Academic literature on the topic 'QED de cavité'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'QED de cavité.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "QED de cavité"
Lechner, Daniel, Riccardo Pennetta, Martin Blaha, Philipp Schneeweiss, Jürgen Volz, and Arno Rauschenbeutel. "Experimental investigation of light-matter interaction when transitioning from cavity QED to waveguide QED." EPJ Web of Conferences 266 (2022): 11006. http://dx.doi.org/10.1051/epjconf/202226611006.
Full textZhang Lei, 张蕾. "基于腔QED制备三粒子singlet态." Laser & Optoelectronics Progress 58, no. 23 (2021): 2327002. http://dx.doi.org/10.3788/lop202158.2327002.
Full textYE, LIU, and GUANG-CAN GUO. "ENTANGLEMENT CONCENTRATION AND A QUANTUM REPEATER IN CAVITY QED." International Journal of Quantum Information 03, no. 02 (June 2005): 351–57. http://dx.doi.org/10.1142/s0219749905001018.
Full textYANG, ZHEN, WEN-HAI ZHANG, and LIU YE. "SCHEME TO IMPLEMENT THE OPTIMAL ASYMMETRIC ECONOMICAL 1 → 2 PHASE-COVARIANT TELECLONING VIA CAVITY-QED." International Journal of Quantum Information 06, no. 02 (April 2008): 317–23. http://dx.doi.org/10.1142/s0219749908003426.
Full textWang, Yahong, and Changshui Yu. "Minimum remote state preparation of an arbitrary two-level one-atom state via cavity QED." International Journal of Quantum Information 13, no. 02 (March 2015): 1550009. http://dx.doi.org/10.1142/s0219749915500094.
Full textXUE, ZHENG-YAUN, PING DONG, YOU-MIN YI, and ZHUO-LIANG CAO. "QUANTUM STATE SHARING VIA THE GHZ STATE IN CAVITY QED WITHOUT JOINT MEASUREMENT." International Journal of Quantum Information 04, no. 05 (October 2006): 749–59. http://dx.doi.org/10.1142/s0219749906002201.
Full textLIU, CHUAN-LONG, YAN-WEI WANG, and YI-ZHUANG ZHENG. "IMPLEMENTATION OF NON-LOCAL TOFFOLI GATE VIA CAVITY QUANTUM ELECTRODYNAMICS." International Journal of Quantum Information 07, no. 03 (April 2009): 669–80. http://dx.doi.org/10.1142/s0219749909003329.
Full textSaid, Taoufik, Abdelhaq Chouikh, Karima Essammouni, and Mohamed Bennai. "Realizing an N-two-qubit quantum logic gate in a cavity QED with nearest qubit--qubit interaction." Quantum Information and Computation 16, no. 5&6 (April 2016): 465–82. http://dx.doi.org/10.26421/qic16.5-6-4.
Full textChang, D. E., L. Jiang, A. V. Gorshkov, and H. J. Kimble. "Cavity QED with atomic mirrors." New Journal of Physics 14, no. 6 (June 1, 2012): 063003. http://dx.doi.org/10.1088/1367-2630/14/6/063003.
Full textImamoglu, Atac. "Cavity-QED Using Quantum Dots." Optics and Photonics News 13, no. 8 (August 1, 2002): 22. http://dx.doi.org/10.1364/opn.13.8.000022.
Full textDissertations / Theses on the topic "QED de cavité"
De, Santis Lorenzo. "Single photon generation and manipulation with semiconductor quantum dot devices." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS034/document.
Full textQuantum phenomena can nowadays be engineered to realize fundamentally new applications. This is the field of quantum technology, which holds the promise of revolutionizing computation, communication and metrology. By encoding the information in quantum mechanical systems, it appears to be possible to solve classically intractable problems, achieve absolute security in distant communications and beat the classical limits for precision measurements. Single photons as quantum information carriers play a central role in this field, as they can be easily manipulated and can be used to implement many quantum protocols. A key aspect is the interfacing between photons and matter quantum systems, a fundamental operation both for the generation and the readout of the photons. This has been driving a lot of research toward the realization of efficient atom-cavity systems, which allows the deterministic and reversible transfer of the information between the flying photons and the optical transition of a stationary atom. The realization of such systems in the solid-state gives the possibility of fabricating integrated and scalable quantum devices. With this objective, in this thesis work, we study the light-matter interface provided by a single semiconductor quantum dot, acting as an artificial atom, deterministically coupled to a micropillar cavity. Such a device is shown to be an efficient emitter and receiver of single photons, and is used to implement basic quantum functionalities.First, under resonant optical excitation, the device is shown to act as a very bright source of single photons. The strong acceleration of the spontaneous emission in the cavity and the electrical control of the structure, allow generating highly indistinguishable photons with a record brightness. This new generation of single photon sources can be used to generate path entangled NOON states. Such entangled states are important resources for sensing application, but their full characterizatiob has been scarcely studied. We propose here a novel tomography method to fully characterize path entangled N00N state and experimentally demonstrate the method to derive the density matrix of a two-photon path entangled state. Finally, we study the effect of the quantum dot-cavity device as a non-linear filter. The optimal light matter interface achieved here leads to the observation of an optical nonlinear response at the level of a single incident photon. This effect is used to demonstrate the filtering of single photon Fock state from classical incident light pulses. This opens the way towards the realization of efficient photon-photon effective interactions in the solid state, a fundamental step to overcome the limitations arising from the probabilistic operations of linear optical gates that are currently employed in quantum computation and communication
Diniz, Igor. "Quantum electrodynamics in superconducting artificial atoms." Thesis, Grenoble, 2012. http://www.theses.fr/2012GRENY048/document.
Full textCette thèse porte sur deux problèmes théoriques d'électrodynamique quantique en circuits supraconducteurs. Nous avons d'abord étudié les conditions d'obtention du couplage fort entre un résonateur et une distribution continue d'émetteurs élargie de façon inhomogène. Le développement de ce formalisme est fortement motivé par les récentes propositions d'utiliser des ensembles de degrés de liberté microscopiques pour réaliser des mémoires quantiques. En effet, ces systèmes bénéficient du couplage collectif au résonateur, tout en conservant les propriétés de relaxation d'un seul émetteur. Nous discutons l'influence de l'élargissement inhomogène sur l'existence et les propriétés de cohérence des pics polaritoniques obtenus dans le régime de couplage fort. Nous constatons que leur cohérence dépend de façon critique de la forme de la distribution et pas uniquement de sa largeur. En tenant compte de l'élargissement inhomogène, nous avons pu simuler avec une grande précision de nombreux résultats expérimentaux pionniers sur un ensemble de centres NV. La modélisation s'est révélée un outil puissant pour obtenir les propriétés des ensembles de spins couplés à un résonateur. Nous proposons également une méthode originale de mesure de l'état de qubits Josephson fondée sur un SQUID DC avec une inductance de boucle élevée. Ce système est décrit par un atome artificiel avec des niveaux d'énergie en forme de diamant où nous définissons les qubits logique et ancilla couplés entre eux par un terme Kerr croisé. En fonction de l'état du qubit logique, l'ancilla est couplée de manière résonante ou dispersive au résonateur, ce qui provoque un contraste important dans l'amplitude du signal micro-onde transmis par le résonateur. Les simulations montrent que cette méthode originale peut être plus rapide et peut aussi avoir une plus grande fidélité que les méthodes actuellement utilisées dans la communauté des circuits supraconducteurs
Srivastava, Vineesha. "Entanglement generation and quantum gates with quantum emitters in a cavity." Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAF069.
Full textThis thesis presents novel protocols for non-local multi-qubit quantum gates and entanglement generation in systems where multiple quantum emitters interact with a shared bosonic mode. It introduces the Geometric and Adiabatic Phase Gates, with closed-form infidelity expressions scaling with qubit number and cooperativity. For two qubits, these form a universal gate set, while in multi-qubit systems, they enable deterministic gates for quantum simulation and quantum error correction. A key contribution is an entanglement-enhanced sensing protocol that achieves high measurement precision via optimal control. The thesis also examines a cavity polariton blockade mechanism for non-local W-state generation and multi-qubit gates. These deterministic multi-qubit operations rely only on classical cavity drives and, in some cases, global qubit pulses, providing a scalable foundation for quantum computing, sensing, and the future quantum internet, especially for neutral atom systems
Diniz, Igor. "Electrodynamique quantique des les atomes artificiels supraconducteurs." Phd thesis, Université de Grenoble, 2012. http://tel.archives-ouvertes.fr/tel-00771451.
Full textMartini, Ullrich. "Cavity QED with many atoms." Diss., [S.l.] : [s.n.], 2000. http://deposit.ddb.de/cgi-bin/dokserv?idn=963141449.
Full textBoozer, Allen David Kimble H. Jeff. "Raman transitions in cavity QED /." Diss., Pasadena, Calif. : California Institute of Technology, 2005. http://resolver.caltech.edu/CaltechETD:etd-05272005-160246.
Full textBirnbaum, Kevin Michael Kimble H. Jeff. "Cavity QED with multilevel atoms /." Diss., Pasadena, Calif. : California Institute of Technology, 2005. http://resolver.caltech.edu/CaltechETD:etd-05272005-103306.
Full textNorthup, Tracy Eleanor Kimble H. Jeff Kimble H. Jeff. "Coherent control in cavity QED /." Diss., Pasadena, Calif. : California Institute of Technology, 2008. http://resolver.caltech.edu/CaltechETD:etd-05242008-114227.
Full textBrama, Elisabeth. "Ion trap cavity system for strongly coupled cavity-QED." Thesis, University of Sussex, 2013. http://sro.sussex.ac.uk/id/eprint/45218/.
Full textAlqahtani, Moteb M. "Multi-photon processes in cavity QED." Thesis, University of Sussex, 2014. http://sro.sussex.ac.uk/id/eprint/49632/.
Full textBooks on the topic "QED de cavité"
Putz, Stefan. Circuit Cavity QED with Macroscopic Solid-State Spin Ensembles. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66447-7.
Full textVučković, Jelena. Quantum optics and cavity QED with quantum dots in photonic crystals. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198768609.003.0008.
Full textThoumany, Pierre. Optical spectroscopy and cavity QED experiments with Rydberg atoms. 2011.
Find full textPutz, Stefan. Circuit Cavity QED with Macroscopic Solid-State Spin Ensembles. Springer, 2017.
Find full textPutz, Stefan. Circuit Cavity QED with Macroscopic Solid-State Spin Ensembles. Springer, 2018.
Find full textPandey, Deepak. Fiber-Based Optical Resonators: Cavity QED, Resonator Design and Technological Applications. de Gruyter GmbH, Walter, 2022.
Find full textPandey, Deepak. Fiber-Based Optical Resonators: Cavity QED, Resonator Design and Technological Applications. de Gruyter GmbH, Walter, 2022.
Find full textPandey, Deepak. Fiber-Based Optical Resonators: Cavity QED, Resonator Design and Technological Applications. de Gruyter GmbH, Walter, 2022.
Find full textBook chapters on the topic "QED de cavité"
Meystre, P. "Cavity QED." In Springer Series on Wave Phenomena, 26–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84206-1_3.
Full textLange, W., Q. A. Turchette, C. J. Hood, H. Mabuchi, and H. J. Kimble. "Optical Cavity QED." In Microcavities and Photonic Bandgaps: Physics and Applications, 443–56. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0313-5_41.
Full textVollmer, Frank, and Deshui Yu. "Molecular Cavity QED." In Biological and Medical Physics, Biomedical Engineering, 345–83. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60235-2_7.
Full textPuri, Ravinder Rupchand. "Dissipative Cavity QED." In Springer Series in Optical Sciences, 251–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-540-44953-9_14.
Full textVollmer, Frank, and Deshui Yu. "Molecular Cavity QED." In Optical Whispering Gallery Modes for Biosensing, 399–446. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-06858-4_7.
Full textPutz, Stefan. "Spins in the Cavity—Cavity QED." In Circuit Cavity QED with Macroscopic Solid-State Spin Ensembles, 25–49. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66447-7_3.
Full textLange, W., Q. A. Turchette, C. Hood, H. Mabuchi, and H. J. Kimble. "Flying Qubits in Cavity QED." In Coherence and Quantum Optics VII, 345–46. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-9742-8_46.
Full textHaroche, Serge, and Jean-Michel Raimond. "Bohr’s Legacy in Cavity QED." In Niels Bohr, 1913-2013, 103–46. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-14316-3_5.
Full textRaizen, M. G., R. J. Thompson, R. J. Brecha, H. J. Kimble, and H. J. Carmichael. "Modulation Spectroscopy and Cavity QED." In Springer Proceedings in Physics, 176–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74951-3_17.
Full textMeystre, Pierre. "Tailoring the Environment—Cavity QED." In Quantum Optics, 187–228. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76183-7_7.
Full textConference papers on the topic "QED de cavité"
Wong, Yu-En, Adam Johnston, Ulises Felix-Rendon, and Songtao Chen. "Enhanced Light-Matter Interactions for a Single T Center in a Silicon Nanocavity." In CLEO: Fundamental Science, FTu3I.4. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_fs.2024.ftu3i.4.
Full textHensley, Hagan, Braden Larsen, and James K. Thompson. "Hot Atoms and Light Cooperating." In Frontiers in Optics, JTu5A.39. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/fio.2024.jtu5a.39.
Full textKanneworff, Kirsten N., Petr Steindl, Mio T. L. Poortvliet, and Wolfgang Löffler. "Photon Quantum Interference for Quantum Position Verification with Four Detectors." In Quantum 2.0, QW2B.6. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/quantum.2024.qw2b.6.
Full textTorres, Juan Mauricio. "Quantum Operations Assisted by Multiphoton and Multiphonon States." In Latin America Optics and Photonics Conference, M3B.2. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/laop.2024.m3b.2.
Full textTziperman, Offek, Ron Ruimy, Alexey Gorlach, and Ido Kaminer. "Creating Entanglement Through a Joint Decay Channel." In CLEO: Fundamental Science, FTu3O.4. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_fs.2024.ftu3o.4.
Full textSahu, Subrat, Kali P. Nayak, and Rajan Jha. "One-sided Slotted Photonic Crystal Nanofiber for Cavity QED." In CLEO: Applications and Technology, JW2A.63. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_at.2024.jw2a.63.
Full textSahu, Subrat, Kali P. Nayak, and Rajan Jha. "Single-Sided Cavity QED Effect on an Optical Nanowire." In Frontiers in Optics, JW5A.6. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/fio.2024.jw5a.6.
Full textMeystre, Pierre. "Cavity QED." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/oam.1989.wr1.
Full textKono, Junichiro. "Ultrastrong Light-Matter Coupling in a High-Q Terahertz Cavity." In JSAP-OSA Joint Symposia. Washington, D.C.: Optica Publishing Group, 2017. http://dx.doi.org/10.1364/jsap.2017.7a_a409_1.
Full textLai, H. M., P. T. Leung, S. Y. Liu, and K. Young. "Cavity QED in microdroplets." In 1992 Shanghai International Symposium on Quantum Optics, edited by Yuzhu Wang, Yiqiu Wang, and Zugeng Wang. SPIE, 1992. http://dx.doi.org/10.1117/12.140324.
Full textReports on the topic "QED de cavité"
Wang, Hailin. Cavity QED of NV Centers in Diamond Nanopillars. Fort Belvoir, VA: Defense Technical Information Center, March 2012. http://dx.doi.org/10.21236/ada557808.
Full textVuckovic, Jelena. Quantum Dot-Photonic Crystal Cavity QED Based Quantum Information Processing. Fort Belvoir, VA: Defense Technical Information Center, August 2012. http://dx.doi.org/10.21236/ada576255.
Full textStamper-Kurn, Dan M. Operation and On-Chip Integration of Cavity-QED-Based Detectors for Single Atoms and Molecules. Fort Belvoir, VA: Defense Technical Information Center, May 2010. http://dx.doi.org/10.21236/ada523323.
Full textSercel, Peter C. High Resolution Optical Spectroscopy of Single Quantum Dots and Cavity-QED Effects and Lasing in Quantum Dot Microdisk Resonator Structures. Fort Belvoir, VA: Defense Technical Information Center, December 2000. http://dx.doi.org/10.21236/ada391380.
Full text