, entanglement, non-locality, cryptography and secure communication. The quantum mesoscale and implications of nonlocality of potential are discussed through Aharonov-Bohm effect, the quantum Hall effect in its various forms including spin, and these are unified through a topological discussion. Single electron effect as a classical phenomenon with Coulomb blockade including in multiple dot systems where charge stability diagrams may be drawn as phase diagram is discussed, and is also extended to explore the even-odd and Kondo consequences for quantum-dot transport. This brings up the self-energy discussion important to nanoscale device understanding.
APA, Harvard, Vancouver, ISO, and other styles
7

Benslama, Malek, Achour Benslama, and Skander Aris. Quantum Communications in New Telecommunications Systems. Wiley & Sons, Incorporated, John, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Benslama, Malek, Achour Benslama, and Skander Aris. Quantum Communications in New Telecommunications Systems. Wiley & Sons, Incorporated, John, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Benslama, Malek, Achour Benslama, and Skander Aris. Quantum Communications in New Telecommunications Systems. Wiley & Sons, Incorporated, John, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Benslama, Malek, Achour Benslama, and Skander Aris. Quantum Communications in New Telecommunications Systems. Wiley & Sons, Incorporated, John, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Quantum communication systems"

1

Cirac, J. I., T. Pellizzari, J. F. Poyatos, and P. Zoller. "Quantum Computing and Decoherence in Quantum Optical Systems." In Quantum Communication, Computing, and Measurement, 159–69. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-5923-8_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Qin, Xudong, Yuxin Deng, and Wenjie Du. "Verifying Quantum Communication Protocols with Ground Bisimulation." In Tools and Algorithms for the Construction and Analysis of Systems, 21–38. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45237-7_2.

Full text
Abstract:
Abstract One important application of quantum process algebras is to formally verify quantum communication protocols. With a suitable notion of behavioural equivalence and a decision method, one can determine if an implementation of a protocol is consistent with its specification. Ground bisimulation is a convenient behavioural equivalence for quantum processes because of its associated coinduction proof technique. We exploit this technique to design and implement two on-the-fly algorithms for the strong and weak versions of ground bisimulation to check if two given processes in quantum CCS are equivalent. We then develop a tool that can verify interesting quantum protocols such as the BB84 quantum key distribution scheme.
APA, Harvard, Vancouver, ISO, and other styles
3

Umeno, K. "Integrability and Computability in Simulating Quantum Systems." In Quantum Communication, Computing, and Measurement, 195–201. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-5923-8_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pascazio, S. "Quantum Zeno Effect and “Domination” of the Temporal Evolution of Quantum Systems." In Quantum Communication, Computing, and Measurement, 279–87. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-5923-8_30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Prants, S. V. "Control of Quantum States in Nonstationary Cavity QED Systems." In Quantum Communication, Computing, and Measurement, 513–20. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-5923-8_56.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Arimitsu, T., T. Saito, and T. Imagire. "Quantum Stochastic Systems in Terms of Non-Equilibrium Thermo Field Dynamics." In Quantum Communication, Computing, and Measurement, 371–80. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-5923-8_39.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhou, Nanrun, Binyang Zeng, and Lihua Gong. "Quantum CSMA/CD Synchronous Communication Protocol with Entanglement." In Web Information Systems and Mining, 355–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-05250-7_38.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bornat, Richard, Jaap Boender, Florian Kammueller, Guillaume Poly, and Rajagopal Nagarajan. "Describing and Simulating Concurrent Quantum Systems." In Tools and Algorithms for the Construction and Analysis of Systems, 271–77. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45237-7_16.

Full text
Abstract:
Abstract We present a programming language for describing and analysing concurrent quantum systems. We have an interpreter for programs in the language, using a symbolic rather than a numeric calculator, and we give its performance on examples from quantum communication and cryptography.
APA, Harvard, Vancouver, ISO, and other styles
9

Peláez, Emilio, Minh Pham, and U. Shrikant. "Quantum Technologies I: Information, Communication, and Computation." In Quantum and Blockchain for Modern Computing Systems: Vision and Advancements, 1–54. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04613-1_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sharma, Avinash, Shivani Gaba, Shifali Singla, Suneet Kumar, Chhavi Saxena, and Rahul Srivastava. "A Genetic Improved Quantum Cryptography Model to Optimize Network Communication." In Algorithms for Intelligent Systems, 47–54. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0426-6_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Quantum communication systems"

1

Kamalov, N., and A. Klinskikh. "QUANTUM REPEATERS IN QUANTUM COMMUNICATION SYSTEMS." In PHYSICAL BASIS OF MODERN SCIENCE-INTENSIVE TECHNOLOGIES. FSBE Institution of Higher Education Voronezh State University of Forestry and Technologies named after G.F. Morozov, 2022. http://dx.doi.org/10.34220/pfmsit2022_95-100.

Full text
Abstract:
The paper considers the architecture of a quantum repeater based on the phenomenon of quantum teleportation with the implementation of the most entangled Bell states. Algorithms for quantum purification according to the Bennett and Deutsch protocols are given. As a result, a quantum repeater scheme with three nodes and entanglement exchange operations has been implemented. Quantum signals were simulated using the Qiskit package.
APA, Harvard, Vancouver, ISO, and other styles
2

Pinto, Armando N., Álvaro J. Almeida, Nuno A. Silva, Nelson J. Muga, and Luis M. Martins. "Engineering quantum communication systems." In SPIE Photonics Europe, edited by Thomas Durt and Victor N. Zadkov. SPIE, 2012. http://dx.doi.org/10.1117/12.921547.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Humble, Travis S., and Ronald J. Sadlier. "Software-defined quantum communication systems." In SPIE Optical Engineering + Applications, edited by Ronald E. Meyers, Yanhua Shih, and Keith S. Deacon. SPIE, 2013. http://dx.doi.org/10.1117/12.2025165.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhang, Qiang. "Deployed systems for quantum communications." In Optical Fiber Communication Conference. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/ofc.2018.tu3g.2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Schimpf, Christian, Armando Rastelli, Saimon Filipe Covre da Silva, Santanu Manna, Philip Walther, and Michal Vyvlecka. "Quantum communication with semiconductor quantum dots (Conference Presentation)." In Quantum Nanophotonic Materials, Devices, and Systems 2022, edited by Mario Agio, Igor Aharonovich, Cesare Soci, and Matthew T. Sheldon. SPIE, 2022. http://dx.doi.org/10.1117/12.2637842.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

McKinstrie, C. J. "Quantum physics in optical communication systems." In Optical Fiber Communication Conference. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/ofc.2011.owx1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

BELOKUROV, V. V., O. A. KHRUSTALEV, V. A. SADOVNICHY, and O. D. TIMOFEEVSKAYA. "SYSTEMS AND SUBSYSTEMS IN QUANTUM COMMUNICATION." In Proceedings of the XXII Solvay Conference on Physics. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812704634_0037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wei, Haiqing, and David V. Plant. "Quantum noise in optical communication systems." In Optical Science and Technology, SPIE's 48th Annual Meeting, edited by Mark A. Kahan. SPIE, 2004. http://dx.doi.org/10.1117/12.506472.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yin, Juan, Ji-Gang Ren, Sheng-Kai Liao, Yuan Cao, Ping Xu, Hai-Lin Yong, Wen-Qi Cai, et al. "Space-based quantum communication towards global quantum network." In 2017 IEEE International Conference on Space Optical Systems and Applications (ICSOS). IEEE, 2017. http://dx.doi.org/10.1109/icsos.2017.8357430.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lukin, Daniil, and Jelena Vuckovic. "Scalable semiconductor quantum systems." In Quantum Computing, Communication, and Simulation II, edited by Philip R. Hemmer and Alan L. Migdall. SPIE, 2022. http://dx.doi.org/10.1117/12.2615693.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Quantum communication systems"

1

Kwiat, Paul, Eric Chitambar, Andrew Conrad, and Samantha Isaac. Autonomous Vehicle-Based Quantum Communication Network. Illinois Center for Transportation, September 2022. http://dx.doi.org/10.36501/0197-9191/22-020.

Full text
Abstract:
Quantum communication was demonstrated using autonomous vehicle-to-vehicle (V2V), as well as autonomous vehicle-to-infrastructure (V2I). Supporting critical subsystems including compact size, weight, and power (SWaP) quantum sources; optical systems; and pointing, acquisition, and tracking (PAT) subsystems were designed, developed, and tested. Novel quantum algorithms were created and analyzed, including quantum position verification (QPV) for mobile autonomous vehicles. The results of this research effort can be leveraged in support of future cross-platform, mobile quantum communication networks that provide improved security, more accurate autonomous sensors, and connected quantum computing nodes for next-generation, smart-infrastructure systems.
APA, Harvard, Vancouver, ISO, and other styles
2

Nikulin, Vladimir V. Hybrid Steering Systems for Free-Space Quantum Communication. Fort Belvoir, VA: Defense Technical Information Center, March 2007. http://dx.doi.org/10.21236/ada465734.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Perdigão, Rui A. P. Beyond Quantum Security with Emerging Pathways in Information Physics and Complexity. Synergistic Manifolds, June 2022. http://dx.doi.org/10.46337/220602.

Full text
Abstract:
Information security and associated vulnerabilities have long been a pressing challenge, from the fundamental scientific backstage to the frontline across the most diverse sectors of society. At the tip of the iceberg of this problem, the citizens immediately feel that the reservation of privacy and the degradation of the quality and security of the information and communication on which they depend for the day-to-day activities, already of crucial relevance, are at stake. Naturally though, the challenges do not end there. There is a whole infrastructure for storing information, processing and communication, whose security and reliability depend on key sectors gearing modern society – such as emergency communication systems (medical, civil and environmental protection, among others), transportation and geographic information, the financial communications systems at the backbone of day-to-day transactions, the information and telecommunications systems in general. And crucially the entire defence ecosystem that in essence is a stalwart in preventing our civilisation to self-annihilate in full fulfilment of the second principle of thermodynamics. The relevance of the problem further encompasses the preservation of crucial values such as the right to information, security and integrity of democratic processes, internal administration, justice, defence and sovereignty, ranging from the well-being of the citizen to the security of the nation and beyond. In the present communication, we take a look at how to scientifically and technically empower society to address these challenges, with the hope and pragmatism enabled by our emerging pathways in information physics and complexity. Edging beyond classical and quantum frontiers and their vulnerabilities to unveil new principles, methodologies and technologies at the core of the next generation system dynamic intelligence and security. To illustrate the concepts and tools, rather than going down the road of engineered systems that we can ultimately control, we take aim at the bewildering complexity of nature, deciphering new secrets in the mathematical codex underlying its complex coevolutionary phenomena that so heavily impact our lives, and ultimately bringing out novel insights, methods and technologies that propel information physics and security beyond quantum frontiers.
APA, Harvard, Vancouver, ISO, and other styles
4

Perdigão, Rui A. P. Information physics and quantum space technologies for natural hazard sensing, modelling and prediction. Meteoceanics, September 2021. http://dx.doi.org/10.46337/210930.

Full text
Abstract:
Disruptive socio-natural transformations and climatic change, where system invariants and symmetries break down, defy the traditional complexity paradigms such as machine learning and artificial intelligence. In order to overcome this, we introduced non-ergodic Information Physics, bringing physical meaning to inferential metrics, and a coevolving flexibility to the metrics of information transfer, resulting in new methods for causal discovery and attribution. With this in hand, we develop novel dynamic models and analysis algorithms natively built for quantum information technological platforms, expediting complex system computations and rigour. Moreover, we introduce novel quantum sensing technologies in our Meteoceanics satellite constellation, providing unprecedented spatiotemporal coverage, resolution and lead, whilst using exclusively sustainable materials and processes across the value chain. Our technologies bring out novel information physical fingerprints of extreme events, with recently proven records in capturing early warning signs for extreme hydro-meteorologic events and seismic events, and do so with unprecedented quantum-grade resolution, robustness, security, speed and fidelity in sensing, processing and communication. Our advances, from Earth to Space, further provide crucial predictive edge and added value to early warning systems of natural hazards and long-term predictions supporting climatic security and action.
APA, Harvard, Vancouver, ISO, and other styles
5

Walmsley, Ian A. Quantum Communications Systems. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada564423.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Perdigão, Rui A. P. New Horizons of Predictability in Complex Dynamical Systems: From Fundamental Physics to Climate and Society. Meteoceanics, October 2021. http://dx.doi.org/10.46337/211021.

Full text
Abstract:
Discerning the dynamics of complex systems in a mathematically rigorous and physically consistent manner is as fascinating as intimidating of a challenge, stirring deeply and intrinsically with the most fundamental Physics, while at the same time percolating through the deepest meanders of quotidian life. The socio-natural coevolution in climate dynamics is an example of that, exhibiting a striking articulation between governing principles and free will, in a stochastic-dynamic resonance that goes way beyond a reductionist dichotomy between cosmos and chaos. Subjacent to the conceptual and operational interdisciplinarity of that challenge, lies the simple formal elegance of a lingua franca for communication with Nature. This emerges from the innermost mathematical core of the Physics of Coevolutionary Complex Systems, articulating the wealth of insights and flavours from frontier natural, social and technical sciences in a coherent, integrated manner. Communicating thus with Nature, we equip ourselves with formal tools to better appreciate and discern complexity, by deciphering a synergistic codex underlying its emergence and dynamics. Thereby opening new pathways to see the “invisible” and predict the “unpredictable” – including relative to emergent non-recurrent phenomena such as irreversible transformations and extreme geophysical events in a changing climate. Frontier advances will be shared pertaining a dynamic that translates not only the formal, aesthetical and functional beauty of the Physics of Coevolutionary Complex Systems, but also enables and capacitates the analysis, modelling and decision support in crucial matters for the environment and society. By taking our emerging Physics in an optic of operational empowerment, some of our pioneering advances will be addressed such as the intelligence system Earth System Dynamic Intelligence and the Meteoceanics QITES Constellation, at the interface between frontier non-linear dynamics and emerging quantum technologies, to take the pulse of our planet, including in the detection and early warning of extreme geophysical events from Space.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography