Academic literature on the topic 'Pyruvate decarboxylase'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Pyruvate decarboxylase.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Pyruvate decarboxylase"
Pegg, Anthony E. "S-Adenosylmethionine decarboxylase." Essays in Biochemistry 46 (October 30, 2009): 25–46. http://dx.doi.org/10.1042/bse0460003.
Full textter Schure, Eelko G., Marcel T. Flikweert, Johannes P. van Dijken, Jack T. Pronk, and C. Theo Verrips. "Pyruvate Decarboxylase Catalyzes Decarboxylation of Branched-Chain 2-Oxo Acids but Is Not Essential for Fusel Alcohol Production by Saccharomyces cerevisiae." Applied and Environmental Microbiology 64, no. 4 (April 1, 1998): 1303–7. http://dx.doi.org/10.1128/aem.64.4.1303-1307.1998.
Full textXun, Zhao, Rogers Peter L., Eilhann E. Kwon, Sang Chul Jeong, and Young Jae Jeon. "Growth Characteristics of a Pyruvate Decarboxylase Mutant Strain of Zymomonas mobilis." Journal of Life Science 25, no. 11 (November 30, 2015): 1290–97. http://dx.doi.org/10.5352/jls.2015.25.11.1290.
Full textKrieger, Florian, Michael Spinka, Ralph Golbik, Gerhard Hübner, and Stephan König. "Pyruvate decarboxylase from Kluyveromyces lactis." European Journal of Biochemistry 269, no. 13 (July 2002): 3256–63. http://dx.doi.org/10.1046/j.1432-1033.2002.03006.x.
Full textTylicki, Adam, Jan Czerniecki, Pawel Dobrzyn, Agnieszka Matanowska, Anna Olechno, and Slawomir Strumilo. "Modification of thiamine pyrophosphate dependent enzyme activity by oxythiamine in Saccharomyces cerevisiae cells." Canadian Journal of Microbiology 51, no. 10 (September 1, 2005): 833–39. http://dx.doi.org/10.1139/w05-072.
Full textJanati-Idrissi, Rachid, Anne-Marie Junelles, Abdellah El Kanouni, Henri Petitdemange, and Robert Gay. "Pyruvate fermentation by Clostridium acetobutylicum." Biochemistry and Cell Biology 67, no. 10 (October 1, 1989): 735–39. http://dx.doi.org/10.1139/o89-110.
Full textRomagnoli, Gabriele, Marijke A. H. Luttik, Peter Kötter, Jack T. Pronk, and Jean-Marc Daran. "Substrate Specificity of Thiamine Pyrophosphate-Dependent 2-Oxo-Acid Decarboxylases in Saccharomyces cerevisiae." Applied and Environmental Microbiology 78, no. 21 (August 17, 2012): 7538–48. http://dx.doi.org/10.1128/aem.01675-12.
Full textEram, Mohammad S., Erica Oduaran, and Kesen Ma. "The Bifunctional Pyruvate Decarboxylase/Pyruvate Ferredoxin Oxidoreductase fromThermococcus guaymasensis." Archaea 2014 (2014): 1–13. http://dx.doi.org/10.1155/2014/349379.
Full textAtsumi, Shota, Zhen Li, and James C. Liao. "Acetolactate Synthase from Bacillus subtilis Serves as a 2-Ketoisovalerate Decarboxylase for Isobutanol Biosynthesis in Escherichia coli." Applied and Environmental Microbiology 75, no. 19 (August 14, 2009): 6306–11. http://dx.doi.org/10.1128/aem.01160-09.
Full textSanchis, Vicente, Inmaculada Vinas, Ian N. Roberts, David J. Jeenes, Adrian J. Watson, and David B. Archer. "A pyruvate decarboxylase gene fromAspergillus parasiticus." FEMS Microbiology Letters 117, no. 2 (April 1994): 207–10. http://dx.doi.org/10.1111/j.1574-6968.1994.tb06766.x.
Full textDissertations / Theses on the topic "Pyruvate decarboxylase"
Blalock, LeeAnn Talarico. "Expression of pyruvate decarboxylase in a Gram positive host Sarcina ventriculi pyruvate decarboxylase versus other known pyruvate decarboxylases /." [Gainesville, Fla.] : University of Florida, 2003. http://purl.fcla.edu/fcla/etd/UFE0002366.
Full textCheung, Wing Yee. "A yeast pyruvate decarboxylase regulatory gene." Thesis, Imperial College London, 1985. http://hdl.handle.net/10044/1/37659.
Full textBrown, Audrey Elaine. "Constructing a recombinant model of the human pyruvate dehydrogenase complex." Thesis, University of Glasgow, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.248119.
Full textRose, Janet Elizabeth. "Mechanistic studies on glutamate decarboxylase and serine hydroxmethyltransferase." Thesis, University of St Andrews, 1993. http://hdl.handle.net/10023/14295.
Full textGreen, J. B. A. "Control of pyruvate decarboxylase and phospho-glucose isomerase in yeast." Thesis, Imperial College London, 1988. http://hdl.handle.net/10044/1/47087.
Full textBuddrus, Lisa. "Creation and evaluation of a pyruvate decarboxylase dependent ethanol fermentation pathway in Geobacillus thermoglucosidasius." Thesis, University of Bath, 2017. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.715253.
Full textAlcover, Fortuny Natàlia. "Asymmetric synthesis of chiral amines using transaminases: a multienzymatic approach by pyruvate decarboxylase coupling." Doctoral thesis, Universitat Autònoma de Barcelona, 2021. http://hdl.handle.net/10803/671815.
Full textLa presente tesis se centra en el desarrollo y optimización de una estrategia basada en la biocatálisis para la síntesis de aminas quirales, las cuales son compuestos ópticamente activos de gran valor que pueden ser utilizados para la síntesis de numerosos productos, especialmente en las industrias farmacéutica y agroquímica. Más concretamente, se pretende sintetizar 3-amino-1-fenilbutano (3-APB) y 1-feniletilamina (1-PEA) a través de la reacción en cascada de la transaminasa (TA) y la piruvato decarboxilasa (PDC). Esta cascada se basa en una síntesis asimétrica que parte de sus correspondientes cetonas proquirales y la alanina, y es catalizada por omega-transaminasas, las que presentan un equilibrio desfavorable. Para solucionar este problema, la PDC actúa como un sistema de eliminación de producto secundario, a través de la transformación del piruvato en acetaldehído y CO2, lo que provoca un desplazamiento del equilibrio. Con el objetivo de superar las limitaciones comerciales de la PDC, la cual sólo se puede obtener en pequeñas cantidades a un coste alto, se desarrolló un proceso entero de producción de esta enzima. Se clonó y sobreexpresó el gen de la PDC de Zymobacter Palmae (ZpPDC) en Escherichia coli. Posteriormente, se obtuvo la enzima recombinante en grandes cantidades a través del desarrollo de un proceso de cultivo de alta densidad celular en bioreactor. En cuanto a las TAs, se disponía de cuatro enzimas diferentes, procedentes de Chromobacterium violaceum (Cvi-TA), Vibrio fluvial (Vfl-TA) y Aspergillus Terreus (Ate-TA y Ate-TA_T247S). Se caracterizó tanto la PDC como las cuatro transaminasas con el fin de encontrar las condiciones de compromiso adecuadas para la construcción de la cascada enzimática. Teniendo en cuenta las condiciones encontradas, se llevó a cabo, de forma preliminar, reacciones de cribado de las que salieron seleccionadas la Cvi-TA y la Vfl-TA para la síntesis de 3-APB; y Vfl-TA para la síntesis de 1-PEA. Tras demostrar la viabilidad de la reacción en cascada de la TA y la PDC, se aplicaron diferentes estrategias de optimización para maximizar los rendimientos de reacción y mejorar la baja estabilidad operacional de las transaminasas. Por un lado, se exploraron algunas estrategias de optimización de las condiciones de reacción. Por el otro, se aplicó ingeniería del medio de reacción. Posteriormente, se llevó a cabo de inmovilización de las enzimas. Se obtuvieron derivados inmovilizados tanto de la Cvi-TA como de la Vfl-TA en soportes de MANA-agarosa y epoxy-agarosa. En el caso de la PDC, se desarrolló un sistema innovador de purificación e inmovilización simultánea en MANA-agarosa. Finalmente, las enzimas inmovilizadas obtenidas fueron aplicadas en reacción y se desarrolló una estrategia de reacción en ciclos.
The present thesis is focused on the development and optimization of a biocatalytical approach for the synthesis of chiral amines, which are highly valuable optically active compounds that can be used for the synthesis of numerous targets, especially in pharmaceutical and agrochemical industry. More specifically, 3-amino-1-phenylbutane (3-APB) and 1-phenylethylamine (1-PEA) synthesis is pretended by the cascade reaction of transaminase (TA) and pyruvate decarboxylase (PDC). The mentioned cascade consists in an asymmetric synthesis from their corresponding prochiral ketones and alanine catalyzed by omega-transaminase, which presents an unfavorable equilibrium. To overcome this problem, PDC acts as a by product removing system by transforming the resulting pyruvate to acetaldehyde and CO2, which leads to an equilibrium shift. Aiming to overcome the low PDC commercial availability, which can only be acquired at low amounts and a high cost, a whole production process was developed. Zymobacter palmae PDC (ZpPDC) gene was cloned and overexpressed in Escherichia coli. After that, high amounts of the recombinant enzyme were obtained by the development of a high-cell density culture process in bench-top bioreactor. Regarding TA, four different enzymes were available from Chromobacterium violaceum (Cvi-TA), Vibrio fluvialis (Vfl-TA) and Aspergillus terreus (Ate-TA and Ate-TA_T247S). Both PDC and the different transaminases were characterized to find out the appropriate compromise conditions to construct the enzymatic cascade. Taking into account the found conditions, preliminary screening reactions were carried out, from which Cvi-TA and Vfl-TA were selected for the synthesis of 3-APB; and Vfl-TA for the synthesis of 1-PEA. After proving the feasibility of TA and PDC cascade reaction, different optimization approaches were applied in order to maximize reaction yields and to improve the low transaminase operational stability. On the one hand, reaction conditions optimization approaches were explored. On the other, reaction medium engineering was applied. After that, enzyme immobilization was carried out. Immobilized derivatives of both Cvi-TA and Vfl-TA were obtained in MANA-agarose and epoxy-agarose supports. In the case of PDC, an innovative simultaneous purification and immobilization process was developed using MANA-agarose. Finally, the obtained immobilized enzymes were applied in reactions and a reaction cycle strategy was developed.
Universitat Autònoma de Barcelona. Programa de Doctorat en Biotecnologia
Bornemann, Stephen. "Studies on pyruvate decarboxylase-catalysed acyloin formation and the effects of surfactants on lipase-catalysed hydrolysis of esters." Thesis, University of Warwick, 1992. http://wrap.warwick.ac.uk/110304/.
Full textLeksawasdi, Noppol Biotechnology & Biomolecular Sciences (BABS) UNSW. "Kinetics and modelling of enzymatic process for R-phenylacetylcarbinol (PAC) production." Awarded by:University of New South Wales. Biotechnology and Biomolecular Sciences (BABS), 2004. http://handle.unsw.edu.au/1959.4/20846.
Full textAcar, Seyda. "Biochemical And Genetic Studies On The Pyruvate Branch Point Enzymes Of Rhizopus Oryzae." Phd thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/3/12604762/index.pdf.
Full text2 kDa by SDS-PAGE analysis. Pyruvate decarboxylase (pdcA and pdcB) and lactate dehydrogenase (ldhA and ldhB) genes of R. oryzae have been cloned by PCR-cloning approach and the filamentous fungi Aspergillus niger was transformed with these genes. The A. niger transformed with either of the ldh genes of R. oryzae showed enhanced production of lactic acid compared to wild type. Citric acid production was also increased in these transformants while no gluconate production was observed Cloning of hexokinase gene from R. oryzae using degenerate primers was studied by the use of GenomeWalker kit (Clontech). The results of this study were evaluated by using some bioinformatics tools depending on the unassembled clone sequences of R. oryzae genome.
Books on the topic "Pyruvate decarboxylase"
Bornemann, Stephen. Studies on pyruvate decarboxylase-catalysed acyloin formation and the effects of surfactants on lipase-catalysedhydrolysis of esters. [s.l.]: typescript, 1992.
Find full textGish, Gerald Daniel. A mechanistic investigation of the thiamin diphosphate-dependent enzyme pyruvate decarboxylase. 1986.
Find full textBook chapters on the topic "Pyruvate decarboxylase"
Schomburg, Dietmar, and Margit Salzmann. "Pyruvate decarboxylase." In Enzyme Handbook 1, 1–5. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-86605-0_1.
Full textSchomburg, Dietmar, and Margit Salzmann. "2, 2-Dialkylglycine decarboxylase (pyruvate)." In Enzyme Handbook 1, 261–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-86605-0_60.
Full textMaskevich, A. A., and I. P. Chernikevich. "Study of Fluorescence Decay of Pyruvate Decarboxylase." In Fifth International Conference on the Spectroscopy of Biological Molecules, 391–92. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1934-4_141.
Full textPohl, Martina. "Protein design on pyruvate decarboxylase (PDC) by site-directed mutagenesis." In New Enzymes for Organic Synthesis, 15–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/bfb0103301.
Full textJordan, Frank, Min Liu, Eduard Sergienko, Zhen Zhang, Andrew Brunskill, Palaniappa Arjunan, and William Furey. "Yeast Pyruvate Decarboxylase." In Thiamine. CRC Press, 2003. http://dx.doi.org/10.1201/9780203913420.ch12.
Full textSiegert, Petra, Martina Pohl, Malea Kneen, Irina Pogozheva, George Kenyon, and Michael McLeish. "Exploring the Substrate Specificity of Benzoylformate Decarboxylase, Pyruvate Decarboxylase, and Benzaldehyde Lyase." In Thiamine. CRC Press, 2003. http://dx.doi.org/10.1201/9780203913420.ch16.
Full textFrey, Perry A., and Adrian D. Hegeman. "Decarboxylation and Carboxylation." In Enzymatic Reaction Mechanisms. Oxford University Press, 2007. http://dx.doi.org/10.1093/oso/9780195122589.003.0012.
Full textDOWHAM, W., and Q. X. LI. "Mechanism of Formation of the Pyruvate Prosthetic Group of Phosphatidylserine Decarboxylase of Escherichia Coli." In Enzymes Dependent on Pyridoxal Phosphate and Other Carbonyl Compounds As Cofactors, 429–36. Elsevier, 1991. http://dx.doi.org/10.1016/b978-0-08-040820-0.50092-3.
Full textWei, Wen, Min Liu, Lan Chen, W. Phillip Huskey, and Frank Jordan. "Solvent and Carbon Kinetic Isotope Effects on Active-Site and Regulatory-Site Variants of Yeast Pyruvate Decarboxylase." In Thiamine. CRC Press, 2003. http://dx.doi.org/10.1201/9780203913420.ch13.
Full textConference papers on the topic "Pyruvate decarboxylase"
Maskevich, Sergei A., Ivan P. Chernikevich, Gennedy A. Gachko, Leonid N. Kivach, and Nataliya D. Strekal. "Study of pyruvate decarboxylase and thiamine kinase from brewer's yeast by SERS." In Laser Spectroscopy of Biomolecules: 4th International Conference on Laser Applications in Life Sciences, edited by Jouko E. Korppi-Tommola. SPIE, 1993. http://dx.doi.org/10.1117/12.146134.
Full textReports on the topic "Pyruvate decarboxylase"
Or, Etti, David Galbraith, and Anne Fennell. Exploring mechanisms involved in grape bud dormancy: Large-scale analysis of expression reprogramming following controlled dormancy induction and dormancy release. United States Department of Agriculture, December 2002. http://dx.doi.org/10.32747/2002.7587232.bard.
Full text(Pyruvate decarboxylase: A key enzyme for alcohol production). Office of Scientific and Technical Information (OSTI), January 1989. http://dx.doi.org/10.2172/5454091.
Full text