Academic literature on the topic 'Quantum channels on a graph state'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Quantum channels on a graph state.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Quantum channels on a graph state"
Liao, Longxia, Xiaoqi Peng, Jinjing Shi, and Ying Guo. "Graph state-based quantum authentication scheme." International Journal of Modern Physics B 31, no. 09 (April 10, 2017): 1750067. http://dx.doi.org/10.1142/s0217979217500679.
Full textHonrubia, Efrén, and Ángel S. Sanz. "Graph Approach to Quantum Teleportation Dynamics." Quantum Reports 2, no. 3 (July 10, 2020): 352–77. http://dx.doi.org/10.3390/quantum2030025.
Full textPiveteau, Christophe, and Joseph M. Renes. "Quantum message-passing algorithm for optimal and efficient decoding." Quantum 6 (August 23, 2022): 784. http://dx.doi.org/10.22331/q-2022-08-23-784.
Full textLowe, Angus, Matija Medvidović, Anthony Hayes, Lee J. O'Riordan, Thomas R. Bromley, Juan Miguel Arrazola, and Nathan Killoran. "Fast quantum circuit cutting with randomized measurements." Quantum 7 (March 2, 2023): 934. http://dx.doi.org/10.22331/q-2023-03-02-934.
Full textErementchouk, Mikhail, and Michael N. Leuenberger. "Entanglement Dynamics of Second Quantized Quantum Fields." ISRN Mathematical Physics 2014 (January 28, 2014): 1–19. http://dx.doi.org/10.1155/2014/264956.
Full textColafranceschi, Eugenia, and Gerardo Adesso. "Holographic entanglement in spin network states: A focused review." AVS Quantum Science 4, no. 2 (June 2022): 025901. http://dx.doi.org/10.1116/5.0087122.
Full textBannink, Tom, Jop Briët, Farrokh Labib, and Hans Maassen. "Quasirandom quantum channels." Quantum 4 (July 16, 2020): 298. http://dx.doi.org/10.22331/q-2020-07-16-298.
Full textLi, Si-Chen, Bang-Ying Tang, Han Zhou, Hui-Cun Yu, Bo Liu, Wan-Rong Yu, and Bo Liu. "First Request First Service Entanglement Routing Scheme for Quantum Networks." Entropy 24, no. 10 (October 1, 2022): 1404. http://dx.doi.org/10.3390/e24101404.
Full textBenjamin, Simon C., Daniel E. Browne, Joe Fitzsimons, and John J. L. Morton. "Brokered graph-state quantum computation." New Journal of Physics 8, no. 8 (August 23, 2006): 141. http://dx.doi.org/10.1088/1367-2630/8/8/141.
Full textAntonio, B., D. Markham, and J. Anders. "Adiabatic graph-state quantum computation." New Journal of Physics 16, no. 11 (November 26, 2014): 113070. http://dx.doi.org/10.1088/1367-2630/16/11/113070.
Full textDissertations / Theses on the topic "Quantum channels on a graph state"
MEDEIROS, Rex Antonio da Costa. "Zero-Error capacity of quantum channels." Universidade Federal de Campina Grande, 2008. http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/1320.
Full textMade available in DSpace on 2018-08-01T21:11:37Z (GMT). No. of bitstreams: 1 REX ANTONIO DA COSTA MEDEIROS - TESE PPGEE 2008..pdf: 1089371 bytes, checksum: ea0c95501b938e0d466779a06faaa4f6 (MD5) Previous issue date: 2008-05-09
Nesta tese, a capacidade erro-zero de canais discretos sem memória é generalizada para canais quânticos. Uma nova capacidade para a transmissão de informação clássica através de canais quânticos é proposta. A capacidade erro-zero de canais quânticos (CEZQ) é definida como sendo a máxima quantidade de informação por uso do canal que pode ser enviada através de um canal quântico ruidoso, considerando uma probabilidade de erro igual a zero. O protocolo de comunicação restringe palavras-código a produtos tensoriais de estados quânticos de entrada, enquanto que medições coletivas entre várias saídas do canal são permitidas. Portanto, o protocolo empregado é similar ao protocolo de Holevo-Schumacher-Westmoreland. O problema de encontrar a CEZQ é reformulado usando elementos da teoria de grafos. Esta definição equivalente é usada para demonstrar propriedades de famílias de estados quânticos e medições que atingem a CEZQ. É mostrado que a capacidade de um canal quântico num espaço de Hilbert de dimensão d pode sempre ser alcançada usando famílias compostas de, no máximo,d estados puros. Com relação às medições, demonstra-se que medições coletivas de von Neumann são necessárias e suficientes para alcançar a capacidade. É discutido se a CEZQ é uma generalização não trivial da capacidade erro-zero clássica. O termo não trivial refere-se a existência de canais quânticos para os quais a CEZQ só pode ser alcançada através de famílias de estados quânticos não-ortogonais e usando códigos de comprimento maior ou igual a dois. É investigada a CEZQ de alguns canais quânticos. É mostrado que o problema de calcular a CEZQ de canais clássicos-quânticos é puramente clássico. Em particular, é exibido um canal quântico para o qual conjectura-se que a CEZQ só pode ser alcançada usando uma família de estados quânticos não-ortogonais. Se a conjectura é verdadeira, é possível calcular o valor exato da capacidade e construir um código de bloco quântico que alcança a capacidade. Finalmente, é demonstrado que a CEZQ é limitada superiormente pela capacidade de Holevo-Schumacher-Westmoreland.
Tan, Si Hui Ph D. Massachusetts Institute of Technology. "Quantum state discrimination with bosonic channels and Gaussian states." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/79253.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 161-166).
Discriminating between quantum states is an indispensable part of quantum information theory. This thesis investigates state discrimination of continuous quantum variables, focusing on bosonic communication channels and Gaussian states. The specific state discrimination problems studied are (a) quantum illumination and (b) optimal measurements for decoding bosonic channels. Quantum illumination is a technique for detection and imaging which uses entanglement between a probe and an ancilla to enhance sensitivity. I shall show how entanglement can help with the discrimination between two noisy and lossy bosonic channels, one in which a target reflects back a small part of the probe light, and the other in which all probe light is lost. This enhancement is obtained even though the channels are entanglement-breaking. The main result of this study is that, under optimum detection in the asymptotic limit of many detection trials, 6 dB of improvement in the error exponent can be achieved by using an entangled state as compared to a classical state. In the study of optimal measurements for decoding bosonic channels, I shall present an alternative measurement to the pretty-good measurement for attaining the classical capacity of the lossy bosonic channel given product coherent-state inputs. This new measurement has the feature that, at each step of the measurement, only projective measurements are needed. The measurement is a sequential one: the number of steps required is exponential in the code length, and the error rate of this measurement goes to zero in the limit of large code length. Although not physically practical in itself, this new measurement has a simple physical interpretation in terms of collective energy measurements, and may give rise to an implementation of an optimal measurement for lossy bosonic channels. The two problems studied in my thesis are examples of how state discrimination can be useful in solving problems by using quantum mechanical properties such as entanglement and entangling measurements.
by Si Hui Tan.
Ph.D.
Bondarenko, Dmytro [Verfasser]. "Constructing networks of quantum channels for state preparation / Dmytro Bondarenko." Hannover : Gottfried Wilhelm Leibniz Universität, 2021. http://d-nb.info/1235138682/34.
Full textQu, Zhen, and Ivan B. Djordjevic. "Four-Dimensionally Multiplexed Eight-State Continuous-Variable Quantum Key Distribution Over Turbulent Channels." IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2017. http://hdl.handle.net/10150/626439.
Full textSun, Xiaole, Ivan B. Djordjevic, and Mark A. Neifeld. "Secret Key Rates and Optimization of BB84 and Decoy State Protocols Over Time-Varying Free-Space Optical Channels." IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2016. http://hdl.handle.net/10150/621687.
Full textYang, Min-Chieh, and 楊閔傑. "Quantum Error Correction for Noisy Quantum Channels in Optical Coherent State Quantum Information Processing." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/26414397901156461604.
Full text國立中正大學
物理學系暨研究所
101
Starting from the derived exact master equation from Zhang, et al. , we study the photon-loss dissipation of optical coherent-state qubits coupled to a reservoir at zero temperature. We consider an environment of Lorentzian coupling spectrum and apply the results of single qubit from solving the master equation to a pair of spatially separated entangled qubits subject to local environment noises. We demonstrate that the entanglement dynamics of the system can be switched between Markovian and non-Markovian limits by controlling the coupling bandwidth to the environment and their coupling efficiency can be manipulated by tuning the coupling detuning. Entanglement sudden death may take place with qubits of larger amplitude(|\alpha| > 0.6). Besides, through concurrence, fidelity and von Neumann entropy, we numerically verified that a more efficient error correction efficiency can be achieved by employing phase-flip scheme on the system proposed by Munhoz, et al. which subject to a photon-loss channel.
Li, Pei-Hsaun, and 李佩璇. "Entanglement Purification for Noisy Optical Coherent-State Quantum Channels." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/39645791785660464754.
Full text國立中正大學
物理學系暨研究所
101
We investigate an entanglement purification protocol suggested by Jeong and Ralph for coherent-state quantum information processing. We study in detail the purification of a (quasi) Bell-state quantum channel subject to photon loss utilizing this protocol and also extend its application to general Werner-type mixed states. We compare this protocol with its discrete-variable counterpart and show that a lower fidelity threshold and higher efficiency for purification are attained.
Books on the topic "Quantum channels on a graph state"
Beenakker, Carlo W. J. Classical and quantum optics. Edited by Gernot Akemann, Jinho Baik, and Philippe Di Francesco. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780198744191.013.36.
Full textBook chapters on the topic "Quantum channels on a graph state"
Finco, Domenico. "On the Ground State for the NLS Equation on a General Graph." In Advances in Quantum Mechanics, 153–67. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58904-6_9.
Full textTakahashi, Yasuhiro. "Simple Sets of Measurements for Universal Quantum Computation and Graph State Preparation." In Theory of Quantum Computation, Communication, and Cryptography, 26–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-18073-6_3.
Full textKrech, W., and F. Seume. "Quantum Decay of the Coulomb Blockade State in an Array of Two Ultrasmall Tunnel Junctions with General Channels of Tunneling." In Springer Series in Electronics and Photonics, 71–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77274-0_7.
Full textKaye, Phillip, Raymond Laflamme, and Michele Mosca. "Superdense Coding and Quantum Teleportation." In An Introduction to Quantum Computing. Oxford University Press, 2006. http://dx.doi.org/10.1093/oso/9780198570004.003.0008.
Full textGuha Majumdar, Mrittunjoy. "Can We Entangle Entanglement?" In Topics on Quantum Information Science [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.98535.
Full text"Second quantization." In The Quantum Classical Theory, edited by Gert D. Billing. Oxford University Press, 2003. http://dx.doi.org/10.1093/oso/9780195146196.003.0008.
Full textJasim, Omer K., Safia Abbas, El-Sayed M. El-Horbaty, and Abdel-Badeeh M. Salem. "CCCE." In Advances in Systems Analysis, Software Engineering, and High Performance Computing, 71–99. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-9834-5.ch004.
Full textJasim, Omer K., Safia Abbas, El-Sayed M. El-Horbaty, and Abdel-Badeeh M. Salem. "CCCE." In Cloud Security, 524–51. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-8176-5.ch027.
Full textChristine Almeida Silva, Anielle, Jerusa Maria de Oliveira, Kelen Talita Romão da Silva, Francisco Rubens Alves dos Santos, João Paulo Santos de Carvalho, Rose Kethelyn Souza Avelino, Eurípedes Alves da Silva Filho, et al. "Fluorescent Markers: Proteins and Nanocrystals." In Bioluminescence [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.96675.
Full textConference papers on the topic "Quantum channels on a graph state"
Bae, Joonwoo. "Optimal state discrimination over quantum channels." In Quantum Communications and Quantum Imaging XVII, edited by Keith S. Deacon. SPIE, 2019. http://dx.doi.org/10.1117/12.2525569.
Full textYan, Lei, Peng Luo, Hanyu Cui, Ronghua Shi, and Ying Guo. "Quantum Route Selection based on Graph State." In 2016 4th International Conference on Machinery, Materials and Computing Technology. Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/icmmct-16.2016.224.
Full textPopov, Anton I., Igor Y. Popov, and Dmitry A. Gerasimov. "Resonance state completeness problem for quantum graph." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2016). Author(s), 2017. http://dx.doi.org/10.1063/1.4992567.
Full textXie, Wenbo, Wenhan Dai, and Don Towsley. "Graph State Distribution: Integer Formulation." In 2021 IEEE International Conference on Quantum Computing and Engineering (QCE). IEEE, 2021. http://dx.doi.org/10.1109/qce52317.2021.00085.
Full textUlibarrena, Andrés, Jonathan W. Webb, Federico Graselli, Joseph Ho, Gláucia Murta, and Alessandro Fedrizzi. "Photonic graph state anonymous quantum conference key agreement." In Quantum Technology: Driving Commercialisation of an Enabling Science III, edited by Kai Bongs, Miles J. Padgett, Alessandro Fedrizzi, and Alberto Politi. SPIE, 2023. http://dx.doi.org/10.1117/12.2644977.
Full textGilbert, Gerald, Michael Hamrick, and Yaakov S. Weinstein. "Construction of Cluster States Using Graph State Equivalence Classes." In International Conference on Quantum Information. Washington, D.C.: OSA, 2007. http://dx.doi.org/10.1364/icqi.2007.jwc67.
Full textRenault, P., J. Nokkala, N. Treps, J. Piilo, and V. Parigi. "Spectral Density and non Markovianity Measurements via Graph State Simulation." In Quantum Information and Measurement. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/qim.2021.w3a.2.
Full textBoroson, Don, Nicholas Hardy, Matthew Grein, P. Benjamin Dixon, Catherine Lee, Scott Hamilton, and Neal Spellmeyer. "An Architecture for Synchronizing Photonic Bell State Measurements Across Lossy, Time-Varying Channels." In Quantum 2.0. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/quantum.2020.qth7b.18.
Full textChang, Chun-Hung, Xuan Zhu, and Olivier Pfister. "Experimental Generation of a Multipartite Entangled Graph State in the Quantum Optical Frequency Comb." In Quantum 2.0. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/quantum.2020.qm4b.6.
Full textGualdi, Giulia, Irene Marzoli, and Paolo Tombesi. "Spin-Chains as Quantum Channels for Qubit-State Transfer." In 2009 Third International Conference on Quantum, Nano and Micro Technologies (ICQNM). IEEE, 2009. http://dx.doi.org/10.1109/icqnm.2009.16.
Full text