Journal articles on the topic 'Quantum chromodynamics'

To see the other types of publications on this topic, follow the link: Quantum chromodynamics.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Quantum chromodynamics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

't Hooft, G. "Quantum chromodynamics." Annalen der Physik 512, no. 11-12 (November 2000): 925–26. http://dx.doi.org/10.1002/andp.200051211-1210.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Llewellyn Smith, C. H. "Quantum chromodynamics." Contemporary Physics 29, no. 4 (July 1988): 407–9. http://dx.doi.org/10.1080/00107518808213767.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

't Hooft, G. "Quantum chromodynamics." Annalen der Physik 9, no. 11-12 (November 2000): 925–26. http://dx.doi.org/10.1002/1521-3889(200011)9:11/12<925::aid-andp925>3.0.co;2-s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cahill, RT. "On the Importance of Self-interaction in QCD." Australian Journal of Physics 44, no. 3 (1991): 105. http://dx.doi.org/10.1071/ph910105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The electromagnetic self-energy of charged particles has remained a problem in classical as well as in quantum electrodynamics. In contrast here, in a review of the analysis of the chromodynamic self-energy of quarks in quantum chromodynamics (QCD), we see that the quark self-energy is a finite and a dominant effect in determining the structure of hadrons.
5

Chanyal, B. C., P. S. Bisht, Tianjun Li, and O. P. S. Negi. "Octonion Quantum Chromodynamics." International Journal of Theoretical Physics 51, no. 11 (June 15, 2012): 3410–22. http://dx.doi.org/10.1007/s10773-012-1222-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ioffe, B. L. "Condensates in quantum chromodynamics." Physics of Atomic Nuclei 66, no. 1 (January 2003): 30–43. http://dx.doi.org/10.1134/1.1540654.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

BROWER, RICHARD C., YUE SHEN, and CHUNG-I. TAN. "CHIRALLY EXTENDED QUANTUM CHROMODYNAMICS." International Journal of Modern Physics C 06, no. 05 (October 1995): 725–42. http://dx.doi.org/10.1142/s0129183195000599.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
We propose an extended Quantum Chromodynamics (XQCD) Lagrangian in which the fermions are coupled to elementary scalar fields through a Yukawa coupling which preserves chiral invariance. Our principle motivation is to find a new lattice formulation for QCD which avoids the source of critical slowing down usually encountered as the bare quark mass is tuned to the chiral limit. The phase diagram and the weak coupling limit for XQCD are studied. They suggest a conjecture that the continuum limit of XQCD is the same as the continuum limit of conventional lattice formulation of QCD. As examples of such universality, we present the large N solutions of two prototype models for XQCD, in which the mass of the spurious pion and sigma resonance go to infinity with the cut-off. Even if the universality conjecture turns out to be false, we believe that XQCD will still be useful as a low energy effective action for QCD phenomenology on the lattice. Numerical simulations are recommended to further investigate the possible benefits of XQCD in extracting QCD predictions.
8

Close, Frank. "Confirmation for quantum chromodynamics." Nature 353, no. 6344 (October 1991): 498–99. http://dx.doi.org/10.1038/353498a0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Vranas, P., M. A. Blumrich, D. Chen, A. Gara, M. E. Giampapa, P. Heidelberger, V. Salapura, J. C. Sexton, R. Soltz, and G. Bhanot. "Massively parallel quantum chromodynamics." IBM Journal of Research and Development 52, no. 1.2 (January 2008): 189–97. http://dx.doi.org/10.1147/rd.521.0189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bakker, B. L. G., A. Bassetto, S. J. Brodsky, W. Broniowski, S. Dalley, T. Frederico, S. D. Głazek, et al. "Light-front quantum chromodynamics." Nuclear Physics B - Proceedings Supplements 251-252 (June 2014): 165–74. http://dx.doi.org/10.1016/j.nuclphysbps.2014.05.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

BUTTERWORTH, JON M. "QUANTUM CHROMODYNAMICS AT COLLIDERS." International Journal of Modern Physics A 21, no. 08n09 (April 10, 2006): 1792–804. http://dx.doi.org/10.1142/s0217751x06032769.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
QCD is the accepted (that is, the effective) theory of the strong interaction; studies at colliders are no longer designed to establish this. Such studies can now be divided into two categories. The first involves the identification of observables which can be both measured and predicted at the level of a few percent. Such studies parallel those of the electroweak sector over the past fifteen years, and deviations from expectations would be a sign of new physics. These observables provide a firm "place to stand" from which to extend our understanding. This links to the second category of study, where one deliberately moves to regions in which the usual theoretical tools fail; here new approximations in QCD are developed to increase our portfolio of understood processes, and hence our sensitivity to new physics. Recent progress in both these aspects of QCD at colliders is discussed.
12

CORNWALL, JOHN M. "ENTROPY IN QUANTUM CHROMODYNAMICS." Modern Physics Letters A 27, no. 09 (March 21, 2012): 1230011. http://dx.doi.org/10.1142/s021773231230011x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
We review the role of zero-temperature entropy in several closely-related contexts in QCD. The first is entropy associated with disordered condensates, including [Formula: see text]. The second is effective vacuum entropy arising from QCD solitons such as center vortices, yielding confinement and chiral symmetry breaking. The third is entanglement entropy, which is entropy associated with a pure state, such as the QCD vacuum, when the state is partially unobserved and unknown. Typically, entanglement entropy of an unobserved three-volume scales not with the volume but with the area of its bounding surface. The fourth manifestation of entropy in QCD is the configurational entropy of light-particle world-lines and flux tubes; we argue that this entropy is critical for understanding how confinement produces chiral symmetry breakdown, as manifested by a dynamically-massive quark, a massless pion, and a [Formula: see text] condensate.
13

Brower, Richard C. "Chirally extended quantum chromodynamics." Nuclear Physics B - Proceedings Supplements 34 (April 1994): 210–12. http://dx.doi.org/10.1016/0920-5632(94)90347-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

SISSAKIAN, A. N., I. L. SOLOVTSOV, and O. P. SOLOVTSOVA. "NONPERTURBATIVE β-FUNCTION IN QUANTUM CHROMODYNAMICS." Modern Physics Letters A 09, no. 26 (August 30, 1994): 2437–43. http://dx.doi.org/10.1142/s0217732394002318.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
We propose a method by which it is possible to go beyond the scope of quantum chromodynamics perturbation theory. By using a new small parameter we formulate a systematic nonperturbative expansion and derive a renormalization β-function in quantum chromodynamics.
15

Efimov, G. V. "Stability of Quantum Electrodynamics and Quantum Chromodynamics." Theoretical and Mathematical Physics 141, no. 1 (October 2004): 1398–414. http://dx.doi.org/10.1023/b:tamp.0000043856.41940.3c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Dremin, Igor M. "Quantum chromodynamics and multiplicity distributions." Uspekhi Fizicheskih Nauk 164, no. 8 (1994): 785. http://dx.doi.org/10.3367/ufnr.0164.199408a.0785.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Kozlov, Mikhail G., Alexey V. Reznichenko, and Victor S. Fadin. "Quantum chromodynamics at high energies." Siberian Journal of Physics 2, no. 4 (2007): 3–31. http://dx.doi.org/10.54238/1818-7994-2007-2-4-3-31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Kronfeld, A. S. "Quantum chromodynamics with advanced computing." Journal of Physics: Conference Series 125 (July 1, 2008): 012067. http://dx.doi.org/10.1088/1742-6596/125/1/012067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Horsley, Roger, and Wim Schoenmaker. "Transport Coefficients of Quantum Chromodynamics." Physical Review Letters 57, no. 23 (December 8, 1986): 2894–96. http://dx.doi.org/10.1103/physrevlett.57.2894.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Dremin, Igor M. "Multiparticle production and quantum chromodynamics." Physics-Uspekhi 45, no. 5 (May 31, 2002): 507–25. http://dx.doi.org/10.1070/pu2002v045n05abeh001088.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Iwasaki, Yoichi, Kazuyuki Kanaya, Shogo Kaya, Sunao Sakai, and Tomoteru Yoshié. "Quantum Chromodynamics with Many Flavors." Progress of Theoretical Physics Supplement 131 (1998): 415–26. http://dx.doi.org/10.1143/ptps.131.415.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Meyer-Ortmanns, Hildegard. "Phase transitions in quantum chromodynamics." Reviews of Modern Physics 68, no. 2 (April 1, 1996): 473–598. http://dx.doi.org/10.1103/revmodphys.68.473.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Mateos, David. "String theory and quantum chromodynamics." Classical and Quantum Gravity 24, no. 21 (October 15, 2007): S713—S739. http://dx.doi.org/10.1088/0264-9381/24/21/s01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Fritzsch, H. "The history of quantum chromodynamics." International Journal of Modern Physics A 34, no. 01 (January 10, 2019): 1930001. http://dx.doi.org/10.1142/s0217751x19300011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Dremin, Igor M. "Multiparticle production and quantum chromodynamics." Uspekhi Fizicheskih Nauk 172, no. 5 (2002): 551. http://dx.doi.org/10.3367/ufnr.0172.200205b.0551.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Gupta, Suraj N., and Stanley F. Radford. "Quark confinement in quantum chromodynamics." Physical Review D 32, no. 3 (August 1, 1985): 781–83. http://dx.doi.org/10.1103/physrevd.32.781.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Larsson, Tomas I. "Nonperturbative propagators in quantum chromodynamics." Physical Review D 32, no. 4 (August 15, 1985): 956–61. http://dx.doi.org/10.1103/physrevd.32.956.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Dremin, Igor M. "Quantum chromodynamics and multiplicity distributions." Physics-Uspekhi 37, no. 8 (August 31, 1994): 715–36. http://dx.doi.org/10.1070/pu1994v037n08abeh000037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Sisakyan, A. N. "Variational expansions in quantum chromodynamics." Physics of Particles and Nuclei 30, no. 5 (September 1999): 461. http://dx.doi.org/10.1134/1.953115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Bazavov, Alexei, and Johannes Heinrich Weber. "Color screening in quantum chromodynamics." Progress in Particle and Nuclear Physics 116 (January 2021): 103823. http://dx.doi.org/10.1016/j.ppnp.2020.103823.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Rapuano, F. "Quantum Chromodynamics on the lattice." Nuclear Physics A 623, no. 1-2 (September 1997): 81–89. http://dx.doi.org/10.1016/s0375-9474(97)00425-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Bowler, Kenneth C., and Anthony J. G. Hey. "Parallel computing and quantum chromodynamics." Parallel Computing 25, no. 13-14 (December 1999): 2111–34. http://dx.doi.org/10.1016/s0167-8191(99)00081-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Belyaev, V. M., and B. Yu Blok. "Charmed baryons in quantum chromodynamics." Zeitschrift für Physik C Particles and Fields 30, no. 1 (March 1986): 151–56. http://dx.doi.org/10.1007/bf01560689.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Sridhar, K., Sunanda Banerjee, Swagato Banerjee, Rahul Basu, Fawzi Boudjema, Michel Fontannaz, Rajiv Gavai, et al. "Quantum chromodynamics: Working group report." Pramana 51, no. 1-2 (July 1998): 297–304. http://dx.doi.org/10.1007/bf02827499.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Andrianov, A. A., V. A. Andrianov, V. Yu Novozhilov, and Yu V. Novozhilov. "Chiral bag in quantum chromodynamics." Theoretical and Mathematical Physics 74, no. 1 (January 1988): 99–101. http://dx.doi.org/10.1007/bf01018217.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Dosch, H. G. "Nonperturbative methods in quantum chromodynamics." Progress in Particle and Nuclear Physics 33 (January 1994): 121–99. http://dx.doi.org/10.1016/0146-6410(94)90044-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Banerjee, Sunanda. "Quantum chromodynamics studies at LEP2." Pramana 55, no. 1-2 (July 2000): 85–100. http://dx.doi.org/10.1007/s12043-000-0086-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Gupta, Sourendu, D. Indumathi, S. Banerjee, R. Basu, M. Dittmar, RV Gavai, F. Gelis, et al. "Quantum chromodynamics: Working group report." Pramana 55, no. 1-2 (July 2000): 327–33. http://dx.doi.org/10.1007/s12043-000-0112-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Del Duca, Vittorio. "Quantum chromodynamics at hadron colliders." Pramana 67, no. 5 (November 2006): 861–73. http://dx.doi.org/10.1007/s12043-006-0098-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Ravindran, V., Pankaj Agrawal, Rahul Basu, Satyaki Bhattacharya, J. Blümlein, V. Del Duca, R. Harlander, D. Kosower, Prakash Mathews, and Anurag Tripathi. "Working group report: Quantum chromodynamics." Pramana 67, no. 5 (November 2006): 983–92. http://dx.doi.org/10.1007/s12043-006-0107-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

SHIFMAN, M. "PERSISTENT CHALLENGES OF QUANTUM CHROMODYNAMICS." International Journal of Modern Physics A 21, no. 28n29 (November 20, 2006): 5695–719. http://dx.doi.org/10.1142/s0217751x06034914.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Unlike some models whose relevance to Nature is still a big question mark, Quantum Chromodynamics (QCD) will stay with us forever. QCD, born in 1973, is a very rich theory supposed to describe the widest range of strong interaction phenomena: from nuclear physics to Regge behavior at large E, from color confinement to quark–gluon matter at high densities/temperatures (neutron stars); the vast horizons of the hadronic world: chiral dynamics, glueballs, exotics, light and heavy quarkonia and mixtures thereof, exclusive and inclusive phenomena, interplay between strong forces and weak interactions, etc. Efforts aimed at solving the underlying theory, QCD, continue. In a remarkable entanglement, theoretical constructions of the 1970's and 1990's combine with today's ideas based on holographic description and strong–weak coupling duality, to provide new insights and a deeper understanding.
42

NISHIJIMA, KAZUHIKO, and IZURU DEMIZU. "RENORMALIZATION CONSTANTS IN QUANTUM CHROMODYNAMICS." International Journal of Modern Physics A 13, no. 09 (April 10, 1998): 1507–13. http://dx.doi.org/10.1142/s0217751x98000664.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The gauge dependence of the renormalization constant of the quark field has been studied with the help of the renormalization group method. In the case of the color gauge field an exact evaluation of the renormalization constant is feasible because of the presence of a sum rule, but in the absence of the corresponding sum rule, only a qualitative evaluation is possible for the quark field.
43

Luo, Xiang-Qian, Qizhou Chen, Shouhong Guo, Xiyan Fang, and Jinming Liu. "Glueball masses in quantum chromodynamics." Nuclear Physics B - Proceedings Supplements 53, no. 1-3 (February 1997): 243–45. http://dx.doi.org/10.1016/s0920-5632(96)00626-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Gavai, Rajiv V. "Lattice quantum chromodynamics: Some topics." Pramana 61, no. 5 (November 2003): 889–99. http://dx.doi.org/10.1007/bf02704457.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Forghan, B., and M. R. Tanhayi. "Krein regularization of quantum chromodynamics." Modern Physics Letters A 30, no. 26 (August 13, 2015): 1550126. http://dx.doi.org/10.1142/s0217732315501266.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
In this paper, we use Krein regularization to study certain standard computations in quantum chromodynamics (QCD). In this method, the auxiliary modes[Formula: see text]— those with negative norms[Formula: see text]— are employed to calculate the quark self-energy, vacuum polarizations and vertex functions. We explicitly show that after making use of these modes and by taking into account the quantum metric fluctuation for the problems at hand, the conventional results can indeed be reproduced; but with the advantage of finite answers which require fewer mathematical procedures. An obvious merit of this approach is that the theory is naturally renormalized. The ultraviolet (UV) divergences disappear due to the presence of negative norm state, similar to the Pauli–Villars regularization method. We compare the answers of Krein regularization with the results of calculations which have been done in Hilbert space.
46

Dokshitzer, Yuri L. "Quantum chromodynamics and hadron dynamics." Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 359, no. 1779 (February 15, 2001): 309–24. http://dx.doi.org/10.1098/rsta.2000.0728.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Forshaw, Jeffrey R., Douglas A. Ross, and Carl R. Schmidt. "Quantum Chromodynamics and the Pomeron." Physics Today 51, no. 10 (October 1998): 86–88. http://dx.doi.org/10.1063/1.882397.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Bethke, S. "Experimental verifications of quantum chromodynamics." Modern Physics Letters A 34, no. 17 (June 7, 2019): 1950225. http://dx.doi.org/10.1142/s0217732319502250.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Huang, Tao, and Zheng Huang. "Quantum chromodynamics in background fields." Physical Review D 39, no. 4 (February 15, 1989): 1213–20. http://dx.doi.org/10.1103/physrevd.39.1213.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Mathews, Prakash, Rahul Basu, D. Indumathi, E. Laenen, Swapan Majhi, Anuradha Misra, Asmita Mukherjee, and W. Vogelsang. "Working group report: Quantum chromodynamics." Pramana 63, no. 6 (December 2004): 1367–79. http://dx.doi.org/10.1007/bf02704902.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography