Academic literature on the topic 'Q-switched'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Q-switched.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Q-switched"

1

Little, H. L., and R. L. Jack. "Q-Switched Neodymium." RETINA 7, no. 3 (1987): 204. http://dx.doi.org/10.1097/00006982-198700730-00014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Moubasher, Alaa E. A., Eman M. K. Youssef, and Doaa A. E. Abou-Taleb. "Q-Switched Nd." Dermatologic Surgery 40, no. 8 (August 2014): 874–82. http://dx.doi.org/10.1097/dss.0000000000000065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Baoquan Yao, Baoquan Yao, Xiaolei Liu Xiaolei Liu, Xiao Yu Xiao Yu, Xiaoming Duan Xiaoming Duan, Youlun Ju Youlun Ju, and Yuezhu Wang Yuezhu Wang. "Resonantly pumped Q-switched Er:GdVO4 laser." Chinese Optics Letters 11, no. 3 (2013): 031405–31407. http://dx.doi.org/10.3788/col201311.031405.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Welford, D. "Passively Q-switched lasers." IEEE Circuits and Devices Magazine 19, no. 4 (July 2003): 31–36. http://dx.doi.org/10.1109/mcd.2003.1217615.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

LOWE, NICHOLAS J., DEBRA LUFTMAN, and DAVID SAWCER. "Q-switched Ruby Laser." Journal of Dermatologic Surgery and Oncology 20, no. 5 (May 1994): 307–11. http://dx.doi.org/10.1111/j.1524-4725.1994.tb01629.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Choudhary, Amol, Shonali Dhingra, Brian D'Urso, Pradeesh Kannan, and David P. Shepherd. "Graphene Q-Switched Mode-Locked and Q-Switched Ion-Exchanged Waveguide Lasers." IEEE Photonics Technology Letters 27, no. 6 (March 15, 2015): 646–49. http://dx.doi.org/10.1109/lpt.2015.2389631.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Che Mat, Fauziah, Moh Yasin, Anas Abdul Latiff, and Sulaiman Wadi Harun. "Graphene Oxide Film as Passive Q-switcher in Erbium-doped Fiber Laser Cavity." Photonics Letters of Poland 9, no. 3 (September 30, 2017): 100. http://dx.doi.org/10.4302/plp.v9i3.755.

Full text
Abstract:
All-fiber passively Q-switched fiber lasers have been demonstrated by using graphene oxide (GO) Q-switcher for possible applications in telecommunication, laser processing, fiber sensing and medical community. The GO material was obtained through a modified Hummers method from expanded acid washed graphite flakes and it was embedded into a polyvinyl alcohol (PVA) film to form a saturable absorber (SA) device. The Q-switched pulse operates at 1563.3 nm with a repetition rate that can be tuned from 44.33 kHz to 61.77 kHz as the pump power changes from 39 mW to 96 mW. The highest repetition rate of 61.77 kHz is achieved at a pump power of 96 mW and it is observed that the Q-switched pulse produced maximum pulse energy of 0.054 nJ and pulse width of 5.57 ?s at 96 mW pump power. Full Text: PDF ReferencesJ. Zayhowski and C. Dill, "Coupled-cavity electro-optically Q-switched Nd:YVO4 microchip lasers", Optics letters 20, 716 (1995). CrossRef C.-x. Gao, W. Zhao, Y.-s. Wang, S.-l. Zhu, G.-f. Chen, and Y.-g. Wang, "Passive Q-switched fiber laser with SESAM in ytterbium-doped double-clad fiber", 27th International congress on High-Speed Photography and Photonics, 62794G (2007). CrossRef M. Ahmed, N. Ali, Z. Salleh, A. Rahman, S. Harun, M. Manaf, "Q-switched erbium doped fiber laser based on single and multiple walled carbon nanotubes embedded in polyethylene oxide film as saturable absorber", Optics & Laser Technology 65, 25 (2015). CrossRef S. Harun, M. Ismail, F. Ahmad, M. Ismail, R. Nor, N. Zulkepely, et al., "A Q-switched erbium-doped fiber laser with a carbon nanotube based saturable absorber", Chinese Physics Letters 29, 114202 (2012). CrossRef A. Martinez and Z. Sun, "Nanotube and graphene saturable absorbers for fibre lasers", Nat Photon 7, 842 (2013). CrossRef J. Boguslawski, J. Sotor, G. Sobon, R. Kozinski, K. Librant, M. Aksienionek, et al., "Graphene oxide paper as a saturable absorber for Er- and Tm-doped fiber lasers", Photonics Research 3, 119 (2015). CrossRef H. Ahmad, F. D. Muhammad, M. Z. Zulkifli, and S. W. Harun, "Q-switched pulse generation from an all-f iber distributed Bragg reflector laser using graphene as saturable absorber", Chinese Optics Letters 11, 071401 (2013). CrossRef
APA, Harvard, Vancouver, ISO, and other styles
8

Thomas, G. M., A. Minassian, X. Sheng, and M. J. Damzen. "Diode-pumped Alexandrite lasers in Q-switched and cavity-dumped Q-switched operation." Optics Express 24, no. 24 (November 15, 2016): 27212. http://dx.doi.org/10.1364/oe.24.027212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Razak, Nurul Nadia, Moh Yasin, Zahriladha Zakaria, Anas A. Latiff, and Sulaiman Wadi Harun. "Q-switched fiber laser with tungsten disulfide saturable absorber prepared by drop casting method." Photonics Letters of Poland 9, no. 3 (September 30, 2017): 103. http://dx.doi.org/10.4302/plp.v9i3.752.

Full text
Abstract:
We experimentally demonstrate a passively Q-switched erbium-doped fiber laser (EDFL) operation by using a saturable absorber (SA) based on tungsten disulfide (WS2). By depositing WS2 thin film layer at the end of optical fiber ferrule, we fabricated a SA device. The SA is incorporated into an Erbium-doped fiber laser (EDFL) cavity to generate a Q-switching pulses train operating at 1559.8 nm. As a result, stable passively Q-switched EDFL pulses with maximum output pulse energy of 123.2 nJ, repetition rate of 104.1 kHz, and pulse width of 9.61 us are achieved when the input pump power is 142.1 mW at the wavelength of 980 nm. Full Text: PDF ReferencesC. Gao, W. Zhao, Y. Wang, S. Zhu, G. Chen, and Y. Wang, "Passive Q-switched fiber laser with SESAM in ytterbium-doped double-clad fiber", in 27th International congress on High-Speed Photography and Photonics (International Society for Optics and Photonics, 2007). CrossRef M. Ahmed, N. Ali, Z. Salleh, A. Rahman, S. Harun, M. Manaf, et al., "Q-switched erbium doped fiber laser based on single and multiple walled carbon nanotubes embedded in polyethylene oxide film as saturable absorber", Optics & Laser Technology 65, 25 (2015). CrossRef M. A. Ismail, F. Ahmad, S. W. Harun, H. Arof and H. Ahmad, "A Q-switched erbium-doped fiber laser with a graphene saturable absorber", Laser Phys. Lett. 10, 025102 (2013). CrossRef G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, K. Librant, M. Zdrojek, L. Lipinska, and K. M. Abramski, "Linearly polarized, Q-switched Er-doped fiber laser based on reduced graphene oxide saturable absorber", Appl. Phys. Lett. 101, 241106 (2012). CrossRef N. H. M. Apandi, F. Ahmad, S. N. F. Zuikafly, M. H. Ibrahim, S. W. Harun, "Bismuth (III) Telluride (Bi2Te3) topological insulator embed in PVA as passive Q-switcher at 2 micron region", Photon. Lett. of Poland 8, 101 (2016). CrossRef J. Bogusławski, G. Soboń, K. Tarnowski, R. Zybała, K. Mars, A. Mikuła, K. M. Abramski and J. Sotor, "All-polarization-maintaining-fiber laser Q-switched by evanescent field interaction with Sb2Te3 saturable absorber", Optical Engineering 55, 081316 (2016). CrossRef Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, and J. Weng, "1-, 1.5-, and 2-um fiber lasers Q-switched by a broadband few-layer MoS2 saturable absorber", J. Lightwave Technol. 32, 4679 (2014). CrossRef N. N. Razak, A. A. Latiff, Z. Zakaria and S. W. Harun, "Q-switched Erbium-doped Fiber Laser with a Black Phosphorus Saturable Absorber", Photon. Lett. of Poland 9, 72 (2017). CrossRef D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, "WS2 mode-locked ultrafast fiber laser", Sci Rep 5, 7965 (2015). CrossRef K. Wu, X. Zhang, J. Wang, X. Li, and J. Chen, "WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers", Optics Express 23, 11453 (2015). CrossRef K. Lau, A. Latif, M. A. Bakar, F. Muhammad, M. Omar, and M. Mahdi, "Mechanically deposited tungsten disulfide saturable absorber for low-threshold Q-switched erbium-doped fiber laser", Applied Physics B 123, 221 (2017). CrossRef H. Chen, Y. Chen, J. Yin, X. Zhang, T. Guo, and P. Yan, "High-damage-resistant tungsten disulfide saturable absorber mirror for passively Q-switched fiber laser", Optics Express 24, 16287 (2016). CrossRef J. Lin, K. Yan, Y. Zhou, L. Xu, C. Gu, and Q. Zhan, "Tungsten disulphide based all fiber Q-switching cylindrical-vector beam generation", Applied Physics Letters 107, 191108 (2015). CrossRef H. Chen, Y. Chen, J. Yin, X. Zhang, T. Guo, and P. Yan, "High-damage-resistant tungsten disulfide saturable absorber mirror for passively Q-switched fiber laser", Optics Express 24, 16287 (2016). CrossRef K. Mohamed, B. Hamida, S. Khan, L. Hussein, M. Ahmat, E. Ismail, N. Kadir, A. Latif, S. Harun, "Q-switched erbium-doped fibre laser based on molybdenum disulfide and tungsten disulfide as saturable absorbers," Ukrainian Journal of Physical Optics, 18 (2017). CrossRef
APA, Harvard, Vancouver, ISO, and other styles
10

PFEIFFER, NAOMI. "Q-Switched Laser Treatment Advantages." Journal of Clinical Laser Medicine & Surgery 13, no. 1 (February 1995): 41–42. http://dx.doi.org/10.1089/clm.1995.13.41.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Q-switched"

1

Williams, Kevin. "Q-switched diode lasers." Thesis, University of Bath, 1995. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.296333.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Yuchen, Xiushan Zhu, Jie Zong, Kort Wiersma, Arturo Chavez-Pirson, Robert A. Norwood, and N. Peyghambarian. "SESAM Q-switched fiber laser at 1.2 mu m." IEEE, 2016. http://hdl.handle.net/10150/622787.

Full text
Abstract:
Q-switched operation of a holmium-doped fluoride fiber laser at 1.2 mu m wavelength induced by a semiconductor saturable absorber mirror (SESAM) is reported. 650 ns pulses with 0.13 mu J pulse energy at a repetition rate of 260 kHz were obtained.
APA, Harvard, Vancouver, ISO, and other styles
3

Lees, Gareth P. "Q-switched fibre laser sources for distributed sensing applications." Thesis, University of Southampton, 1998. https://eprints.soton.ac.uk/394390/.

Full text
Abstract:
This thesis examines pulsed fibre sources for distributed sensing applications. A number of Q-switched fibre laser sources optimised for high peak powers, narrow linewidth and short pulse duration are described. The source specifications were dictated by the requirements of Raman and Brillouin distributed sensing systems. The spatial resolution of distributed sensors is related to the pulse width whereas the range is dependent on the power launched into the sensing fibre. Brillouin distributed sensors also require that the source linewidth is less than 10 GHz, the separation between the Rayleigh and Brillouin backscattered light. This constraint on laser linewidth leads to coherent Rayleigh noise on the Rayleigh backscattered trace. This noise can be reduced by a technique of frequency shift averaging. A Q-switched laser incorporating this technique was developed, which resulted in a Brillouin distributed temperature sensor with a temperature resolution of 1.4°C and a spatial resolution of 10 metres over a range of 6.5km. The development of high power Q-switched fibre lasers leads to the possibility of generating Raman shifted pulses at wavelengths of 1.64-1.65µm. Interest in this wavelength region stems from the increase in sensitivity to fibre micro-bend losses at these higher wavelengths and the ability to monitor the fibre whilst carrying out live data transmission. A diode pumped, pulsed source at 1.64µm producing 8 Watt, 10ns pulses through a process of Raman generation was demonstrated. Q-switched laser technology was also used to increase the dynamic range of 1.65µm OTDR. The technique utilised delayed Raman amplification of the 1.65µm signal pulse by a co-propagating 1.53µm pump pulse. Amplification occurs when the two pulses overlap. The position of the overlap is determined by the initial delay between the pulses and the fibre dispersion. An increase in dynamic range of 17.5dB has been observed and the 1.65µm OTDR range was extended to in excess of 100km.
APA, Harvard, Vancouver, ISO, and other styles
4

Phelps, Charles Dustin. "Diode-Pumped, 2-Micron, Q-Switched Tm:YAG Microchip Laser." University of Dayton / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1304695817.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zhu, Gongwen. "Q-switched and Mode-locked Mid-IR Fiber Lasers." Diss., The University of Arizona, 2015. http://hdl.handle.net/10150/578593.

Full text
Abstract:
Mid-infrared (IR) lasers (2-12 μm) have found tremendous applications in medical surgeries, spectroscopy, remote sensing, etc. Nowadays, mid-IR emissions are usually generated from semiconductor lasers, gas lasers, and solid-state lasers based on nonlinear wavelength conversion. However, they usually have disadvantages including poor beam quality, low efficiency, and complicated configurations. Mid-IR fiber lasers have the advantages of excellent beam quality, high efficiency, inherent simplicity, compactness, and outstanding heat-dissipating capability, and have attracted significant interest in recent years. In this dissertation, I have studied and investigated Q-switched and mode-locked fiber lasers in the mid-IR wavelength region. My dissertation includes six chapters: In Chapter 1, I review the background of mid-IR lasers and address my motivation on the research of mid-IR fiber lasers; In Chapter 2, I present the experimental results of microsecond and nanosecond Er³⁺-doped and Ho³⁺-doped fiber lasers in the 3 μm wavelength region Q-switched by Fe²⁺:ZnSe and graphene saturable absorbers. In Chapter 3, Q-switched 3 μm laser fiber amplifiers are investigated experimentally and theoretically and their power scaling are discussed. In Chapter 4, a graphene mode-locked Er³⁺-doped fiber lasers at 2.8 μm with a pulse width < 50 ps is presented. In Chapter 5, extending the spectral range of mid-IR fiber lasers by use of nonlinear wavelength conversion is addressed and discussed. I have proposed 10-watt-level 3-5 μm Raman lasers using tellurite fibers as the nonlinear gain medium and pumped by our Er³⁺-doped fiber lasers at 2.8 μm. In the last chapter, the prospect of mid-IR fiber laser is addressed and further research work is discussed.
APA, Harvard, Vancouver, ISO, and other styles
6

Lu, Min. "Performance of continuously pumped, passively Q-switched, solid state lasers." Thesis, University of Sussex, 2011. http://sro.sussex.ac.uk/id/eprint/6953/.

Full text
Abstract:
This thesis studies the relationship between the pairs of resonator output coupling and intra-cavity absorber initial transmission, and the FWHM (full width at half maximum) pulse duration of a continuously pumped passively Q-switched solidstate laser, when the output energy is pre-determined. Depending on the magnitude of the pumping power, three different rate equation models are used to evaluate the required output coupler reflectivity and absorber initial-transmission pair for the corresponding FWHM pulse duration. The energy transfer kinetics of the passively Q-switched laser decides the required pumping power; and the pair of output coupler reflectivity absorber transmission pair, determine the build-up time of Q-switching and the repetition rate of the laser system. Hence, the forms of the models are controlled by two conditions: 1) the build-up time of Q-switching; and 2) the recovery time of the absorber. When the build-up time of Q-switching is relatively short, but the recovery time of the absorber is long, Model I is based on the simplified laser rate equations. It is used to evaluate the output coupler reflectivity and absorber initialtransmission pair, which satisfies the pre-determined output energy and FWHM pulse duration. Model II is set up to study the case when both the build-up time of Q-switching and the recovery time of the absorber are long. In Model II, the laser rate equations are solved using the Runge-Kutta method. Model III simulates the case when the recovery time of the absorber is short. To validate the models, the simulation results of practical passively Q-switched laser systems are compared with experimental results reported in the literature. The agreement of the simulation results with reported experimental results demonstrates the importance of the boundary conditions for the different cases, and verifies the soundness of the models. Generalizing the simulation results, obtained from different passively Q-switched laser systems with different pumping power and different pre-determined output energy, yields general conclusions which permit a designer to select the correct parameters for a desired laser performance.
APA, Harvard, Vancouver, ISO, and other styles
7

Felgate, Nigel Stephen. "Efficient blue generation from all-solid-state Q-switched Nd:YAG lasers." Thesis, University of Southampton, 2002. https://eprints.soton.ac.uk/41527/.

Full text
Abstract:
This thesis describes work carried out at Southampton University that has been directed towards achieving high-power all-solid-state blue sources using two low-gain transitions of Nd:YAG. Diode-end-pumping is used to obtain efficient laser performance. The thesis attempts to tackle some of the obstacles to power scaling Q-switched low-gain lasers that use diode-end-pumping schemes. A 1319nm Q-switched Nd:YAG laser is described that produces a 17KHz pulse train consisting of 353 watt peak power pulses delivering an average power of 780mW for doubling. Periodically poled lithium niobate (PPLN) is used to double to 659.5nm. A 54% second harmonic conversion efficiency produces 360mW of red average power. Sum frequency mixing of the red and infra-red in a second PPLN sample is achieved with a third order grating. A pulsed blue output (13.7 watts peak) at 439.7nm is achieved with good beam quality and an average power of 35mW. A technique is described to aid power-scaling of polarised laser sources. Analysis of the quarter wave-plate technique demonstrates that the technique will be highly beneficial in reducing the depolarisation loss in low-gain solid-state lasers. The technique is applied to a 946nm laser and a 1319nm laser. Depolarisation of the 946nm source is reduced from 1.66% to 0.0006% and depolarisation of the 1319nm laser is reduced from 1.2% to 0.015%. The quarter wave-plate technique is implemented in a high power 946nm laser that is Q-switched for low repetition rates. 0.53mJ is extracted with a 5.3KW peak pulse power at 1 kHz repetition rate. The 946nm output is used to generate 473nm blue light via second harmonic generation in non-critically phase-matched LBO at 329° centigrade. An average power of 370mW is demonstrated with a conversion efficiency of 21% at 4kHz repetition rate.
APA, Harvard, Vancouver, ISO, and other styles
8

Paslaski, Joel Yariv Amnon Yariv Amnon. "High speed optoelectronics : photodiodes, Q-switched laser diode and photoconductive sampling /." Diss., Pasadena, Calif. : California Institute of Technology, 1990. http://resolver.caltech.edu/CaltechETD:etd-05092007-084117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rosier, Diallo Laurence. "Etude de l'endothélium cornéen par microscopie spéculaire aprés Q-Switched néodymium : Yag laser." Bordeaux 2, 1990. http://www.theses.fr/1990BOR23087.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Serres, Serres Josep Maria. "Continuous-wave and passively Q-switched solid-state microchip lasers in the near-infrared." Doctoral thesis, Universitat Rovira i Virgili, 2017. http://hdl.handle.net/10803/460758.

Full text
Abstract:
Aquest treball tracta de la caracterització de làsers compactes d'estat sòlid, amb un primer enfocament, l'estudi del concepte microxip aplicat al làser en diversos hostes cristal·lins dopats amb terres rares. Es reporta els resultats sobre l'estudi de l'efecte de thermal lens, necessari per a l'obtenció de làser amb aquesta configuració, així com pel funcionament làser amb continu i polsat utilitzant la tècnica Q-switch. En els experiments, el concepte microxip es defineix com una cavitat làser quasi monolítica. Aquest concepte s'estudia per a diferents emissions de làser a ~1.06 m d'ions Yb3+ i Nd3+, a ~1,3 m de Nd3+, a ~1,95 m de Tm3+ hi ha ~2.05 m del Ho3+. En el règim d'ona contínua s'examina detalladament per als ions de lantànids trivalents esmentats en diversos hostes cristal·lins amb l'objectiu de comparar el potencial de cada material. En aquest treball, es demostren eficiències molt properes al límit teòric. D'altra banda, també es presenten làsers polsats d'estat sòlid amb la configuració microxip amb diversos absorbidors saturables. Amb aquest propòsit, s'utilitzen com a absorbidors saturables nous nanomaterials com el MoS2, nanoestructures de carboni (SWCNT, el grafè d'una i de diverses capes) i un SESA. A més, el més convencional Cr:YAG (~1.06 m) i el Cr:ZnS (~1.9 m) s'examinen per comparar els seus rendiments.
Este trabajo trata de la caracterización de láseres compactos de estado sólido, con primer enfoque, el estudio del concepto microchip aplicado al láser en varios huéspedes cristalinos dopados con tierras raras. Se reporta los resultados sobre el estudio del efecto de la thermal lens, necesario para la obtención de láser con esta configuración, así como para el funcionamiento láser en continuo y pulsado utilizando la técnica Q-switch. En los experimentos, el concepto microchip se define como una cavidad láser casi monolítica. Este concepto se estudia para diferentes emisiones de láser a ~1.06 m de los iones Yb3+ y Nd3+, a ~1,3 m de Nd3+, a ~1,95 m de Tm3+ hay ~2.05 m del ion Ho3+. En régimen de onda continua se examina detalladamente para los iones de lantánidos trivalentes mencionados en varios huéspedes cristalinos con el objetivo de comparar el potencial de cada material. En este trabajo, se demuestran eficiencias muy cercanas al límite teórico. Por otra parte, también se presentan láseres pulsados de estado sólido con la configuración microchip con varios absorbedores saturables. Con este propósito, se utilizan como absorbedores saturables nuevos nanomateriales como el MoS2, nano-estructuras de carbono (SWCNT, el grafeno de una y de varias capas) y un SESA. Además, el más convencional Cr:YAG (~1.06 m) y el Cr:ZnS (~1.9 m) se examinan para comparar sus rendimientos
This work deals with the characterization of compact solid state lasers, as a first approach to the study of the microchip laser concept applied to several rare earth-doped crystalline hosts. The results on the study of the thermal lens, required for the microchip laser operation as well as the continuous wave and passive Q-switched laser operation in microchip configuration are reported. In the experiments, the microchip concept is defined as a quasi-monolithic laser cavity. Such a concept is studied for different laser emissions at ~1.06 μm from Yb3+ and Nd3+ ions, at ~1.3 μm from Nd3+, at ~1.95 μm from Tm3+ and at ~2.05 μm from Ho3+. The continuous wave regime is examined in detail for the above mentioned trivalent lanthanide ions embedded in several crystalline hosts with the aim to compare the potential of each gain material. Slope efficiencies very close to the theoretical limit are demonstrated in this work. On the other hand, microchip solid state lasers passively Q-switched with several saturable absorbers are also presented. For this purpose, novel nanomaterials such as MoS2, carbon nanostructures (SWCNTs, single- and multilayer graphene) and a SESA are used as saturable absorbers. Besides, the most conventional Cr:YAG (~1.06 μm) and Cr:ZnS (~1.9 μm) are examined to compare their performance.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Q-switched"

1

G, Jani Mahendra, and United States. National Aeronautics and Space Administration., eds. Diode-pumped long-pulse-length Ho:Tm:YLiF₄ laser at 10 Hz. [Washington, D.C: National Aeronautics and Space Administration, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Caverhill, J. R. Investigation into the use and effects of a Q-switched Nd:YAG laser for the removal of ink from paper. 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Improvement in suppression of pulsed Nd: YAG laser light with iodine absorption cells for filtered Rayleigh scattering measurements. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Development of mid-infrared solid state lasers for spaceborne lidar: Final report. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Development of mid-infrared solid state lasers for spaceborne lidar: Final report. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

H, Kim Kyong, and Langley Research Center, eds. Development of mid-infrared solid state lasers for spaceborne lidar: Final report. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

H, Kim Kyong, and United States. National Aeronautics and Space Administration., eds. Development of mid-infrared solid state lasers for spaceborne lidar: Semiannual progress report. [Washington, DC: National Aeronautics and Space Administration, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

H, Kim Kyong, and United States. National Aeronautics and Space Administration., eds. Development of mid-infrared solid state lasers for spaceborne lidar: Semiannual progress report. [Washington, DC: National Aeronautics and Space Administration, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Q-switched"

1

Meyer, Johan, Justice Sompo, and Sune von Solms. "Q-switched Fiber Laser." In Fiber Lasers, 233–312. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003256380-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Weik, Martin H. "Q-switched repetitively pulsed laser." In Computer Science and Communications Dictionary, 1381. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_15183.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

de Mattos Milman, Laura, Clarissa Prieto Herman Reinehr, and Christine Rachelle Prescendo Chaves. "Q-Switched and Drug Delivery." In Drug Delivery in Dermatology, 97–107. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81807-4_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Thedrez, B. J., and C. H. Lee. "Multireflection Effects in Gain-Switched and Q-Switched Semiconductor Lasers." In Springer Series in Chemical Physics, 26–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84269-6_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Vedlin, Boris, Stojan Troŝt, Marko Kažič, and Jože Žakelj. "Multiple Pulse Q-switched Nd: YAG Laser." In Laser/Optoelectronics in Medicine/Laser/Optoelektronik in der Medizin, 262–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-70850-3_52.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

May, A. B. "Continuous wave and Q-switched Nd:YAG lasers." In Laser Processing in Manufacturing, 91–114. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1570-4_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lee, Jae Dong, and Min Jin Maya Oh. "Q-Switched Nd:YAG Laser and Subcellular Selective Photothermolysis." In Lasers in Dermatology: Parameters and Choice, 57–67. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-7568-4_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chen, P. F., X. J. Lan, and X. M. Xiao. "The Stability of Acousto-Optic-Q-Switched YAG Laser." In Laser/Optoelektronik in der Technik / Laser/Optoelectronics in Engineering, 57–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-83174-4_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Goldman, Leon, Allen Taylor, and Tim Putnam. "Preliminary Clinical Studies in Dermatology with Q Switched YAG Laser." In Laser/Optoelectronics in Medicine/Laser/Optoelektronik in der Medizin, 473. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-70850-3_91.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Neiva, Juliana, Lilian Mathias Delorenze, and Maria Claudia Issa. "Q-Switched Lasers for Melasma, Dark Circles Eyes, and Photorejuvenation." In Lasers, Lights and Other Technologies, 1–14. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-20251-8_8-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Q-switched"

1

Wu, Zhizheng, and Foued Ben Amara. "Adaptive Regulation in Switched Linear Systems." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-41976.

Full text
Abstract:
This paper considers an adaptive regulation problem for switched linear systems where it is desired to achieve regulation against unknown disturbance or reference signals. Switching among plant models as well as among disturbance and reference signals is defined according to a switching surface. The design of the proposed adaptive regulators involves three main steps. First, a set of observer-based Q-parameterized stabilizing controllers for the switched system is constructed. The stability properties for the resulting closed loop switched system are analyzed. Second, for each subsystem in the switched system, a set of Q-parameters needed to achieve regulation is derived by solving a set of interpolation conditions, and a sufficient regulation condition for the switched system is presented. Third, an adaptive algorithm is developed to tune the Q parameter in the expression of the parameterized controller to converge to the desired Q parameter that guarantees regulation for the switched system. Finally, a numerical example is presented to illustrate the effectiveness of the proposed method.
APA, Harvard, Vancouver, ISO, and other styles
2

Fève, Jean-Philippe, Nicolas Landru, and Olivier Pacaud. "Triggering Passively Q-switched Microlasers." In Advanced Solid-State Photonics. Washington, D.C.: OSA, 2005. http://dx.doi.org/10.1364/assp.2005.373.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gao, Hong, Gengxing Luo, Ke Yu, and Guang-Nan Chen. "Q-switched Nd:YAG laser engraving." In Optoelectronics and High-Power Lasers & Applications, edited by Hai-Lung Dai and Hans-Joachim Freund. SPIE, 1998. http://dx.doi.org/10.1117/12.307143.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yu, Haohai, Stefano Veronesi, Xavier Mateos, Valentin Petrov, Uwe Griebner, Daniela Parisi, and Mauro Tonelli. "Passively Q-switched Tm:BaY2F8 lasers." In SPIE/SIOM Pacific Rim Laser Damage: Optical Materials for High-Power Lasers, edited by Jianda Shao, Takahisa Jitsuno, and Wolfgang Rudolph. SPIE, 2013. http://dx.doi.org/10.1117/12.2020417.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yuan, Shuzhong, Fuyun Lu, Chunfeng Ge, Yujie Liu, Xinhuan Feng, Zhenxing Wei, and Yaxian Fan. "All-fiber Q-switched laser." In Photonics China '98, edited by Shuisheng Jian, Franklin F. Tong, and Reinhard Maerz. SPIE, 1998. http://dx.doi.org/10.1117/12.318045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ganija, Miftar, Alexander Hemming, Nikita Simakov, Neil Carmody, Peter Veitch, John Haub, and Jesper Munch. "Q-switched Cryogenic Ho:YAG Laser." In CLEO: Science and Innovations. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/cleo_si.2018.sm4n.3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fibrich, M., H. Jelinkova, M. Cech, P. Hirsl, K. Nejezchleb, and V. Skoda. "Pr:YAP Q-switched laser operation." In 11th European Quantum Electronics Conference (CLEO/EQEC). IEEE, 2009. http://dx.doi.org/10.1109/cleoe-eqec.2009.5192174.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Savitski, V. G., I. M. Ranieri, A. B. Krysa, and S. Calvez. "Passively Q-switched Pr:YLF laser." In CLEO: Science and Innovations. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/cleo_si.2011.cmb7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mercer, C. J., Y. H. Tsang, D. J. Binks, H. Zhang, and J. Wang. "A Q-switched Nd:YCOB laser." In Photonics Europe, edited by Jonathan A. Terry, Thomas Graf, and Helena Jelínková. SPIE, 2008. http://dx.doi.org/10.1117/12.780610.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fève, J. P., N. Landru, and O. Pacaud. "Triggering passively Q-switched microlasers." In Advanced Solid-State Photonics. Washington, D.C.: OSA, 2005. http://dx.doi.org/10.1364/assp.2005.tub39.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Q-switched"

1

Zayhowski, John J., Colby Dill, Cook III, Daneu Chris, and John L. Mid- and High-Power Passively Q-Switched Microchip Lasers. Fort Belvoir, VA: Defense Technical Information Center, January 1999. http://dx.doi.org/10.21236/ada373717.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Setchell, R. E. An optimized fiber delivery system for Q-switched, Nd:YAG lasers. Office of Scientific and Technical Information (OSTI), November 1996. http://dx.doi.org/10.2172/414411.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Phelps, Charles D. Diode-Pumped, 2-Micron, Q-Switched Thulium: Y3Al5O12 (Tm:Yag) Microchip Laser. Fort Belvoir, VA: Defense Technical Information Center, May 2011. http://dx.doi.org/10.21236/ada554554.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Moreshead, William V. Development of a High Efficiency Q-Switched Glass Laser Via Sol-Gel Processing. Fort Belvoir, VA: Defense Technical Information Center, February 1988. http://dx.doi.org/10.21236/ada192301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zameroski, Nathan D., Michael Clement Wanke, and David J. Bossert. Cavity length dependence of mode beating in passively Q-switched Nd-solid state lasers. Office of Scientific and Technical Information (OSTI), July 2012. http://dx.doi.org/10.2172/1055620.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wegner, P., and M. Feit. Observation of spectral broadening in a commercial modelocked and Q-switched Nd:YLF oscillator - Wegner`s Demon. Office of Scientific and Technical Information (OSTI), September 1994. http://dx.doi.org/10.2172/90702.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Loubriel, G. M., A. Mar, R. A. Hamil, F. J. Zutavern, and W. D. Helgeson. Photoconductive semiconductor switches: Laser Q-switch trigger and switch-trigger laser integration. Office of Scientific and Technical Information (OSTI), December 1997. http://dx.doi.org/10.2172/570179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lee, Y. C., K. C. Gupta, and Victor M. Bright. High-Q Tunable Capacitors and Multi-Way Switches Using Microelectromechanical Systems (MEMS) for Millimeter-Wave Applications. Fort Belvoir, VA: Defense Technical Information Center, December 2002. http://dx.doi.org/10.21236/ada415260.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography