Journal articles on the topic 'Quadratic stabilization'

To see the other types of publications on this topic, follow the link: Quadratic stabilization.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Quadratic stabilization.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Balandin, D. V., and M. M. Kogan. "Optimal robust linear-quadratic stabilization." Differential Equations 43, no. 11 (November 2007): 1611–15. http://dx.doi.org/10.1134/s001226610711016x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ji, Zhijian, Long Wang *, and Guangming Xie. "Quadratic stabilization of switched systems." International Journal of Systems Science 36, no. 7 (June 10, 2005): 395–404. http://dx.doi.org/10.1080/00207720500140003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

YASUDA, Kazunori. "Quadratic Stability and Quadratic Stabilization of Linear Descriptor Systems." Transactions of the Society of Instrument and Control Engineers 35, no. 2 (1999): 208–12. http://dx.doi.org/10.9746/sicetr1965.35.208.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wu Jian-Rong. "Quadratic stability and quadratic stabilization for singular system families." Acta Physica Sinica 53, no. 2 (2004): 325. http://dx.doi.org/10.7498/aps.53.325.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

YADAV, KIRAN, and A. K. MALIK. "An Orthogonal Stabilization of Quadratic and Generalized Quadratic Functional Equations." Journal of Ultra Scientist of Physical Sciences Section A 31, no. 8 (August 26, 2019): 69–78. http://dx.doi.org/10.22147/jusps-a/310801.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

SUZUKI, Masayuki, Shigeaki KOBAYASHI, and Yoshinori ANDO. "Quadratic Stabilization of Singularly Perturbed Systems." Transactions of the Society of Instrument and Control Engineers 32, no. 11 (1996): 1493–500. http://dx.doi.org/10.9746/sicetr1965.32.1493.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Khlebnikov, M. V. "Quadratic stabilization of bilinear control systems." Automation and Remote Control 77, no. 6 (June 2016): 980–91. http://dx.doi.org/10.1134/s0005117916060047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

UEZATO, Eiho, and Masao IKEDA. "Quadratic stabilization of Linear Descriptor systems." Transactions of the Institute of Systems, Control and Information Engineers 9, no. 7 (1996): 313–21. http://dx.doi.org/10.5687/iscie.9.313.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yasuda, K. "Decentralized Quadratic Stabilization of Interconnected Systems." IFAC Proceedings Volumes 26, no. 2 (July 1993): 499–502. http://dx.doi.org/10.1016/s1474-6670(17)48991-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dong, YaLi, JiaoJiao Fan, and ShengWei Mei. "Quadratic stabilization of switched nonlinear systems." Science in China Series F: Information Sciences 52, no. 6 (June 2009): 999–1006. http://dx.doi.org/10.1007/s11432-009-0111-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Feng, Jun’e, and Weihai Zhang. "Quadratic stabilization for uncertain stochastic systems." Journal of Control Theory and Applications 3, no. 3 (August 2005): 252–58. http://dx.doi.org/10.1007/s11768-005-0044-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

YASUDA, Kazunori, and Fumiko NOSO. "Decentralized Quadratic Stabilization of Interconnected Descriptor Systems." Transactions of the Society of Instrument and Control Engineers 33, no. 7 (1997): 609–15. http://dx.doi.org/10.9746/sicetr1965.33.609.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Khlebnikov, M. V. "Quadratic Stabilization of Discrete-Time Bilinear Systems." Automation and Remote Control 79, no. 7 (July 2018): 1222–39. http://dx.doi.org/10.1134/s0005117918070044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Corless, M., M. A. Rotea, and M. Swei. "System Order Reduction in Quadratic Stabilization Problems *." IFAC Proceedings Volumes 26, no. 2 (July 1993): 207–10. http://dx.doi.org/10.1016/s1474-6670(17)48927-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Maniar, Lahcen, Mohamed Oumoun, and Jean-Claude Vivalda. "On the stabilization of quadratic nonlinear systems." European Journal of Control 35 (May 2017): 28–33. http://dx.doi.org/10.1016/j.ejcon.2017.03.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Khlebnikov, Michael. "Quadratic Stabilization of Discrete-Time Bilinear Systems." Автоматика и телемеханика, no. 7 (2018): 59–79. http://dx.doi.org/10.31857/s000523100000267-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Khlebnikov, Mikhail V. "Robust Quadratic Stabilization of Bilinear Control Systems." IFAC-PapersOnLine 48, no. 11 (2015): 434–39. http://dx.doi.org/10.1016/j.ifacol.2015.09.224.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Zhong, Jianghua, Daizhan Cheng, and Xiaoming Hu. "Constructive stabilization for quadratic input nonlinear systems." Automatica 44, no. 8 (August 2008): 1996–2005. http://dx.doi.org/10.1016/j.automatica.2008.01.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Abdelmalek, Ibtissem, Noureddine Goléa, and Mohamed Hadjili. "A New Fuzzy Lyapunov Approach to Non-Quadratic Stabilization of Takagi-Sugeno Fuzzy Models." International Journal of Applied Mathematics and Computer Science 17, no. 1 (March 1, 2007): 39–51. http://dx.doi.org/10.2478/v10006-007-0005-4.

Full text
Abstract:
A New Fuzzy Lyapunov Approach to Non-Quadratic Stabilization of Takagi-Sugeno Fuzzy ModelsIn this paper, new non-quadratic stability conditions are derived based on the parallel distributed compensation scheme to stabilize Takagi-Sugeno (T-S) fuzzy systems. We use a non-quadratic Lyapunov function as a fuzzy mixture of multiple quadratic Lyapunov functions. The quadratic Lyapunov functions share the same membership functions with the T-S fuzzy model. The stability conditions we propose are less conservative and stabilize also fuzzy systems which do not admit a quadratic stabilization. The proposed approach is based on two assumptions. The first one relates to a proportional relation between multiple Lyapunov functions and the second one considers an upper bound to the time derivative of the premise membership functions. To illustrate the advantages of our proposal, four examples are given.
APA, Harvard, Vancouver, ISO, and other styles
20

Kozlov, V. V. "Restrictions of Quadratic Forms to Lagrangian Planes, Quadratic Matrix Equations, and Gyroscopic Stabilization." Functional Analysis and Its Applications 39, no. 4 (October 2005): 271–83. http://dx.doi.org/10.1007/s10688-005-0048-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Dai, Tianyu, Mario Sznaier, and Biel Roig Solvas. "Data-Driven Quadratic Stabilization of Continuous LTI Systems." IFAC-PapersOnLine 53, no. 2 (2020): 3965–70. http://dx.doi.org/10.1016/j.ifacol.2020.12.2252.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

YASUDA, Kazunori, and Minari YAMASAKI. "Decentralized Quadratic Stabilization of Interconnected Discrete-Time Systems." Transactions of the Society of Instrument and Control Engineers 33, no. 1 (1997): 28–34. http://dx.doi.org/10.9746/sicetr1965.33.28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Hu, Tingshu, Liqiang Ma, and Zongli Lin. "Stabilization of Switched Systems via Composite Quadratic Functions." IEEE Transactions on Automatic Control 53, no. 11 (December 2008): 2571–85. http://dx.doi.org/10.1109/tac.2008.2006933.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Jenq-Lang Wu. "Simultaneous Quadratic Stabilization for Discrete-Time Nonlinear Systems." IEEE Transactions on Automatic Control 55, no. 6 (June 2010): 1443–48. http://dx.doi.org/10.1109/tac.2010.2044279.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Wei-Jie Mao and Jian Chu. "Quadratic stability and stabilization of dynamic interval systems." IEEE Transactions on Automatic Control 48, no. 6 (June 2003): 1007–12. http://dx.doi.org/10.1109/tac.2003.812784.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Ishii, Hideaki, and Bruce A. Francis. "QUADRATIC STABILIZATION OF SAMPLED-DATA SYSTEMS WITH QUANTIZATION." IFAC Proceedings Volumes 35, no. 1 (2002): 67–72. http://dx.doi.org/10.3182/20020721-6-es-1901.00092.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Simpson-Porco, John W., Florian Dorfler, and Francesco Bullo. "Voltage Stabilization in Microgrids via Quadratic Droop Control." IEEE Transactions on Automatic Control 62, no. 3 (March 2017): 1239–53. http://dx.doi.org/10.1109/tac.2016.2585094.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Sugimoto, Kenji. "Observer-Based Quadratic Stabilization with Dominant Pole Placement." IFAC Proceedings Volumes 33, no. 14 (September 2000): 459–63. http://dx.doi.org/10.1016/s1474-6670(17)36271-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Kar, I. N. "Quadratic stabilization of a collection of linear systems." International Journal of Systems Science 33, no. 2 (January 2002): 153–60. http://dx.doi.org/10.1080/00207720110091721.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Ishii, Hideaki, and Bruce A. Francis. "Quadratic stabilization of sampled-data systems with quantization." Automatica 39, no. 10 (October 2003): 1793–800. http://dx.doi.org/10.1016/s0005-1098(03)00179-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Amato, F., R. Ambrosino, C. Cosentino, G. De Tommasi, and A. Merola. "Stabilization of impulsive quadratic systems over polytopic sets." Nonlinear Analysis: Hybrid Systems 7, no. 1 (February 2013): 16–27. http://dx.doi.org/10.1016/j.nahs.2012.07.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Samba, S., and J. C. Vivalda. "Global stabilization of a class of quadratic systems." Automatica 28, no. 5 (September 1992): 1057–61. http://dx.doi.org/10.1016/0005-1098(92)90163-a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Nikitin, Sergey. "Stabilization of Nonlinear Systems with Semi-Quadratic Cost." Acta Applicandae Mathematicae 105, no. 3 (August 19, 2008): 373–83. http://dx.doi.org/10.1007/s10440-008-9279-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

de Souza, Carlos E., and Daniel Coutinho. "Local Stabilization of Markov Jump Nonlinear Quadratic Systems." IFAC Proceedings Volumes 47, no. 3 (2014): 8725–30. http://dx.doi.org/10.3182/20140824-6-za-1003.00905.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Zhang, Minsong. "Finite-Time Stability and Stabilization of Nonlinear Quadratic Systems with Jumps." Mathematical Problems in Engineering 2014 (2014): 1–5. http://dx.doi.org/10.1155/2014/904607.

Full text
Abstract:
This paper investigates the problems of finite-time stability and finite-time stabilization for nonlinear quadratic systems with jumps. The jump time sequences here are assumed to satisfy some given constraints. Based on Lyapunov function and a particular presentation of the quadratic terms, sufficient conditions for finite-time stability and finite-time stabilization are developed to a set containing bilinear matrix inequalities (BLIMs) and linear matrix inequalities (LMIs). Numerical examples are given to illustrate the effectiveness of the proposed methodology.
APA, Harvard, Vancouver, ISO, and other styles
36

Krokavec, Dušan, and Anna Filasová. "Quadratic Stabilization of Linear Uncertain Positive Discrete-Time Systems." Symmetry 13, no. 9 (September 17, 2021): 1725. http://dx.doi.org/10.3390/sym13091725.

Full text
Abstract:
The paper provides extended methods for control linear positive discrete-time systems that are subject to parameter uncertainties, reflecting structural system parameter constraints and positive system properties when solving the problem of system quadratic stability. By using an extension of the Lyapunov approach, system quadratic stability is presented to become apparent in pre-existing positivity constraints in the design of feedback control. The approach prefers constraints representation in the form of linear matrix inequalities, reflects the diagonal stabilization principle in order to apply to positive systems the idea of matrix parameter positivity, applies observer-based linear state control to assert closed-loop system quadratic stability and projects design conditions, allowing minimization of an undesirable impact on matching parameter uncertainties. The method is utilised in numerical examples to illustrate the technique when applying the above strategy.
APA, Harvard, Vancouver, ISO, and other styles
37

Basu, Rabeya. "A note on general quadratic groups." Journal of Algebra and Its Applications 17, no. 11 (November 2018): 1850217. http://dx.doi.org/10.1142/s0219498818502171.

Full text
Abstract:
We deduce an analogue of Quillen–Suslin’s local-global principle for the transvection subgroups of the general quadratic (Bak’s unitary) groups. As an application, we revisit the result of Bak–Petrov–Tang on injective stabilization for the [Formula: see text]-functor of the general quadratic groups.
APA, Harvard, Vancouver, ISO, and other styles
38

Teng, C. P., and J. Angeles. "A Sequential-Quadratic-Programming Algorithm Using Orthogonal Decomposition With Gerschgorin Stabilization." Journal of Mechanical Design 123, no. 4 (June 1, 1999): 501–9. http://dx.doi.org/10.1115/1.1416693.

Full text
Abstract:
This paper introduces a new approach to sequential quadratic programming. Upon application of the orthogonal-decomposition algorithm and the Gerschgorin Theorem for the stabilization of the Hessian matrix in the quadratic-programming solution, this novel approach offers an alternative to existing methods that, additionally, dispenses with a feasible initial guess.
APA, Harvard, Vancouver, ISO, and other styles
39

Zhang, Da-Qing, Qing-Ling Zhang, and Yue-Peng Chen. "Controllability and quadratic stability quadratic stabilization of discrete-time interval systems—an LMI approach." IMA Journal of Mathematical Control and Information 23, no. 4 (December 1, 2006): 413–31. http://dx.doi.org/10.1093/imamci/dni070.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Yahyaoui, Soufiane, and Mohamed Ouzahra. "Quadratic optimal control and feedback stabilization of bilinear systems." Optimal Control Applications and Methods 42, no. 4 (January 18, 2021): 878–90. http://dx.doi.org/10.1002/oca.2704.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

YAMAMOTO, Shigeru, Takahiro UEDA, and Hidenori KIMURA. "Quadratic Stabilization Approach to Coupled Three-Inertia Benchmark Problem." Transactions of the Society of Instrument and Control Engineers 32, no. 7 (1996): 1027–34. http://dx.doi.org/10.9746/sicetr1965.32.1027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

SUGIMOTO, Kenji. "Quadratic Stabilization of Servo Systems with Dominant Pole Placement." Transactions of the Society of Instrument and Control Engineers 34, no. 10 (1998): 1419–24. http://dx.doi.org/10.9746/sicetr1965.34.1419.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Zuber, I. E., and A. Kh Gelig. "Global stabilization of nonlinear systems by quadratic Lyapunov functions." Vestnik St. Petersburg University: Mathematics 43, no. 1 (March 2010): 49–53. http://dx.doi.org/10.3103/s1063454110010097.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Feng, G., S. G. Cao, N. W. Rees, and J. Ma. "Quadratic Stabilization of Fuzzy Control Systems Using Output Feedback." Journal of Intelligent and Fuzzy Systems 5, no. 3 (1997): 219–27. http://dx.doi.org/10.3233/ifs-1997-5304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Khlebnikov, M. V. "Quadratic stabilization of bilinear systems: Linear dynamical output feedback." Automation and Remote Control 78, no. 9 (September 2017): 1545–58. http://dx.doi.org/10.1134/s0005117917090016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Feng, G. "Approaches to quadratic stabilization of uncertain fuzzy dynamic systems." IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 48, no. 6 (June 2001): 760–69. http://dx.doi.org/10.1109/81.928159.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Gang Feng and Jian Ma. "Quadratic stabilization of uncertain discrete-time fuzzy dynamic systems." IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 48, no. 11 (2001): 1337–44. http://dx.doi.org/10.1109/81.964424.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Yamamoto, Shigeru, and Hidenori Kimura. "Quadratic Stabilization by H ∞ Controller with Time-Varying Tuner." IFAC Proceedings Volumes 29, no. 1 (June 1996): 1632–37. http://dx.doi.org/10.1016/s1474-6670(17)57902-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Eren, Yavuz, Jinglai Shen, and Kanat Camlibel. "Quadratic stability and stabilization of bimodal piecewise linear systems." Automatica 50, no. 5 (May 2014): 1444–50. http://dx.doi.org/10.1016/j.automatica.2014.03.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Yuepeng, Chen, Zhou Zude, Liu Huanbin, and Zhane Qingling. "Simultaneous quadratic performance stabilization for linear time-delay systems." Journal of Systems Engineering and Electronics 17, no. 4 (December 2006): 817–23. http://dx.doi.org/10.1016/s1004-4132(07)60022-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography