Academic literature on the topic 'QSAR Model'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'QSAR Model.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "QSAR Model"
Li, Yan Kun, and Xiao Ying Ma. "QSAR/QSPR Model Research of Complicated Samples." Advanced Materials Research 740 (August 2013): 306–9. http://dx.doi.org/10.4028/www.scientific.net/amr.740.306.
Full textOkey, Robert W., and H. David Stensel. "A QSAR-based biodegradability model—A QSBR." Water Research 30, no. 9 (September 1996): 2206–14. http://dx.doi.org/10.1016/0043-1354(96)00098-x.
Full textZhang, Xiujun, H. G. Govardhana Reddy, Arcot Usha, M. C. Shanmukha, Mohammad Reza Farahani, and Mehdi Alaeiyan. "A study on anti-malaria drugs using degree-based topological indices through QSPR analysis." Mathematical Biosciences and Engineering 20, no. 2 (2022): 3594–609. http://dx.doi.org/10.3934/mbe.2023167.
Full textToropov, Andrey A., and Alla P. Toropova. "The Monte Carlo Method as a Tool to Build up Predictive QSPR/QSAR." Current Computer-Aided Drug Design 16, no. 3 (June 2, 2020): 197–206. http://dx.doi.org/10.2174/1573409915666190328123112.
Full textMudasir, Mudasir, Iqmal Tahir, and Ida Puji Astuti Maryono Putri. "QUANTITATIVE STRUCTURE AND ACTIVITY RELATIONSHIP ANALYSIS OF 1,2,4-THIADIAZOLINE FUNGICIDES BASED ON MOLECULAR STRUCTURE CALCULATED BY AM1 METHOD." Indonesian Journal of Chemistry 3, no. 1 (June 7, 2010): 39–47. http://dx.doi.org/10.22146/ijc.21904.
Full textSarkar, Bikash Kumar. "DFT Based QSAR Studies of Phenyl Triazolinones of Protoporphyrinogen Oxidase Inhibitors." Asian Journal of Organic & Medicinal Chemistry 5, no. 4 (December 31, 2020): 307–11. http://dx.doi.org/10.14233/ajomc.2020.ajomc-p280.
Full textRybińska-Fryca, Anna, Anita Sosnowska, and Tomasz Puzyn. "Representation of the Structure—A Key Point of Building QSAR/QSPR Models for Ionic Liquids." Materials 13, no. 11 (May 30, 2020): 2500. http://dx.doi.org/10.3390/ma13112500.
Full textPokle, Maithili S., Rashmi D. Singh, and Madhura P. Vaidya. "2D QSAR MODEL BASED ON 1,2-DISUBSTITUTED BENZIMIDAZOLES IMPDH INHIBITORS." Indian Drugs 59, no. 04 (June 1, 2022): 18–23. http://dx.doi.org/10.53879/id.59.04.13117.
Full textBu, Qingwei, Qingshan Li, Yun Liu, and Chun Cai. "Performance Comparison between the Specific and Baseline Prediction Models of Ecotoxicity for Pharmaceuticals: Is a Specific QSAR Model Inevitable?" Journal of Chemistry 2021 (October 31, 2021): 1–8. http://dx.doi.org/10.1155/2021/5563066.
Full textLIAO, SI YAN, LI QIAN, JIN CAN CHEN, YONG SHEN, and KANG CHENG ZHENG. "2D/3D-QSAR STUDY ON ANALOGUES OF 2-METHOXYESTRADIOL WITH ANTICANCER ACTIVITY." Journal of Theoretical and Computational Chemistry 07, no. 02 (April 2008): 287–301. http://dx.doi.org/10.1142/s0219633608003745.
Full textDissertations / Theses on the topic "QSAR Model"
Spreafico, Morena. "Mixed-model QSAR at the glucocorticoid and liver X receptors /." [S.l.] : [s.n.], 2009. http://edoc.unibas.ch/diss/DissB_8730.
Full textBagchi, Bhaskar. "Quantum chemical calculation and structure activity relationship of bioactive terpenoids." Thesis, University of North Bengal, 2016. http://ir.nbu.ac.in/handle/123456789/2762.
Full textRaynaud, Isabelle. "Etude des relations structure-activité quantitatives (QSAR) des cytokinines : synthèse et activité biologique de nouvelles molécules actives." Angers, 1996. http://www.theses.fr/1996ANGE0022.
Full textMazzatorta, Paolo. "Evaluation of pesticide toxicity : a hierarchical QSAR approach to model the acute aquatic toxicity and avian oral toxicity of pesticides." Thesis, Open University, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.424819.
Full textMalazizi, Ladan. "Development of Artificial Intelligence-based In-Silico Toxicity Models. Data Quality Analysis and Model Performance Enhancement through Data Generation." Thesis, University of Bradford, 2008. http://hdl.handle.net/10454/4262.
Full textModa, Tiago Luiz. "Desenvolvimento de modelos in silico de propriedades de ADME para a triagem de novos candidatos a fármacos." Universidade de São Paulo, 2007. http://www.teses.usp.br/teses/disponiveis/76/76132/tde-22032007-112055/.
Full textMolecular modeling tools and quantitative structure-activity relantionships (QSAR) or structure-property (QSPR) are integrated into the drug design process in the search for new bioactive molecules with good pharmacokinetic and pharmacodynamic properties. The Medicinal Chemistry work carried out in this Masters dissertation concerned studies of the quantitative relationshisps between chemical structure and the pharmacokinetic properties oral bioavailability and plasma protein binding. In the present work, standard data sets for bioavailability and plasma protein binding were organized encompassing the structural information and corresponding pharmacokinetic data. The created data sets established the scientific basis for the development of predictive models using the hologram QSAR and VolSurf methods. The final HQSAR and VolSurf models posses high internal and external consistency with good correlative and predictive power. Due to the simplicity, robustness and effectivess, these models are useful guides in Medicinal Chemistry in the early stages of the drug discovery and development process.
MANSOURI, KAMEL. "New molecular descriptors for estimating degradation and fate of organic pollutants by QSAR/QSPR models within reach." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2013. http://hdl.handle.net/10281/45611.
Full textDimitriadis, Spyridon. "Multi-task regression QSAR/QSPR prediction utilizing text-based Transformer Neural Network and single-task using feature-based models." Thesis, Linköpings universitet, Statistik och maskininlärning, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-177186.
Full textSköld, Christian. "Computational Modeling of the AT2 Receptor and AT2 Receptor Ligands : Investigating Ligand Binding, Structure–Activity Relationships, and Receptor-Bound Models." Doctoral thesis, Uppsala University, Organic Pharmaceutical Chemistry, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7823.
Full textRational conversion of biologically active peptides to nonpeptide compounds with retained activity is an appealing approach in drug development. One important objective of the work presented in this thesis was to use computational modeling to aid in such a conversion of the peptide angiotensin II (Ang II, Asp-Arg-Val-Tyr-Ile-His-Pro-Phe). An equally important objective was to gain an understanding of the requirements for ligand binding to the Ang II receptors, with a focus on interactions with the AT2 receptor.
The bioactive conformation of a peptide can provide important guidance in peptidomimetic design. By designing and introducing well-defined secondary structure mimetics into Ang II the bioactive conformation can be addressed. In this work, both γ- and β-turn mimetic scaffolds have been designed and characterized for incorporation into Ang II. Using conformational analysis and the pharmacophore recognition method DISCO, a model was derived of the binding mode of the pseudopeptide Ang II analogues. This model indicated that the positioning of the Arg side chain was important for AT2 receptor binding, which was also supported when the structure–activity relationship of Ang II was investigated by performing a glycine scan.
To further examine ligand binding, a 3D model of the AT2 receptor was constructed employing homology modeling. Using this receptor model in a docking study of the ligands, binding modes were identified that were in agreement with data from point-mutation studies of the AT2 receptor.
By investigating truncated Ang II analogues, small pseudopeptides were developed that were structurally similar to nonpeptide AT2 receptor ligands. For further guidance in ligand design of nonpeptide compounds, three-dimensional quantitative structure–activity relationship models for AT1 and AT2 receptor affinity as well as selectivity were derived.
Sköld, Christian. "Computational Modeling of the AT2 Receptor and AT2 Receptor Ligands : Investigating Ligand Binding, Structure–Activity Relationships, and Receptor-Bound Models." Doctoral thesis, Uppsala universitet, Avdelningen för organisk farmaceutisk kemi, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7823.
Full textBooks on the topic "QSAR Model"
Romualdo, Benigni, ed. Quantitative structure-activity relationship (QSAR) models of mutagens and carcinogens. Boca Raton, Fla: CRC Press, 2003.
Find full textname, No. Quantitative structure-activity relationship (QSAR) models of mutagens and carcinogens. Boca Raton, FL: CRC Press, 2002.
Find full textGonzález-Díaz, Humberto. Alignment-free models in plant genomics: Theoretical, experimental and legal issues. New York: Nova Science, 2010.
Find full textKnaak, James B., Charles Timchalk, and Rogelio Tornero-Velez, eds. Parameters for Pesticide QSAR and PBPK/PD Models for Human Risk Assessment. Washington, DC: American Chemical Society, 2012. http://dx.doi.org/10.1021/bk-2012-1099.
Full textKnaak, James B., Charles Timchalk, and Rogelio Tornero-Velez. Parameters for pesticide QSAR and PBPK/PD models for human risk assessment. Edited by American Chemical Society and American Chemical Society. Division of Agrochemicals. Washington, DC: American Chemical Society, 2012.
Find full textPrakash, Gupta Satya, and Bahal R, eds. QSAR and molecular modeling studies in heterocyclic drugs. Berlin: Springer-Verlag, 2006.
Find full textauthor, Panaye Annick, ed. Three dimensional QSAR: Applications in pharmacology and toxicology. Boca Raton: CRC Press, 2010.
Find full text1944-, Truhlar Donald G., ed. Rational drug design. New York: Springer, 1999.
Find full textMartin, Yvonne Connolly. Quantitative drug design: A critical introduction. 2nd ed. Boca Raton, FL: Taylor & Francis, 2010.
Find full textMartin, Yvonne Connolly. Quantitative drug design: A critical introduction. 2nd ed. Boca Raton: CRC Press/Taylor & Francis, 2010.
Find full textBook chapters on the topic "QSAR Model"
Johansson, Erik, Lennart Eriksson, Maria Sandberg, and Svante Wold. "QSAR Model Validation." In Molecular Modeling and Prediction of Bioactivity, 271–72. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4141-7_36.
Full textGrunewald, Gary L., Niels Skjaerbaek, and James A. Monn. "An active site model of phenylethanolamine N-methyltransferase using CoMFA." In Trends in QSAR and Molecular Modelling 92, 513–16. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1472-1_138.
Full textSanz, F., E. López de Briñas, J. Rodríguez, and F. Manaut. "Theoretical model for the metabolism of caffeine and its inhibition." In Trends in QSAR and Molecular Modelling 92, 193–96. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1472-1_29.
Full textVrontaki, Eleni, and Antonios Kolocouris. "Pharmacophore Generation and 3D-QSAR Model Development Using PHASE." In Methods in Molecular Biology, 387–401. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-8630-9_23.
Full textRothe, H., and S. Boudon. "An approach to knowledge-based QSAR predictions using the MASCA model." In Trends in QSAR and Molecular Modelling 92, 502–3. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1472-1_134.
Full textOpreaa, Tudor Ionel, Ludovic Kurunczi, and Eduard Eli Moret. "Role of the dipole moment during ligand receptor interaction: A hypothetic static model." In Trends in QSAR and Molecular Modelling 92, 398–99. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1472-1_92.
Full textHerbette, Leo G. "A structural model for drug interactions with biological membranes: Hydrophobicity, hydrophilicity and amphiphilicity in drug structures." In Trends in QSAR and Molecular Modelling 92, 76–85. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1472-1_10.
Full textBlankley, C. John, and Andrew D. White. "Lipophilic and electronic factors influencing the activity of a series of urea ACAT inhibitors: Approaches to model specification." In Trends in QSAR and Molecular Modelling 92, 349–51. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1472-1_73.
Full textKemmritz, Kerstin, and Hans-Dieter Höltje. "Theoretical investigations on the interaction of non-steroidal antiphlogistics with a model of the active site of the human prostaglandin endoperoxide synthase (‘cyclooxygenase’)." In Trends in QSAR and Molecular Modelling 92, 476–77. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1472-1_124.
Full textGolani, Mati, and Idit I. Golani. "Neural Network Ensemble Based QSAR Model for the BBB Challenge: A Review." In Transactions on Engineering Technologies, 55–68. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-7236-5_5.
Full textConference papers on the topic "QSAR Model"
Boboriko, Natalia, He Liying, and Yaraslau Dzichenka. "THE EXPLORATION OF CYP17A1 LIGAND SPACE BY THE QSAR MODEL." In 1st INTERNATIONAL Conference on Chemo and BioInformatics. Institute for Information Technologies, University of Kragujevac, 2021. http://dx.doi.org/10.46793/iccbi21.439b.
Full textMunjal, Nupur S., Narendra Kumar, Manu Sharma, and Chittaranjan Rout. "QSAR model development for solubility prediction of Paclitaxel." In 2016 International Conference on Bioinformatics and Systems Biology (BSB). IEEE, 2016. http://dx.doi.org/10.1109/bsb.2016.7552139.
Full textDouali, Latifa. "QSAR model of phenols generated by deep neural network." In 2020 1st International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET). IEEE, 2020. http://dx.doi.org/10.1109/iraset48871.2020.9092000.
Full textDjokovic, Nemanja, Ana Postolovic, and Katarina Nikolic. "MOLECULAR MODELING OF 5‐[(AMIDOBENZYL)OXY]‐ NICOTINAMIDES AS SIRTUIN 2 INHIBITORS USING ALIGNMENT- (IN)DEPENDENT 3D-QSAR ANALYSIS AND MOLECULAR DOCKING." In 1st INTERNATIONAL Conference on Chemo and BioInformatics. Institute for Information Technologies, University of Kragujevac, 2021. http://dx.doi.org/10.46793/iccbi21.410dj.
Full textRagno, Rino, and Alessio Ragno. "db.3d-qsar.com. The first 3D QSAR models database." In 2nd International Conference on Chemo and Bioinformatics. Institute for Information Technologies, University of Kragujevac, 2023. http://dx.doi.org/10.46793/iccbi23.051r.
Full text"Application of machine learning models to predict ecotoxicity of ionic liquids (Vibrio fischeri) using VolSurf principal properties." In Sustainable Processes and Clean Energy Transition. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902516-27.
Full textConcu, Riccardo, and Maria Natalia Dias Soeiro Cordeiro. "A novel QSAR model to predict epidermial growth factor inhibitors." In MOL2NET 2018, International Conference on Multidisciplinary Sciences, 4th edition. Basel, Switzerland: MDPI, 2018. http://dx.doi.org/10.3390/mol2net-04-05261.
Full textUlfa, Adawiyah, Alhadi Bustamam, Arry Yanuar, Rizka Amalia, and Prasnurzaki Anki. "Model QSAR Classification Using Conv1D-LSTM of Dipeptidyl Peptidase-4 Inhibitors." In 2021 International Conference on Artificial Intelligence and Mechatronics Systems (AIMS). IEEE, 2021. http://dx.doi.org/10.1109/aims52415.2021.9466083.
Full textWang, Dan, Junjie Wang, Chaochao Yang, and Yongqiang Ren. "Simulating QSAR Model of ERa Bioactivity by Statistics and Machine Learning." In ACM ICEA '21: 2021 ACM International Conference on Intelligent Computing and its Emerging Applications. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3491396.3506514.
Full textLevovnik, Bojan D., Aleksa P. Alargić, Miloš M. Svirčev, and Goran I. Benedeković. "Building a 3D QSAR model with isopropylidene analogs of cytotoxic styryl-lactones." In 2nd International Conference on Chemo and Bioinformatics. Institute for Information Technologies, University of Kragujevac, 2023. http://dx.doi.org/10.46793/iccbi23.559l.
Full text