To see the other types of publications on this topic, follow the link: Quantum advantage.

Books on the topic 'Quantum advantage'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 17 books for your research on the topic 'Quantum advantage.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse books on a wide variety of disciplines and organise your bibliography correctly.

1

Alyukov, Sergey. Approximation of piecewise linear and generalized functions. ru: INFRA-M Academic Publishing LLC., 2024. http://dx.doi.org/10.12737/2104876.

Full text
Abstract:
The monograph is devoted to piecewise linear and generalized functions. They are widely used in various fields of research: in the theory of signal transmission and transformation, quantum field theory, control theory, problems of nonlinear dynamics, structural mechanics, semiconductor theory, economic applications, medicine, description of impulse effects and many others. When creating mathematical models, in some cases it is necessary to approximate these functions using analytical expressions, but not in the form of linear combinations, as in known methods, but in the form of attachments, compositions, using recursive sequences. The considered methods are devoid of the disadvantages of Fourier series and have advantages over other approximation methods. The developed approximation methods help to understand the meaning and content of generalized functions and their derivatives, and contribute to the conscious application of these functions in mathematical modeling problems. These methods can be used in a wide range of applied research, from medicine to quantum electronics. The theoretical material is illustrated by a large number of practical examples from a wide variety of applied fields. The fundamentals of the developed macroeconomic theory with impulse, shock, spasmodic characteristics and other types of rapidly changing processes are presented. For mathematicians, students and teachers, and specialists working in applied research fields.
APA, Harvard, Vancouver, ISO, and other styles
2

Yudaev, Vasiliy. Hydraulics. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/996354.

Full text
Abstract:
The textbook corresponds to the general education programs of the general courses "Hydraulics" and "Fluid Mechanics". The basic physical properties of liquids, gases, and their mixtures, including the quantum nature of viscosity in a liquid, are described; the laws of hydrostatics, their observation in natural phenomena, and their application in engineering are described. The fundamentals of the kinematics and dynamics of an incompressible fluid are given; original examples of the application of the Bernoulli equation are given. The modes of fluid motion are supplemented by the features of the transient flow mode at high local resistances. The basics of flow similarity are shown. Laminar and turbulent modes of motion in pipes are described, and the classification of flows from a creeping current to four types of hypersonic flow around the body is given. The coefficients of nonuniformity of momentum and kinetic energy for several flows of Newtonian and non-Newtonian fluids are calculated. Examples of solving problems of transient flows by hydraulic methods are given. Local hydraulic resistances, their use in measuring equipment and industry, hydraulic shock, polytropic flow of gas in the pipe and its outflow from the tank are considered. The characteristics of different types of pumps, their advantages and disadvantages, and ways of adjustment are described. A brief biography of the scientists mentioned in the textbook is given, and their contribution to the development of the theory of hydroaeromechanics is shown. The four appendices can be used as a reference to the main text, as well as a subject index. Meets the requirements of the federal state educational standards of higher education of the latest generation. For students of higher educational institutions who study full-time, part-time, evening, distance learning forms of technological and mechanical specialties belonging to the group "Food Technology".
APA, Harvard, Vancouver, ISO, and other styles
3

Schwartz, Steven A. The Big Book of Nintendo Games. Greensboro, USA: Compute Books, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Quantum Machine Learning and Optimisation in Finance: On the Road to Quantum Advantage. Packt Publishing, Limited, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

IBM Institute for Business Value. Quantum Decade: A Playbook for Achieving Awareness, Readiness, and Advantage. IBM Institute for Business Value, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

IBM Institute for Business Value. Quantum Decade: A Playbook for Achieving Awareness, Readiness, and Advantage. IBM Institute for Business Value, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Stewart, Mark. The Quantum Advantage: A Practical Leadership Guide for Middle Managers. Blackhall Publishing, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Quantum Decade : A Playbook for Achieving Awareness, Readiness, and Advantage: Third Edition. IBM Institute for Business Value, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Baron, Vida C. Environment Energizers: The Quantum Advantage, How to Energize Your Inner and External Environment for Greater Creativity, Productivity, Health. Authorhouse, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Flarend, Alice, and Robert Hilborn. Quantum Computing: From Alice to Bob. Oxford University Press, 2022. http://dx.doi.org/10.1093/oso/9780192857972.001.0001.

Full text
Abstract:
Quantum Computing: From Alice to Bob provides a distinctive and accessible introduction to the rapidly growing fields of quantum information science (QIS) and quantum computing (QC). The book is designed for undergraduate students and upper-level secondary school students with little or no background in physics, computer science, or mathematics beyond secondary school algebra and trigonometry. While broadly accessible, the book provides a solid conceptual and formal understanding of quantum states and entanglement—the key ingredients in quantum computing. The authors give detailed treatments of many of the classic quantum algorithms that demonstrate how and when QC has an advantage over classical computers. The book provides a solid explanation of the physics of QC and QIS and then weds that knowledge to the mathematics of QC algorithms and how those algorithms deploy the principles of quantum physics to solve the problem. This book connects the physics concepts, the computer science vocabulary, and the mathematics, providing a complete picture of how QIS and QC work. The authors give multiple representations of the concept—textual, graphical, and symbolic (state vectors, matrices, and Dirac notation)—which are the lingua franca of QIS and QC. Those multiple representations allow the readers to develop a broader and deeper understanding of the fundamental concepts and their applications. In addition, the book provides examples of recent experimental demonstrations of quantum teleportation and the applications of quantum computational chemistry. The last chapter connects to the growing commercial world of QC and QIS and provides recommendations for further study.
APA, Harvard, Vancouver, ISO, and other styles
11

Busemeyer, Jerome R., Zheng Wang, and Emmanuel Pothos. Quantum Models of Cognition and Decision. Edited by Jerome R. Busemeyer, Zheng Wang, James T. Townsend, and Ami Eidels. Oxford University Press, 2015. http://dx.doi.org/10.1093/oxfordhb/9780199957996.013.17.

Full text
Abstract:
Quantum probability theory provides a new formalism for constructing probabilistic and dynamic systems of cognition and decision. The purpose of this chapter is to introduce psychologists to this fascinating theory. This chapter is organized into six sections. First, some of the basic psychological principles supporting a quantum approach to cognition and decision are summarized; second, some notations and definitions needed to understand quantum probability theory are presented; third, a comparison of quantum and classical probability theories is presented; fourth, quantum probability theory is used to account for some paradoxical findings in the field of human probability judgments; fifth, a comparison of quantum and Markov dynamic theories is presented; and finally, a quantum dynamic model is used to account for some puzzling findings of decision-making research. The chapter concludes with a summary of advantages and disadvantages of a quantum probability theoretical framework for modeling cognition and decision.
APA, Harvard, Vancouver, ISO, and other styles
12

Di Ventra, Massimiliano. MemComputing. Oxford University Press, 2022. http://dx.doi.org/10.1093/oso/9780192845320.001.0001.

Full text
Abstract:
From the originator of MemComputing comes the very first book on this new computing paradigm that employs time non-locality (memory) to both process and store information. The book discusses the rationale behind MemComputing, its theoretical foundations, and wide-range applicability to combinatorial optimization problems, Machine Learning, and Quantum Mechanics. The book is ideal for graduate students in Physics, Computer Science, Electrical Engineering, and Mathematics as well as researchers in both academia and industry interested in unconventional computing. The author relies on extensive margin notes, important remarks, and several artworks to better explain the main concepts and clarify all the jargon, making the book as self-contained as possible. The reader will be guided from the basic notions to the more advanced ones with a writing style that is always clear and engaging. Along the way, the reader will appreciate the advantages of this computing paradigm and the major differences that set it apart from the prevailing Turing model of computation, and even Quantum Computing.
APA, Harvard, Vancouver, ISO, and other styles
13

Solymar, L., D. Walsh, and R. R. A. Syms. Lasers. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198829942.003.0012.

Full text
Abstract:
Two-state and three-state systems are introduced. The properties of gaseous, solid state, and dye lasers are discussed and particular attention is devoted to semiconductor lasers. Reducing the dimensions leading to wells, wires, and dots is shown to have advantages. Quantum cascade lasers working in the THz region are discussed. The phenomena of Q switching, cavity dumping, and mode locking are explained. Parametric oscillators and optical fibre amplifiers are discussed. Masers are briefly mentioned. Laser noise is discussed. Awide variety of applications are mentioned. The curious phenomenon of laser cooling is explained. The basic principles of holographic recording and display are described.
APA, Harvard, Vancouver, ISO, and other styles
14

Romain, Yves. An Invitation to Operator-Based Statistics. Edited by Frédéric Ferraty and Yves Romain. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780199568444.013.16.

Full text
Abstract:
This article deals with operator-based statistics and its advantages. It first provides an overview of the historical and pedagogical aspects of operator-based statistics before explaining the underlying practical and theoretical motivations, along with synthetic and conceptual arguments. In particular, it develops the operator-based approach for factor multivariate analysis (and for their asymptotic studies) and offers several examples that show the value of operators in statistics. The discussion focuses on covariance operators, Hankel and Toeplitz operators, regression operators, measure-associated operators, tensor operators, and some other important categories. The article also describes noncommutative or quantum statistics and concludes with some reflections on the key notions and formulations of a "unified statistics" and projectors in (classical) statistics.
APA, Harvard, Vancouver, ISO, and other styles
15

Iachello, F., and R. D. Levine. Algebraic Theory of Molecules. Oxford University Press, 1995. http://dx.doi.org/10.1093/oso/9780195080919.001.0001.

Full text
Abstract:
Algebraic Theory of Molecules presents a fresh look at the mathematics of wave functions that provide the theoretical underpinnings of molecular spectroscopy. Written by renowned authorities in the field, the book demonstrates the advantages of algebraic theory over the more conventional geometric approach to developing the formal quantum mechanics inherent in molecular spectroscopy. Many examples are provided that compare the algebraic and geometric methods, illustrating the relationship between the algebraic approach and current experiments. The authors develop their presentation from a basic level so as to enable newcomers to enter the field while providing enough details and concrete examples to serve as a reference for the expert. Chemical physicists, physical chemists, and spectroscopists will want to read this exciting new approach to molecular spectroscopy.
APA, Harvard, Vancouver, ISO, and other styles
16

Horing, Norman J. Morgenstern. Q. M. Pictures; Heisenberg Equation; Linear Response; Superoperators and Non-Markovian Equations. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198791942.003.0003.

Full text
Abstract:
Three fundamental and equivalent mathematical frameworks (“pictures”) in which quantum theory can be lodged are exhibited and their relations and relative advantages/disadvantages are discussed: (1) The Schrödinger picture considers the dynamical development of the overall system state vector as a function of time relative to a fixed complete set of time-independent basis eigenstates; (2) The Heisenberg picture (convenient for the use of Green’s functions) embeds the dynamical development of the system in a time-dependent counter-rotation of the complete set of basis eigenstates relative to the fixed, time-independent overall system state, so that the relation of the latter fixed system state to the counter-rotating basis eigenstates is identically the same in the Heisenberg picture as it is in the Schrödinger picture; (3) the Interaction Picture addresses the situation in which a Hamiltonian, H=H0+H1, involves a part H0 whose equations are relatively easy to solve and a more complicated part, H1, treated perturbatively. The Heisenberg equation of motion for operators is discussed, and is applied to annihilation and creation operators. The S-matrix, density matrix and von Neumann equation, along with superoperators and non-Markovian kinetic equations are also addressed (e.g. the intracollisional field effect).
APA, Harvard, Vancouver, ISO, and other styles
17

Schwartz, Steven A. The Big Book of Nintendo Games. Compute Books, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography