Academic literature on the topic 'Quadruped Robots'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Quadruped Robots.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Quadruped Robots"
Zhang, Chunsong, and Jian S. Dai. "Continuous Static Gait with Twisting Trunk of a Metamorphic Quadruped Robot." Mechanical Sciences 9, no. 1 (January 4, 2018): 1–14. http://dx.doi.org/10.5194/ms-9-1-2018.
Full textLi, Tengfei, Chunsong Zhang, Shengjie Wang, and Jian S. Dai. "Jumping with Expandable Trunk of a Metamorphic Quadruped Robot—The Origaker II." Applied Sciences 9, no. 9 (April 29, 2019): 1778. http://dx.doi.org/10.3390/app9091778.
Full textYao, Ligang, Hao Yu, and Zongxing Lu. "Design and driving model for the quadruped robot: An elucidating draft." Advances in Mechanical Engineering 13, no. 4 (April 2021): 168781402110090. http://dx.doi.org/10.1177/16878140211009035.
Full textLi, Zhi, Hong Kai Li, Hao Zhang, and Zhen Dong Dai. "Analysis and Design of Hydraulic System of a Hydraulically Actuated Quadruped Robot." Applied Mechanics and Materials 461 (November 2013): 861–68. http://dx.doi.org/10.4028/www.scientific.net/amm.461.861.
Full textSutyasadi, Petrus, and Manukid Parnichkun. "Gait Tracking Control of Quadruped Robot Using Differential Evolution Based Structure Specified Mixed SensitivityH∞Robust Control." Journal of Control Science and Engineering 2016 (2016): 1–18. http://dx.doi.org/10.1155/2016/8760215.
Full textJia, Yan, Xiao Luo, Baoling Han, Guanhao Liang, Jiaheng Zhao, and Yuting Zhao. "Stability Criterion for Dynamic Gaits of Quadruped Robot." Applied Sciences 8, no. 12 (November 25, 2018): 2381. http://dx.doi.org/10.3390/app8122381.
Full textYoneda, Kan. "Light Weight Quadruped with Nine Actuators." Journal of Robotics and Mechatronics 19, no. 2 (April 20, 2007): 160–65. http://dx.doi.org/10.20965/jrm.2007.p0160.
Full textHe, JingYe, JunPeng Shao, GuiTao Sun, and Xuan Shao. "Survey of Quadruped Robots Coping Strategies in Complex Situations." Electronics 8, no. 12 (November 27, 2019): 1414. http://dx.doi.org/10.3390/electronics8121414.
Full textChatzakos, Panagiotis, and Evangelos Papadopoulos. "Self-Stabilising Quadrupedal Running by Mechanical Design." Applied Bionics and Biomechanics 6, no. 1 (2009): 73–85. http://dx.doi.org/10.1155/2009/748719.
Full textHan, Shuo, Yuan Chen, Guangying Ma, Jinshan Zhang, and Runchen Liu. "Gait Planning and Simulation Analysis of a New Amphibious Quadruped Robots." Journal of Robotics and Mechatronics 30, no. 2 (April 20, 2018): 257–64. http://dx.doi.org/10.20965/jrm.2018.p0257.
Full textDissertations / Theses on the topic "Quadruped Robots"
Krasny, Darren P. "Evolving dynamic maneuvers in a quadruped robot." Columbus, Ohio : Ohio State University, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1133296951.
Full textThorapalli, Muralidharan Seshagopalan, and Ruihao Zhu. "Continuum Actuator Based Soft Quadruped Robot." Thesis, KTH, Mekatronik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-286348.
Full textFyrfotarobotar kan lättare korsa en mängd olika terränger jämfört med hjulrobotar. Traditionella styva fyrfotarobotar har kraftiga begränsningar då de saknar strukturell följsamhet. De flesta befintliga mjuka fyrbenta robotar är kopplade till en eller flera kablar och drivs av pneumatik, vilket är en lågkvalitativ energikälla och lämpar sig inte för robotar med lång uthållighet. Arbetet i denna avhandling föreslår utvecklingen av en continuum ställdonsdriven fyrfotarobot, som ger följsamhet samtidigt som den ¨ar frånkopplad och elektromekaniskt driven. I detta arbete framställs continuum ställdon med mestadels 3D-printade delar. Dessutom utvecklas dessa ställdons slutna kontrolloop för gång. Linjärkvadratisk regulator (LQR) och metoder baserade på polplacering utvärderades för styrsyntes, och det fastställdes att LQR presterade bättre när man minimerar ställdonets ansträngning samt avvikelse från referensvärde. Continuum ställdon sammansattes för att bilda en fyrbent robot. Gånganalyser utfördes på roboten och dess ben kunde följa gång- och galopprörelser.
Daepp, Hannes Gorkin. "Development of a multi-platform simulation for a pneumatically-actuated quadruped robot." Thesis, Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/45927.
Full textPalmer, Luther R. "Intelligent control and force redistribution for a high-speed quadruped trot." Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1174570965.
Full textHunt, Alexander Jacob. "Neurologically Based Control for Quadruped Walking." Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1445947104.
Full textGu, Dongbing. "Behaviour-based learning and fuzzy control of autonomous quadruped robots." Thesis, University of Essex, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.400989.
Full textDi, Carlo Jared(Jared J. ). "Software and control design for the MIT Cheetah quadruped robots." Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/129877.
Full textCataloged from student-submitted PDF of thesis.
Includes bibliographical references (pages 99-101).
This thesis documents the development and implementation of software and controllers for the MIT Mini Cheetah and MIT Cheetah 3 robots. The open source software I developed is designed to provide a framework for other research groups to use the Mini Cheetah platform and is currently being used by seven other groups from around the world. The controllers I developed for this thesis are provided as example code for these groups, and can be used to make the robot walk, run, and do a backflip. The locomotion controller utilizes a simplified model and convex optimization to stabilize complex gaits online, allowing it to control complex, fully 3D gaits with flight periods, such as galloping. The backflip is accomplished through offline trajectory optimization with an accurate dynamic model and was the first backflip done on a quadruped robot.
by Jared Di Carlo.
M. Eng.
M.Eng. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
Hardarson, Freyr. "Stability analysis and synthesis of statically balanced walking for quadruped robots." Doctoral thesis, KTH, Machine Design, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3379.
Full textBhat, Aditya. "Locomotion Trajectory Generation For Legged Robots." Digital WPI, 2017. https://digitalcommons.wpi.edu/etd-theses/1167.
Full textLee, Heon Joong Choe Song-Yul. "Modeling and analysis of a PEM fuel cell system for a quadruped robot." Auburn, Ala, 2009. http://hdl.handle.net/10415/1786.
Full textBooks on the topic "Quadruped Robots"
Witte, Hartmut, Martin S. Fischer, Holger Preuschoft, Danja Voges, Cornelius Schilling, and Auke Jan Ijspeert. Quadruped locomotion. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199674923.003.0031.
Full textPrescott, Tony J. Mammals and mammal-like robots. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199674923.003.0045.
Full textGarcia, Elena, Pablo González-de-Santos, and Joaquin Estremera. Quadrupedal Locomotion: An Introduction to the Control of Four-legged Robots. Springer, 2006.
Find full textEstremera, Joaquin, Elena Garcia, and Pablo Gonzalez González de Santos. Quadrupedal Locomotion: An Introduction to the Control of Four-legged Robots. Springer, 2011.
Find full textBook chapters on the topic "Quadruped Robots"
Galvez-Aranda, Diego, and Mauricio Galvez Legua. "Quadruped Robots." In Robotics Models Using LEGO WeDo 2.0, 177–228. Berkeley, CA: Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-6846-9_5.
Full textKrasny, Darren P., and David E. Orin. "A 3D Galloping Quadruped Robot." In Climbing and Walking Robots, 467–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-26415-9_56.
Full textSilva, M. F., and J. A. Tenreiro Machado. "Energy Efficiency of Quadruped Gaits." In Climbing and Walking Robots, 735–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-26415-9_88.
Full textHengst, Bernhard, Darren Ibbotson, Son Bao Pham, and Claude Sammut. "Omnidirectional Locomotion for Quadruped Robots." In RoboCup 2001: Robot Soccer World Cup V, 368–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45603-1_45.
Full textPalmer, L. R., and D. E. Orin. "Control of a 3D Quadruped Trot." In Climbing and Walking Robots, 165–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-26415-9_19.
Full textHennion, B., J. Pill, and J. C. Guinot. "A Biologically Inspired Model For Quadruped Locomotion." In Climbing and Walking Robots, 49–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-26415-9_5.
Full textPham, Son Bao, Bernhard Hengst, Darren Ibbotson, and Claude Sammut. "Stochastic Gradient Descent Localisation in Quadruped Robots." In RoboCup 2001: Robot Soccer World Cup V, 447–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45603-1_58.
Full textFocchi, Michele, Victor Barasuol, Marco Frigerio, Darwin G. Caldwell, and Claudio Semini. "Slip Detection and Recovery for Quadruped Robots." In Springer Proceedings in Advanced Robotics, 185–99. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-60916-4_11.
Full textYuan, Guo-liang, Shao-yuan Li, He-sheng Wang, and Dan Huang. "Lateral Balance Recovery of Quadruped Robot on Rough Terrains." In Wearable Sensors and Robots, 411–21. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2404-7_32.
Full textLiu, Cheng, Xiuli Zhang, Dongdong Li, and Kunling Zhou. "A Flexible-Waist Quadruped Robot Imitating Infant Crawl." In Advances in Reconfigurable Mechanisms and Robots I, 455–63. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4141-9_41.
Full textConference papers on the topic "Quadruped Robots"
Zhang, Chunsong, Xuheng Chai, and Jian S. Dai. "Preventing Tumbling With a Twisting Trunk for the Quadruped Robot: Origaker I." In ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/detc2018-85053.
Full textBhattacharya, Subhrajit, Sachin Chitta, Vijay Kumar, and Daniel Lee. "Optimization of a Planar Quadruped Dynamic Leap." In ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/detc2008-50072.
Full textZhou, Wei, Yinong Chen, Yijun Ma, and Xu Pei. "Attitude Adjustment of a Quadruped Robot in the Air." In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-47348.
Full textWang, Jing, Feng Gao, and Yong Zhang. "High Power Density Drive System of a Novel Hydraulic Quadruped Robot." In ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/detc2014-34804.
Full textYosinski, Jason, Jeff Clune, Diana Hidalgo, Sarah Nguyen, Juan Cristobal Zagal, and Hod Lipson. "Generating gaits for physical quadruped robots." In the 13th annual conference companion. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/2001858.2001876.
Full textPinto, Carla M. A. "Quadruped robots' modular trajectories: Stability issues." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics. AIP, 2012. http://dx.doi.org/10.1063/1.4756179.
Full textKrishna, P. Murali, R. Prasanth Kumar, and S. Srivastava. "Level Trot Gait in Quadruped Robots." In Conference. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2506095.2506100.
Full textTournois, Guido, Michele Focchi, Andrea Del Prete, Romeo Orsolino, Darwin G. Caldwell, and Claudio Semini. "Online payload identification for quadruped robots." In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017. http://dx.doi.org/10.1109/iros.2017.8206367.
Full textJoseph, Tarun, Ahmed Shaikh, Mitesh Sarode, and Yerramreddy Srinivasa Rao. "Quadruped Robots: Gait Analysis and Control." In 2020 IEEE 17th India Council International Conference (INDICON). IEEE, 2020. http://dx.doi.org/10.1109/indicon49873.2020.9342521.
Full textSaab, Wael, and Pinhas Ben-Tzvi. "Design and Analysis of a Robotic Modular Leg Mechanism." In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-59388.
Full textReports on the topic "Quadruped Robots"
Scharzenberger, Cody. Design of a Canine Inspired Quadruped Robot as a Platform for Synthetic Neural Network Control. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.7014.
Full text