Academic literature on the topic 'Quantity quantile regression'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Quantity quantile regression.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Quantity quantile regression"
Pryce, Robert, Bruce Hollingsworth, and Ian Walker. "Alcohol quantity and quality price elasticities: quantile regression estimates." European Journal of Health Economics 20, no. 3 (October 1, 2018): 439–54. http://dx.doi.org/10.1007/s10198-018-1009-8.
Full textForthmann, Boris, and Denis Dumas. "Quantity and Quality in Scientific Productivity: The Tilted Funnel Goes Bayesian." Journal of Intelligence 10, no. 4 (November 1, 2022): 95. http://dx.doi.org/10.3390/jintelligence10040095.
Full textCarreño, Pia, and Andres Silva. "Fruit and vegetable expenditure disparities: evidence from Chile." British Food Journal 121, no. 6 (June 20, 2019): 1203–19. http://dx.doi.org/10.1108/bfj-06-2018-0365.
Full textIdris, N., Rais Rais, and I. T. Utami. "APLIKASI REGRESI KUANTIL PADA KASUS DBD DI KOTA PALU SULAWESI TENGAH." JURNAL ILMIAH MATEMATIKA DAN TERAPAN 15, no. 1 (May 14, 2018): 108–17. http://dx.doi.org/10.22487/2540766x.2018.v15.i1.10207.
Full textKostakis, Ioannis, Dimitrios Paparas, Anna Saiti, and Stamatina Papadaki. "Food Consumption within Greek Households: Further Evidence from a National Representative Sample." Economies 8, no. 1 (February 25, 2020): 17. http://dx.doi.org/10.3390/economies8010017.
Full textCao, Jialei, and Chenran Ge. "Research on the Impact of Technology Innovation on Quantity and Quality of Economic Growth in the Yangtze River Delta of China: A Comparative Study." International Journal of Sustainable Development and Planning 16, no. 8 (December 30, 2021): 1455–64. http://dx.doi.org/10.18280/ijsdp.160806.
Full textHlubinka, Daniel, and Miroslav Šiman. "On elliptical quantiles in the quantile regression setup." Journal of Multivariate Analysis 116 (April 2013): 163–71. http://dx.doi.org/10.1016/j.jmva.2012.11.016.
Full textShaikh, Imlak. "The Relation between Implied Volatility Index and Crude Oil Prices." Engineering Economics 30, no. 5 (December 14, 2019): 556–66. http://dx.doi.org/10.5755/j01.ee.30.5.21611.
Full textLipovetsky, Stan. "Quantile Regression." Technometrics 48, no. 3 (August 2006): 445–46. http://dx.doi.org/10.1198/tech.2006.s410.
Full textJurečková, Jana. "Quantile Regression." Journal of the American Statistical Association 101, no. 476 (December 1, 2006): 1723. http://dx.doi.org/10.1198/jasa.2006.s143.
Full textDissertations / Theses on the topic "Quantity quantile regression"
RADAELLI, PAOLO. "La Regressione Lineare con i Valori Assoluti." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2004. http://hdl.handle.net/10281/2290.
Full textRodrigues, Cátia Sofia Martins. "Quais os fatores que determinam o rendimento dos indivíduos em Portugal? - Regressão de Quantis." Master's thesis, Instituto Superior de Economia e Gestão, 2021. http://hdl.handle.net/10400.5/23425.
Full textApesar de se ter vindo a verificar, ao longo dos anos, um decréscimo significativo na desigualdade entre rendimentos, este tema ainda é alvo de estudo, principalmente numa abordagem econométrica, onde o principal objetivo passa por identificar e perceber os principais fatores que estão por detrás das desigualdades sentidas. Desta forma, o presente projeto destina-se ao estudo dos fatores que determinam o rendimento dos indivíduos residentes em Portugal, adotando uma abordagem de regressão de quantis, uma vez que grupos de indivíduos com diferentes valores de rendimento podem ter comportamentos distintos. Para tal, foram utilizados dados provenientes do Instituto Nacional de Estatística (INE) que permitiram construir o modelo estimado. A variável em estudo é o rendimento anual dos residentes em Portugal, no ano de 2019, e o modelo conta com oito regressores que caracterizam não só o indivíduo, incluindo, nomeadamente, a sua idade, sexo ou estado civil, mas também a sua instituição empregadora, incluindo variáveis como a dimensão, número de horas de trabalho, entre outras. Com o desenvolvimento do projeto e tendo em conta a análise aos resultados da estimação, é possível concluir que existem fatores, nomeadamente o género, nível de educação e região onde o indivíduo reside, responsáveis pela diferença significativa no valor do rendimento anual dos residentes em Portugal. No entanto, esta diferença não é uniforme para todos os grupos de indivíduos e comporta-se de maneira diferente quando comparados grupos de indivíduos com rendimentos mais baixos, médios ou altos. Este comportamento não linear permitiu ainda compreender a vantagem da utilização do método de regressão de quantis face ao método econométrico mais comum, a regressão linear, cujo objetivo é estimar o efeito das diferentes variáveis explicativas nos valores médios da variável dependente. A base de dados utilizada foi construída utilizando o software SQL Developer e a análise foi conduzida com recurso ao Stata.
Despite the fact that, over the years, there has been a significant decrease in income inequality, this issue is still a subject under study, mainly in an econometric approach, with the aim of studying and understanding the factors behind those inequalities. The main focus of this project is to identify and study the factors that determine the income of individuals living in Portugal, adopting a quantile regression approach, since individuals with different wages may have different behaviors. For this purpose, a regression model was created, using data from Statistics Portugal. The variable under study is the annual income of residents in Portugal, in 2019, and the model has several regressors that not only characterize the individual, such as their age, sex or marital status, but also the company, such as their dimension and number of working hours. With the development of this project and taking into account the estimation results, it is possible to conclude that there are factors, namely the individual's gender, level of education and region where he lives, responsible for the significant difference in the value of the annual income of residents in Portugal. However, these differences are not uniform for all groups of individuals, since there is a different behavior when comparing groups of individuals with lower, medium or high income. This nonlinear behavior also allowed to understand the advantage of using quantile regression over the most common econometric method, linear regression, whose objective is to estimate the effect of different explanatory variables on the average values of the dependent variable. The database used was built using SQL Developer and the analysis was conducted with software Stata.
info:eu-repo/semantics/publishedVersion
Guo, Mengmeng. "Generalized quantile regression." Doctoral thesis, Humboldt-Universität zu Berlin, Wirtschaftswissenschaftliche Fakultät, 2012. http://dx.doi.org/10.18452/16569.
Full textGeneralized quantile regressions, including the conditional quantiles and expectiles as special cases, are useful alternatives to the conditional means for characterizing a conditional distribution, especially when the interest lies in the tails. We denote $v_n(x)$ as the kernel smoothing estimator of the expectile curves. We prove the strong uniform consistency rate of $v_{n}(x)$ under general conditions. Moreover, using strong approximations of the empirical process and extreme value theory, we consider the asymptotic maximal deviation $\sup_{ 0 \leqslant x \leqslant 1 }|v_n(x)-v(x)|$. According to the asymptotic theory, we construct simultaneous confidence bands around the estimated expectile function. We develop a functional data analysis approach to jointly estimate a family of generalized quantile regressions. Our approach assumes that the generalized quantiles share some common features that can be summarized by a small number of principal components functions. The principal components are modeled as spline functions and are estimated by minimizing a penalized asymmetric loss measure. An iteratively reweighted least squares algorithm is developed for computation. While separate estimation of individual generalized quantile regressions usually suffers from large variability due to lack of sufficient data, by borrowing strength across data sets, our joint estimation approach significantly improves the estimation efficiency, which is demonstrated in a simulation study. The proposed method is applied to data from 150 weather stations in China to obtain the generalized quantile curves of the volatility of the temperature at these stations
Yu, Keming. "Smooth regression quantile estimation." Thesis, Open University, 1996. http://oro.open.ac.uk/57655/.
Full textSanches, Nathalie C. Gimenes Miessi. "Quantile regression approaches for auctions." Thesis, Queen Mary, University of London, 2014. http://qmro.qmul.ac.uk/xmlui/handle/123456789/8146.
Full textJeffrey, Stephen Glenn. "Quantile regression and frontier analysis." Thesis, University of Warwick, 2012. http://wrap.warwick.ac.uk/47747/.
Full textChao, Shih-Kang. "Quantile regression in risk calibration." Doctoral thesis, Humboldt-Universität zu Berlin, Wirtschaftswissenschaftliche Fakultät, 2015. http://dx.doi.org/10.18452/17223.
Full textQuantile regression studies the conditional quantile function QY|X(τ) on X at level τ which satisfies FY |X QY |X (τ ) = τ , where FY |X is the conditional CDF of Y given X, ∀τ ∈ (0,1). Quantile regression allows for a closer inspection of the conditional distribution beyond the conditional moments. This technique is par- ticularly useful in, for example, the Value-at-Risk (VaR) which the Basel accords (2011) require all banks to report, or the ”quantile treatment effect” and ”condi- tional stochastic dominance (CSD)” which are economic concepts in measuring the effectiveness of a government policy or a medical treatment. Given its value of applicability, to develop the technique of quantile regression is, however, more challenging than mean regression. It is necessary to be adept with general regression problems and M-estimators; additionally one needs to deal with non-smooth loss functions. In this dissertation, chapter 2 is devoted to empirical risk management during financial crises using quantile regression. Chapter 3 and 4 address the issue of high-dimensionality and the nonparametric technique of quantile regression.
Elseidi, Mohammed. "Quantile regression-based seasonal adjustment." Doctoral thesis, Università degli studi di Padova, 2019. http://hdl.handle.net/11577/3423191.
Full textLiu, Xi. "Some new developments for quantile regression." Thesis, Brunel University, 2018. http://bura.brunel.ac.uk/handle/2438/16204.
Full textKecojevic, Tatjana. "Bootstrap inference for parametric quantile regression." Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/bootstrap-inference-for-parametric-quantile-regression(194021d5-e03f-4f48-bfb8-5156819f5900).html.
Full textBooks on the topic "Quantity quantile regression"
Hao, Lingxin, and Daniel Naiman. Quantile Regression. 2455 Teller Road, Thousand Oaks California 91320 United States of America: SAGE Publications, Inc., 2007. http://dx.doi.org/10.4135/9781412985550.
Full textDavino, Cristina, Marilena Furno, and Domenico Vistocco. Quantile Regression. Oxford: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118752685.
Full textMarilena, Furno, and Vistocco Domenico. Quantile Regression. Chichester, UK: John Wiley & Sons Ltd, 2018. http://dx.doi.org/10.1002/9781118863718.
Full textHao, Lingxin. Quantile regression. Thousand Oaks, Calif: Sage Publications, 2007.
Find full textFirpo, Sergio. Unconditional quantile regressions. Cambridge, MA: National Bureau of Economic Research, 2007.
Find full textChernozhukov, Victor. Instrumental variable quantile regression. Cambridge, MA: Massachusetts Institute of Technology, Dept. of Economics, 2006.
Find full textCleophas, Ton J., and Aeilko H. Zwinderman. Quantile Regression in Clinical Research. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82840-0.
Full textMcMillen, Daniel P. Quantile Regression for Spatial Data. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-31815-3.
Full textFitzenberger, Bernd, Roger Koenker, and José A. F. Machado, eds. Economic Applications of Quantile Regression. Heidelberg: Physica-Verlag HD, 2002. http://dx.doi.org/10.1007/978-3-662-11592-3.
Full textChernozhukov, Victor. Quantile regression with censoring and endogeneity. Cambridge, MA: National Bureau of Economic Research, 2011.
Find full textBook chapters on the topic "Quantity quantile regression"
Fahrmeir, Ludwig, Thomas Kneib, Stefan Lang, and Brian Marx. "Quantile Regression." In Regression, 597–620. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-34333-9_10.
Full textČížek, Pavel. "Quantile Regression." In XploRe® - Application Guide, 19–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-57292-0_1.
Full textAwange, Joseph L., Béla Paláncz, Robert H. Lewis, and Lajos Völgyesi. "Quantile Regression." In Mathematical Geosciences, 359–404. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-67371-4_12.
Full textHooten, Mevin B., and Trevor J. Hefley. "Quantile Regression." In Bringing Bayesian Models to Life, 205–20. Boca Raton, FL : CRC Press, Taylor & Francis Group, 2019.: CRC Press, 2019. http://dx.doi.org/10.1201/9780429243653-18.
Full textBuchinsky, Moshe. "Quantile Regression." In The New Palgrave Dictionary of Economics, 11065–73. London: Palgrave Macmillan UK, 2018. http://dx.doi.org/10.1057/978-1-349-95189-5_2795.
Full textBuchinsky, Moshe. "Quantile Regression." In The New Palgrave Dictionary of Economics, 1–9. London: Palgrave Macmillan UK, 2008. http://dx.doi.org/10.1057/978-1-349-95121-5_2795-1.
Full textBuchinksy, Moshe. "Quantile Regression." In Microeconometrics, 202–13. London: Palgrave Macmillan UK, 2010. http://dx.doi.org/10.1057/9780230280816_25.
Full textCleophas, Ton J., and Aeilko H. Zwinderman. "Quantile Regression." In Regression Analysis in Medical Research, 453–67. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-61394-5_27.
Full textJurečková, Jana. "Regression Quantile and Averaged Regression Quantile Processes." In Analytical Methods in Statistics, 53–62. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51313-3_3.
Full textKohn, Wolfgang, and Riza Öztürk. "Quantils-Regression." In Springer-Lehrbuch, 337–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-50442-0_31.
Full textConference papers on the topic "Quantity quantile regression"
Wen, Yuxin, Donna AlHakeem, Paras Mandal, Shantanu Chakraborty, Yuan-Kang Wu, Tomonobu Senjyu, Sumit Paudyal, and Tzu-Liang Tseng. "Performance Evaluation of Probabilistic Methods Based on Bootstrap and Quantile Regression to Quantify PV Power Point Forecast Uncertainty." In 2020 IEEE Power & Energy Society General Meeting (PESGM). IEEE, 2020. http://dx.doi.org/10.1109/pesgm41954.2020.9281380.
Full textHuang, Liqi, Xin Wei, Peikang Zhu, Yun Gao, Mingkai Chen, and Bin Kang. "Federated Quantile Regression over Networks." In 2020 International Wireless Communications and Mobile Computing (IWCMC). IEEE, 2020. http://dx.doi.org/10.1109/iwcmc48107.2020.9148186.
Full textKevin Michael Brannan and Donald Paul Butcher. "TMDL Development Using Quantile Regression." In TMDL 2010: Watershed Management to Improve Water Quality Proceedings, 14-17 November 2010 Hyatt Regency Baltimore on the Inner Harbor, Baltimore, Maryland USA. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2010. http://dx.doi.org/10.13031/2013.35780.
Full textBhat, Harish S., Nitesh Kumar, and Garnet J. Vaz. "Towards scalable quantile regression trees." In 2015 IEEE International Conference on Big Data (Big Data). IEEE, 2015. http://dx.doi.org/10.1109/bigdata.2015.7363741.
Full textNatesan Ramamurthy, Karthikeyan, Kush R. Varshney, and Moninder Singh. "Quantile regression for workforce analytics." In 2013 IEEE Global Conference on Signal and Information Processing (GlobalSIP). IEEE, 2013. http://dx.doi.org/10.1109/globalsip.2013.6737097.
Full textFagundes, Roberta A. A., Renata M. C. R. de Souza, and Yanne M. G. Soares. "Quantile regression of interval-valued data." In 2016 23rd International Conference on Pattern Recognition (ICPR). IEEE, 2016. http://dx.doi.org/10.1109/icpr.2016.7900025.
Full textBallings, Michel, Dries Benoit, and Dirk Van den Poel. "RFM Variables Revisited Using Quantile Regression." In 2011 IEEE International Conference on Data Mining Workshops (ICDMW). IEEE, 2011. http://dx.doi.org/10.1109/icdmw.2011.148.
Full textDichandra, D., I. Fithriani, and S. Nurrohmah. "Parameter estimation of Bayesian quantile regression." In PROCEEDINGS OF THE 6TH INTERNATIONAL SYMPOSIUM ON CURRENT PROGRESS IN MATHEMATICS AND SCIENCES 2020 (ISCPMS 2020). AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0059103.
Full textZhou Lihui. "Quantile regression model and application profile." In 2010 International Conference on Computer Application and System Modeling (ICCASM 2010). IEEE, 2010. http://dx.doi.org/10.1109/iccasm.2010.5622905.
Full textde Oliveira, Augusto Born, Sebastian Fischmeister, Amer Diwan, Matthias Hauswirth, and Peter F. Sweeney. "Why you should care about quantile regression." In the eighteenth international conference. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2451116.2451140.
Full textReports on the topic "Quantity quantile regression"
Carlier, Guillaume, Alfred Galichon, and Victor Chernozhukov. Vector quantile regression. Institute for Fiscal Studies, December 2014. http://dx.doi.org/10.1920/wp.cem.2014.4814.
Full textLee, Sokbae (Simon), and Le-Yu Chen. Sparse Quantile Regression. The IFS, June 2020. http://dx.doi.org/10.1920/wp.cem.2020.3020.
Full textFirpo, Sergio, Nicole Fortin, and Thomas Lemieux. Unconditional Quantile Regressions. Cambridge, MA: National Bureau of Economic Research, July 2007. http://dx.doi.org/10.3386/t0339.
Full textChetverikov, Denis, Yukun Liu, and Aleh Tsyvinski. Weighted-Average Quantile Regression. Cambridge, MA: National Bureau of Economic Research, May 2022. http://dx.doi.org/10.3386/w30014.
Full textGraham, Bryan, Jinyong Hahn, Alexandre Poirier, and James Powell. Quantile Regression with Panel Data. Cambridge, MA: National Bureau of Economic Research, March 2015. http://dx.doi.org/10.3386/w21034.
Full textPowell, James L., Alexandre Poirier, Bryan S. Graham, and Jinyong Hahn. Quantile regression with panel data. Institute for Fiscal Studies, March 2015. http://dx.doi.org/10.1920/wp.cem.2015.1215.
Full textKoenker, Roger. Quantile regression 40 years on. The IFS, August 2017. http://dx.doi.org/10.1920/wp.cem.2017.3617.
Full textChernozhukov, Victor, Tetsuya Kaji, and Ivan Fernandez-Val. Extremal quantile regression: an overview. The IFS, December 2017. http://dx.doi.org/10.1920/wp.cem.2017.6517.
Full textSeverini, Thomas A., Elie Tamer, and Tatiana V. Komarova. Quantile uncorrelation and instrumental regressions. Institute for Fiscal Studies, September 2010. http://dx.doi.org/10.1920/wp.cem.2010.2610.
Full textDagli, Suzette, Paul Mariano, and Arjan Paulo Salvanera. Quantile Debt Fan Charts. Asian Development Bank, June 2022. http://dx.doi.org/10.22617/wps220242-2.
Full text