Academic literature on the topic 'QNM completeness'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'QNM completeness.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "QNM completeness"

1

Nascimento, Thiago, and Umberto Rivieccio. "Negation and Implication in Quasi-Nelson Logic." Logical Investigations 27, no. 1 (May 27, 2021): 107–23. http://dx.doi.org/10.21146/2074-1472-2021-27-1-107-123.

Full text
Abstract:
Quasi-Nelson logic is a recently-introduced generalization of Nelson’s constructive logic with strong negation to a non-involutive setting. In the present paper we axiomatize the negation-implication fragment of quasi-Nelson logic (QNI-logic), which constitutes in a sense the algebraizable core of quasi-Nelson logic. We introduce a finite Hilbert-style calculus for QNI-logic, showing completeness and algebraizability with respect to the variety of QNI-algebras. Members of the latter class, also introduced and investigated in a recent paper, are precisely the negation-implication subreducts of quasi-Nelson algebras. Relying on our completeness result, we also show how the negation-implication fragments of intuitionistic logic and Nelson’s constructive logic may both be obtained as schematic extensions of QNI-logic.
APA, Harvard, Vancouver, ISO, and other styles
2

Ton Tran Cong. "On the completeness of the Papkovich-Neuber solution." Quarterly of Applied Mathematics 47, no. 4 (December 1, 1989): 645–59. http://dx.doi.org/10.1090/qam/1031682.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Moshokoa, Seithuti P. "On convergence completeness in symmetric spaces." Quaestiones Mathematicae 31, no. 3 (September 2008): 203–8. http://dx.doi.org/10.2989/qm.2008.31.3.2.544.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Eom, Junyong, and Gen Nakamura. "Completeness of representation of solutions for stationary homogeneous isotropic elastic/viscoelastic systems." Quarterly of Applied Mathematics 77, no. 3 (February 20, 2019): 497–506. http://dx.doi.org/10.1090/qam/1536.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Masuda, Akira. "On the completeness and the expansion theorem for eigenfunctions of the Sturm-Liouville-Rossby type." Quarterly of Applied Mathematics 47, no. 3 (September 1, 1989): 435–45. http://dx.doi.org/10.1090/qam/1012268.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nadarajah, A., and R. Narayanan. "On the completeness of the Rayleigh-Marangoni and Graetz eigenspaces and the simplicity of their eigenvalues." Quarterly of Applied Mathematics 45, no. 1 (April 1, 1987): 81–92. http://dx.doi.org/10.1090/qam/885170.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Masuda, Akira. "The completeness theorem for Rossby normal modes of a stably stratified flat ocean with an arbitrary form of side boundary." Quarterly of Applied Mathematics 51, no. 3 (January 1, 1993): 425–39. http://dx.doi.org/10.1090/qam/1233523.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sandu, Raluca-Maria, Iwan Paolucci, Simeon J. S. Ruiter, Raphael Sznitman, Koert P. de Jong, Jacob Freedman, Stefan Weber, and Pascale Tinguely. "Volumetric Quantitative Ablation Margins for Assessment of Ablation Completeness in Thermal Ablation of Liver Tumors." Frontiers in Oncology 11 (March 10, 2021). http://dx.doi.org/10.3389/fonc.2021.623098.

Full text
Abstract:
BackgroundIn thermal ablation of liver tumors, complete coverage of the tumor volume by the ablation volume with a sufficient ablation margin is the most important factor for treatment success. Evaluation of ablation completeness is commonly performed by visual inspection in 2D and is prone to inter-reader variability. This work aimed to introduce a standardized approach for evaluation of ablation completeness after CT-guided thermal ablation of liver tumors, using volumetric quantitative ablation margins (QAM).MethodsA QAM computation metric based on volumetric segmentations of tumor and ablation areas and signed Euclidean surface distance maps was developed, including a novel algorithm to address QAM computation in subcapsular tumors. The code for QAM computation was verified in artificial examples of tumor and ablation spheres simulating varying scenarios of ablation margins. The applicability of the QAM metric was investigated in representative cases extracted from a prospective database of colorectal liver metastases (CRLM) treated with stereotactic microwave ablation (SMWA).ResultsApplicability of the proposed QAM metric was confirmed in artificial and clinical example cases. Numerical and visual options of data presentation displaying substrata of QAM distributions were proposed. For subcapsular tumors, the underestimation of tumor coverage by the ablation volume when applying an unadjusted QAM method was confirmed, supporting the benefits of using the proposed algorithm for QAM computation in these cases. The computational code for developed QAM was made publicly available, encouraging the use of a standard and objective metric in reporting ablation completeness and margins.ConclusionThe proposed volumetric approach for QAM computation including a novel algorithm to address subcapsular liver tumors enables precision and reproducibility in the assessment of ablation margins. The quantitative feedback on ablation completeness opens possibilities for intra-operative decision making and for refined analyses on predictability and consistency of local tumor control after thermal ablation of liver tumors.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "QNM completeness"

1

Al, Sheikh Lamis. "Scattering resonances and Pseudospectrum : stability and completeness aspects in optical and gravitational systems." Electronic Thesis or Diss., Bourgogne Franche-Comté, 2022. http://www.theses.fr/2022UBFCK007.

Full text
Abstract:
Le contexte général de cette thèse est un effort pour établir un pont entre la physique gravitationnelle et optique, spécifiquement dans le contexte des problèmes de diffusion à l’aide des concepts et des outils tirés de la théorie des opérateurs non auto-adjoints. Nous nous concentrons sur les modes quasi-normaux (MQN), appelés les modes de résonance naturels des structures à fuites ouvertes sous des perturbations linéaires soumises à des conditions de bords sortantes.Ils sont également appelés résonances de diffusion. Dans le cas auto-adjoint conservateur, le théorème spectral garantit la complétude et la stabilité spectrale des modes normaux associés.En ce sens, une question naturelle dans le cadre de non auto-adjoint est reliée à la caractérisation et à l’évaluation des notions appropriées de complétude de MQNs et de stabilité spectrale dans les systèmes ouverts non conservateurs. Ceci définit les objectifs de cette thèse. Pour ce faire, et contrairement à l’approche traditionnelle des résonances de diffusion, nous adoptons une méthodologie dans laquelle les MQNs sont présentés comme un problème spectral d’un opérateur approprié non auto-adjoint. Plus précisément, cette méthodologie est basée sur les trois ingrédients suivants :(i) L’approche hyperboloïdale: L’approche en tranchant hyperboloïdales est déjà utilisée dansles problèmes gravitationnels, nous l’avons introduite dans les problèmes optiques. L’idéeest d’étudier l’équation d’onde en tranches hyperboliques au lieu des tranches de Cauchy habituellement utilisées. Le système de coordonnées est plus adapté à la problématique des QNMs et de ses conditions aux limites sortantes, en particulier, aborder les modes explosifs dans l’approche de Cauchy. Les modes sont normalisables en de telles coordonnées ettravailler dans ces tranches éliminent le besoin d’imposer les conditions de bords sortantes.(ii) Pseudospectre d’un opérateur: la notion de epsilon-pseudospectre permet d’évaluer la (in)stabilité des valeurs propres d’un opérateur dans le plan complexe en raison d’une perturbation de l’opérateur d’ordre epsilon. Cette thèse introduit la notion de pseudospectre en physique gravitationnel et optique au voisinage des valeurs propres.(iii) Au niveau technique, les méthodes spectrales fournissent un outil efficace pour traduirele problème en un problème numérique. En particulier, nous avons utilisé la base de Chebyshev pour l’expansion des nos champs. Les résultats de ce travail touchent trois domaines :(i) L’instabilité des MQN pour certaines classes de potentiels. Les modes fondamentaux sont stables spécialement sous de petites perturbations "à haute fréquence", alors que les harmoniques sont sensibles à de telles perturbations. L’instabilité des harmoniques augmente à mesure que leur partie imaginaire grandit.(ii) L’universalité du comportement asymptotique des MQNs et du pseudospectre. Nous remarquons un comportement asymptotiquement logarithmique des lignes de contour du pseudospectre et délimitant les branches d’ouverture des MQNs par le bas.(iii) MQNs expansion. Nous revisitons les expansions résonantes asymptotiques de Lax &Phillips d’un "champ diffusé" en termes de MQNs pour nos problèmes physiques. En particulier, nous utilisons le développement de Keldysh des généralisations des expressions pour les modes normaux des systèmes conservateurs, spécifiquement en termes de fonctions propres MQN normalisables et d’expressions explicites pour les coefficients d’excitation
The general context of this thesis is an effort to establish a bridge between gravitational andoptical physics, specifically in the context of scattering problems using as a guideline concepts andtools taken from the theory of non-self-adjoint operators. Our focus is on Quasi-Normal Modes(QNMs), namely the natural resonant modes of open leaky structures under linear perturbationssubject to outgoing boundary conditions. They also are referred to as scattering resonances.In the conservative self-adjoint case the spectral theorem guarantees the completeness andspectral stability of the associated normal modes. In this sense, a natural question in the non-self-adjoint setting refers to the characterization and assessment of appropriate notions of QNMcompleteness and spectral stability in open non-conservative systems. This defines the generalobjective of this thesis. To this aim, and in contrast with the traditional approach to scatter-ing resonances, we adopt a methodology in which QNMs are cast as a spectral problem of anappropriate non-self-adjoint operator. Specifically this methodology is based on following threeingredients:(i) Hyperboloidal approach: The hyperboloidal slicing approach is already used in gravitationalproblems, we introduced it here to optical ones. The idea is to study the wave equationin hyperbolic slices instead of usually used Cauchy slices. The system of coordinates ismore adapted to the problem of QNMs and its outgoing boundary conditions, in particularaddressing the exploding modes in the Cauchy approach. The modes are normalizable insuch coordinates and working in these slices eliminate the need of imposing the outgoingboundary conditions.(ii) Pseudospectrum of an operator: the notion of epsilon-pseudospectrum allows to assess the (in)stabilityof eigenvalues of an operator in the complex plane due to a perturbation to the operator oforder epsilon. This thesis introduces the notion of pseudospectrum in gravitational and opticalphysics in the vicinity of the eigenvalues.(iii) Numerical Chebyshev spectral methods: On the technical level, spectral methods providesan efficient tool when translating the problem into a numerical one. In particular we usedChebyshev basis to expand our fields.The results of this work touch three areas:(i) The instability of QNMs for some class of potentials. The fundamental modes are stablespecially under small "high frequency" perturbations, whereas overtones are sensitive tosuch perturbations. The instability of the overtones increases as their imaginary part grows.(ii) The universality of the asymptotic behaviour of QNMs and pseudospectrum. We remarkan asymptotically logarithmic behavior of pseudospectrum contour lines and bounding theopening QNMs branches from below.(iii) QNMs expansion. We revisit Lax & Phillips asymptotic resonant expansions of a "scattered field" in terms of QNMs in our physical settings. In particular , we make use of Keldysh expansion of the generalizations of the expressions for normal modes of conservative systems, specifically in terms of normalizable QNM eigenfunctions and explicit expressions for the excitation coefficients
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "QNM completeness"

1

Silberstein, Michael, and W. M. Stuckey. "The Completeness of Quantum Mechanics and the Determinateness and Consistency of Intersubjective Experience." In Consciousness and Quantum Mechanics, 198–259. Oxford University PressNew York, 2022. http://dx.doi.org/10.1093/oso/9780197501665.003.0011.

Full text
Abstract:
Abstract Recent experiments (gedanken or otherwise) and theorems in quantum mechanics (QM) have led many people to claim that QM is not compatible with determinate and intersubjectively consistent experience, what some call the “absoluteness” of observed events; examples include new iterations on Wigner’s friend and delayed choice. Herein we provide a realist psi-epistemic take on QM that saves the absoluteness of observed events and the completeness of QM, without giving up free will or locality. We also show how our realist psi-epistemic account eliminates the measurement problem and, coupled with our take on neutral monism, also eliminates the hard problem of consciousness. On our view there is no need for conscious experience to explain measurement collapse nor any need for measurement collapse to resolve the hard problem. The key here is to reject the unquestioned assumptions that inexorably lead to the measurement problem and the hard problem. This will require a reconception of QM and, a reconception of matter, conscious experience and their relationship to one another.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography