Academic literature on the topic 'Quantification des sources'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Quantification des sources.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Quantification des sources"
Ferguson, Christobel M., Katrina Charles, and Daniel A. Deere. "Quantification of Microbial Sources in Drinking-Water Catchments." Critical Reviews in Environmental Science and Technology 39, no. 1 (December 31, 2008): 1–40. http://dx.doi.org/10.1080/10643380701413294.
Full textAngerer, Jürgen. "Sources and quantification of human backgroudexposure to acrylamide." Toxicology Letters 180 (October 2008): S24—S25. http://dx.doi.org/10.1016/j.toxlet.2008.06.707.
Full textCzerewko, M. A., J. C. Cripps, J. M. Reid, and C. G. Duffell. "Sulfur species in geological materials––sources and quantification." Cement and Concrete Composites 25, no. 7 (October 2003): 657–71. http://dx.doi.org/10.1016/s0958-9465(02)00066-5.
Full textClark, Ephraim, and Radu Tunaru. "Quantification of political risk with multiple dependent sources." Journal of Economics and Finance 27, no. 2 (June 2003): 125–35. http://dx.doi.org/10.1007/bf02827214.
Full textYang, Jian-Ping, Hong-Zhong Huang, Yu Liu, and Yan-Feng Li. "Quantification Classification Algorithm of Multiple Sources of Evidence." International Journal of Information Technology & Decision Making 14, no. 05 (September 2015): 1017–34. http://dx.doi.org/10.1142/s0219622014500242.
Full textBrereton, Carol A., Lucy J. Campbell, and Matthew R. Johnson. "Computationally efficient quantification of unknown fugitive emissions sources." Atmospheric Environment: X 3 (July 2019): 100035. http://dx.doi.org/10.1016/j.aeaoa.2019.100035.
Full textBielek, Boris, and Milan Bielek. "Common Characteristics of Zero Energy Buildings in Relation to the Energy Distribution Networks." Advanced Materials Research 855 (December 2013): 31–34. http://dx.doi.org/10.4028/www.scientific.net/amr.855.31.
Full textNafziger, Steven. "Quantification and the Economic History of Imperial Russia." Slavic Review 76, no. 1 (2017): 30–36. http://dx.doi.org/10.1017/slr.2017.5.
Full textMéndez, M., M. Perdomo, D. Pose, C. Lindner, J. Torres, and A. Laborde. "Montevideo's health care centers, mercury sources identification and quantification." Toxicology Letters 259 (October 2016): S123. http://dx.doi.org/10.1016/j.toxlet.2016.07.316.
Full textMcAuley, Grant, Matthew Schrag, Pál Sipos, Shu-Wei Sun, Andre Obenaus, Jaladhar Neelavalli, E. Mark Haacke, Barbara Holshouser, Ramóna Madácsi, and Wolff Kirsch. "Quantification of punctate iron sources using magnetic resonance phase." Magnetic Resonance in Medicine 63, no. 1 (December 1, 2009): 106–15. http://dx.doi.org/10.1002/mrm.22185.
Full textDissertations / Theses on the topic "Quantification des sources"
Person, Christophe. "Quantification des anomalies neurologiques métaboliques et imagerie de sources électriques." Phd thesis, Université de Lorraine, 2012. http://tel.archives-ouvertes.fr/tel-00738247.
Full textGrythe, Henrik. "Quantification of sources and removal mechanisms of atmospheric aerosol particles." Doctoral thesis, Stockholms universitet, Institutionen för miljövetenskap och analytisk kemi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-138903.
Full textAt the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 3: Manuscript.
Sylvestre, Alexandre. "Caractérisation de l'aérosol industriel et quantification de sa contribution aux PM2.5 atmosphériques." Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4714/document.
Full textIn order to limit the impact of air quality on human health, public authorities need reliable and accurate information on the sources contribution. So, the identification of the main sources of PM2.5 is the first step to adopt efficient mitigation policies. This work carry out in this thesis take place in this issue and was to determine the main sources of PM2.5 inside an industrial area. To determinate the main sources of PM2.5, two campaigns were lead to collect daily PM2.5 to: 1/ determine the enrichment of atmospheric pollutants downwind from the main industrial activities and 2/ collect PM2.5 in urban areas characteristic of the population exposition. Results allowed to obtain very representative profiles for the main industrial activities implanted inside the studied area. ME-2 analysis, combined to radiocarbon measurements, allowed to highlight the very high impact of Biomass Burning sources for all the PM2.5 pollution events recorded from early autumn to March. This study showed that industrial sources, even if they are the major sources during spring and summer, are not the major PM2.5 driver. However, this study highlights that industrial sources impact significantly the aerosol population (size, composition, etc.) in the studied area
Tcheheumeni, Djanni Axel Laurel. "Identification and quantification of noise sources in marine towed active electromagnetic data." Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/28914.
Full textHultin, Eriksson Elin. "Quantification of Terrestrial CO2 Sources to a Headwater Streamin a Boreal Forest Catchment." Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-305435.
Full textEn signifikant mängd koldioxid (CO2) är lagrad i skog och marken. Marken i barrskogsregionernaförvarar en signifikant mängd CO2 där det partiella trycket av CO2 varierar mellan ~10 000 – 50 000 ppm i jämförelse med atmosfären (400 ppm). Mättnaden av CO2 gör att mycket avdunstar tillbaka till atmosfären. Dock absorberas en del CO2 av grundvattnet; vilket resulterar i en naturlig transport av CO2 vidare till ytvattnen där det kapillära nätverket av bäckar är största recipienten. Det är fortfarande oklart hur transporten av CO2 är distribuerad i ett vattenavrinningsområde vilket medför brister i förståelsen av en viktig processväg som kan komma att spela en större roll i framtidens kolkretslopp på grund av den globala uppvärmningen. Därför är en kvantifiering av olika områdens bidrag av CO2 till bäckarna nödvändig. Två betydande zoner i ett vattenavrinningsområde som troligen bidrar olika är: the riparian zone som är närmast bäcken och består av fina sediment med hög organisk halt och, the hillslope som är resterande område och består av grovkorniga jordar med låg organisk halt. Den förstnämnda misstänks transportera mer CO2 via grundvattnet på grund av dess närhet till bäcken, höga halter av CO2 och höga vattenmättnad men detta är ännu inte verifierat. Jag evaluerar the riparian zone som en viktig källa till CO2 i ett vattenavrinningsområde genom att kvantifiera transporten av CO2 från de två zonerna. För att förklara varför transporten varierar presenterar jag en ny modell (GVR) som beräknar den månatliga fluktuationen av den del av CO2-produktionen som absorberas i grundvattnet i the riparian zone. Mätningar av data utfördes i Västrabäcken, ett mindre vattenavrinningsområde i ett större vid namn Krycklan, i norra Sverige. En transekt av tre mätstationer (i bäcken, the riparian zone och the hillslope) installerades i den förmodade grundvattenströmningsriktningen. Resultaten visar på en hög produktion av CO2 under vårfloden (maj) då en hög grundvattenyta troligen absorberar en signifikant mängd CO2. Detta kan betyda att jordrespiration under våren underskattas då dagens mätmetoder är begränsade till mätningar i jorden av CO2 ovan grundvattenytan. Fortsatta studier rekommenderas där GVR-modellen och andra mätmetoder utförs samtidigt för att vidare utröna den kvantitativa underskattningen under perioder med hög grundvattenyta (speciellt under våren). Bidraget från the riparian zone till den totala laterala transporten av CO2 till bäcken under ett år varierar mellan 58-89 % och det månatliga transportmönstret kunde förklaras med resultaten från GVR-modellen. Resultaten verifierar att oberoende av säsong så är the riparian zone den huvudsakliga laterala koltransporten från landvegetationen; medan the hillslope procentuellt bidrar med mer CO2 under höga grundvattenflöden.
Conrad, Yvonne [Verfasser]. "Model-based quantification of nitrate-nitrogen leaching considering sources of uncertainty / Yvonne Conrad." Kiel : Universitätsbibliothek Kiel, 2017. http://d-nb.info/1128149249/34.
Full textSturm, M. "Identification and quantification of transient structure-borne sound sources in electrical steering systems." Thesis, University of Salford, 2014. http://usir.salford.ac.uk/30761/.
Full textMoore, Treyton Michael. "Molecular Methods for the Identification and Quantification of Cyanobacteria in Surface Water Sources." BYU ScholarsArchive, 2019. https://scholarsarchive.byu.edu/etd/7408.
Full textBerchet, Antoine. "Quantification des sources de méthane en Sibérie par inversion atmosphérque à la méso-échelle." Thesis, Versailles-St Quentin en Yvelines, 2014. http://www.theses.fr/2014VERS0058/document.
Full textAnthopogenic and natural methane emissions in Siberia significantly contribute to theglobal methane budget, but the magnitude of these emissions is uncertain (3–11% of globalemissions). To the South, anthropogenic emissions are related to big urban centres. To theNorth, oil and gas extraction in West Siberia is responsible for conspicuous point sources.These regions are also covered by large natural wetlands emitting methane during the snowfreeseason, roughly from May to September. Regional atmospheric inversions at a meso-scaleprovide a mean for improving our knowledge on all emission process. But inversions sufferfrom the uncertainties in the assimilated observations, in the atmospheric transport modeland in the emission magnitude and distribution. I developp a new inversion method based onerror statistic marginalization in order to account for these uncertainties. I test this methodon case study and explore its robustness. I then apply it to Siberia. Using measurements ofmethane atmospheric concentrations gathered at Siberian surface observation sites, I founda regional methane budget in Siberia of 5–28 TgCH4.a−1 (1–5% of global emissions). Thisimplies a reduction of 50% in the uncertainties on the regional budget. With the new method,I also can detect emission patterns at a resolution of a few thousands km2 and emissionvariability at a resolution of 2–4 weeks
Berchet, Antoine. "Quantification des sources de méthane en Sibérie par inversion atmosphérque à la méso-échelle." Electronic Thesis or Diss., Versailles-St Quentin en Yvelines, 2014. http://www.theses.fr/2014VERS0058.
Full textAnthopogenic and natural methane emissions in Siberia significantly contribute to theglobal methane budget, but the magnitude of these emissions is uncertain (3–11% of globalemissions). To the South, anthropogenic emissions are related to big urban centres. To theNorth, oil and gas extraction in West Siberia is responsible for conspicuous point sources.These regions are also covered by large natural wetlands emitting methane during the snowfreeseason, roughly from May to September. Regional atmospheric inversions at a meso-scaleprovide a mean for improving our knowledge on all emission process. But inversions sufferfrom the uncertainties in the assimilated observations, in the atmospheric transport modeland in the emission magnitude and distribution. I developp a new inversion method based onerror statistic marginalization in order to account for these uncertainties. I test this methodon case study and explore its robustness. I then apply it to Siberia. Using measurements ofmethane atmospheric concentrations gathered at Siberian surface observation sites, I founda regional methane budget in Siberia of 5–28 TgCH4.a−1 (1–5% of global emissions). Thisimplies a reduction of 50% in the uncertainties on the regional budget. With the new method,I also can detect emission patterns at a resolution of a few thousands km2 and emissionvariability at a resolution of 2–4 weeks
Books on the topic "Quantification des sources"
Environment, Alberta Alberta. Specified gas emitters regulation: Additional guidance for interpretation of the quantification protocol for tillage system management for carbon offsets in Alberta. [Edmonton]: Alberta Environment, 2008.
Find full textD, Denham, and Symposium on Quantification of Earthquakes and the Determination of Source Parameters (1987 : Vancouver), eds. Quantification of earthquakes and the determination of source parameters. Amsterdam: Elsevier, 1989.
Find full textLillyman, Carrie Danielle. The quantification of mobile source contributions to fine particulate matter in the Greater Toronto Area. Ottawa: National Library of Canada, 2001.
Find full textCurrens, James C. Characterization and quantification of nonpoint source pollution in a conduit-flow dominated karst aquifer underlying an extensive use agricultural region--phase III: Final report. [Lexington, Ky.]: Kentucky Geological Survey, University of Kentucky, 1999.
Find full textSampson, R. Neil, and Joe Wisniewski. Terrestrial Biospheric Carbon Fluxes Quantification of Sinks and Sources of CO2. Springer, 2012.
Find full textSampson, R. Neil, and Joe Wisniewski. Terrestrial Biospheric Carbon Fluxes Quantification of Sinks and Sources of CO2. Springer London, Limited, 2012.
Find full text(Editor), Joe Wisniewski, and R. Neil Sampson (Editor), eds. Terrestrial Biospheric Carbon Fluxes:: Quantification of Sinks and Sources of CO2. Springer, 1993.
Find full textWuertz, Stefan, Dustin Bambic, Graham McBride, and Woutrina Miller. Quantification of Pathogens and Sources of Microbial Indicators for QMRA in Recreational Waters. IWA Publishing, 2011.
Find full textJoe, Wisniewski, and Sampson R. Neil, eds. Terrestrial biospheric carbon fluxes: Quantification of sinks and sources of CO₂ : [workshop] Bad Harzburg, Germany, 1-5 March 1993. Dordrecht: Kluwer Academic, 1993.
Find full textBevington, Christopher F. P. Identification and Quantification of Atmospheric Emission Sources of Heavy Metals and Dust from Metallurgical Processes and Waste Incineration (Envi). European Communities, 1987.
Find full textBook chapters on the topic "Quantification des sources"
Haspelmath, Martin. "Diachronic Sources of ‘All’ and ‘Every’." In Quantification in Natural Languages, 363–82. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0321-3_12.
Full textHaspelmath, Martin. "Diachronic Sources of ‘All’ and ‘Every’." In Quantification in Natural Languages, 363–82. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-017-2817-1_12.
Full textParhizkar, Tarannom, Ingrid B. Utne, and Jan-Erik Vinnem. "Data Sources and Development for Online Risk Quantification." In Springer Series in Reliability Engineering, 41–54. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-88098-9_3.
Full textHu, Yu. "Pore Water Geochemistry and Quantification of Methane Cycling." In South China Sea Seeps, 129–48. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1494-4_8.
Full textKronvang, B., R. Grant, and A. L. Laubel. "Sediment and Phosphorus Export from a Lowland Catchment: Quantification of Sources." In The Interactions Between Sediments and Water, 465–76. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5552-6_48.
Full textImfeld, G., G. Skrzypek, J. Adu-Gyamfi, and L. Heng. "Conclusion: Stable Isotope Tracers Are Useful for the Identification of Pollutants in Agro-ecosystems." In Tracing the Sources and Fate of Contaminants in Agroecosystems, 157–64. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-47265-7_8.
Full textSkrzypek, G. "Stable Sulfur and Oxygen Isotope Compositions of Sulfates to Disentangle Agrocontaminants from Other Sources of Sulfur in Agrosystems." In Tracing the Sources and Fate of Contaminants in Agroecosystems, 99–125. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-47265-7_6.
Full textSampson, R. Neil, Michael Apps, Sandra Brown, C. Vernon Cole, John Downing, Linda S. Heath, Dennis S. Ojima, Thomas M. Smith, Allen M. Solomon, and Joe Wisniewski. "Workshop Summary Statement: Terrestrial Bioshperic Carbon Fluxes Quantification of Sinks and Sources of CO2." In Terrestrial Biospheric Carbon Fluxes:, 3–15. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1982-5_1.
Full textVega-Coloma, Mabel, and Claudio Zaror. "The Life Cycle Sustainability Indicators for Electricity Generation in Chile: Challenges in the Use of Primary Information." In Towards a Sustainable Future - Life Cycle Management, 229–39. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77127-0_21.
Full textDiestmann, Thomas, Nils Broedling, Benedict Götz, and Tobias Melz. "Surrogate Model-Based Uncertainty Quantification for a Helical Gear Pair." In Lecture Notes in Mechanical Engineering, 191–207. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77256-7_16.
Full textConference papers on the topic "Quantification des sources"
Swamy, Maharudrayya, Pejman Shoeibi Omrani, and Nestor Gonzalez Diez. "Uncertainty Quantification of Aeroacoustic Power Sources in Corrugated Pipes." In ASME 2015 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/pvp2015-45507.
Full textComsa, Daria C., Thomas J. Farrell, and Michael S. Patterson. "Quantification of Point-Like Fluorescent Sources in Small Animals." In Biomedical Optics. Washington, D.C.: OSA, 2008. http://dx.doi.org/10.1364/biomed.2008.bwe5.
Full textFantz, U., Ch Wimmer, Yasuhiko Takeiri, and Katsuyoshi Tsumori. "Quantification Of Cesium In Negative Hydrogen Ion Sources By Laser Absorption Spectroscopy." In SECOND INTERNATIONAL SYMPOSIUM ON NEGATIVE IONS, BEAMS AND SOURCES. AIP, 2011. http://dx.doi.org/10.1063/1.3637405.
Full textKönecke, Tom, and Michael Hanss. "ON PROCESSING HETEROGENEOUS SOURCES OF LIMITED DATA FOR UNCERTAINTY QUANTIFICATION IN A POSSIBILISTIC FRAMEWORK." In 5th International Conference on Uncertainty Quantification in Computational Sciences and Engineering. Athens: Institute of Structural Analysis and Antiseismic Research National Technical University of Athens, 2023. http://dx.doi.org/10.7712/120223.10343.19772.
Full textAbdul Talip, Noor Arnida, Mohd Hafiz Muhamad Pikri, Dr Shahrul Azman Zainal Abidin, and Hasnor Hassaruddin Hashim. "Deployment of Methane Detection and Quantification Technologies." In SPE Europec featured at 82nd EAGE Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/205166-ms.
Full textAlleaume, C., E. Yesilada, V. Farys, and Y. Trouiller. "Quantification of the difference between two sources by Zernike polynomial decomposition." In SPIE Advanced Lithography. SPIE, 2011. http://dx.doi.org/10.1117/12.881779.
Full textJain, Apurti, Narayana Prasad Padhy, and Mukesh Kumar Pathak. "Quantification of inertia contribution from non-conventional sources in AC microgrid." In 2022 IEEE International Conference on Power Electronics, Smart Grid, and Renewable Energy (PESGRE). IEEE, 2022. http://dx.doi.org/10.1109/pesgre52268.2022.9715956.
Full textWang, Yeqing, Getachew K. Befekadu, and Crystal L. Pasiliao. "Uncertainty Quantification for Laser Ablation of Aluminum." In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-70625.
Full textLevesque, M., M. Belec, C. Hudon, and C. Guddemi. "The need for PD quantification based on the type of discharge sources." In 2017 IEEE Electrical Insulation Conference (EIC). IEEE, 2017. http://dx.doi.org/10.1109/eic.2017.8004694.
Full textTu, Haohua, Yuan Liu, Utkarsh Sharma, and Stephen A. Boppart. "Rigorous Quantification of Polarized Fiber Continuum Generation for Broadband Coherent Optical Sources." In CLEO: Applications and Technology. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/cleo_at.2011.jthb78.
Full textReports on the topic "Quantification des sources"
Harbaugh, Glenn R., Daniel A. Steinhurst, Mark J. Howard, Bruce J. Barrow, Jonathan T. Miller, and Thomas H. Bell. Quantification of Noise Sources in EMI Surveys. Fort Belvoir, VA: Defense Technical Information Center, April 2012. http://dx.doi.org/10.21236/ada559831.
Full textSinclair, Samantha, and Sandra LeGrand. Reproducibility assessment and uncertainty quantification in subjective dust source mapping. Engineer Research and Development Center (U.S.), August 2021. http://dx.doi.org/10.21079/11681/41523.
Full textSinclair, Samantha, and Sandra LeGrand. Reproducibility assessment and uncertainty quantification in subjective dust source mapping. Engineer Research and Development Center (U.S.), August 2021. http://dx.doi.org/10.21079/11681/41542.
Full textJakeman, John, Michael Eldred, Gianluca Geraci, Thomas Smith, and Alex Gorodetsky. LDRD #218317: Learning Hidden Structure in Multi-Fidelity Information Sources for Efficient Uncertainty Quantification. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/1668458.
Full textChristensen, Lance. PR-459-133750-R03 Fast Accurate Automated System To Find And Quantify Natural Gas Leaks. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), November 2019. http://dx.doi.org/10.55274/r0011633.
Full textNeudecker, D., V. Pronyaev, and G. Schnabel. Summary Report of the IAEA Consultants’ Meeting on Neutron Data Standards. IAEA Nuclear Data Section, November 2022. http://dx.doi.org/10.61092/iaea.spcr-1nha.
Full textLiu, Zhen, Cosmin Safta, Khachik Sargsyan, Habib N. Najm, Bart Gustaaf van Bloemen Waanders, Brian W. LaFranchi, Mark D. Ivey, Paul E. Schrader, Hope A. Michelsen, and Ray P. Bambha. Greenhouse Gas Source Attribution: Measurements Modeling and Uncertainty Quantification. Office of Scientific and Technical Information (OSTI), September 2014. http://dx.doi.org/10.2172/1322290.
Full textFourrier, Marine. Integration of in situ and satellite multi-platform data (estimation of carbon flux for trop. Atlantic). EuroSea, 2023. http://dx.doi.org/10.3289/eurosea_d7.6.
Full textTobias, Benjamin John, Sasikumar Palaniyappan, Donald Cort Gautier, Jacob Mendez, Trevor John Burris-Mog, Chengkun K. Huang, Andrea Favalli, et al. Quantification of uncertainty in photon source spot size inference during laser-driven radiography experiments at TRIDENT. Office of Scientific and Technical Information (OSTI), October 2017. http://dx.doi.org/10.2172/1402669.
Full textGel, Aytekin, Yang Jiao, Heather Emady, and Charles Tong. MFIX-DEM Phi: Performance and Capability Improvements Towards Industrial Grade Open-source DEM Framework with Integrated Uncertainty Quantification. Office of Scientific and Technical Information (OSTI), May 2018. http://dx.doi.org/10.2172/1439328.
Full text