Journal articles on the topic 'Pyrroline-5-carboxylate complex'

To see the other types of publications on this topic, follow the link: Pyrroline-5-carboxylate complex.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 16 journal articles for your research on the topic 'Pyrroline-5-carboxylate complex.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Terao, Yukiyasu, Shigeru Nakamori, and Hiroshi Takagi. "Gene Dosage Effect of l-Proline Biosynthetic Enzymes on l-Proline Accumulation and Freeze Tolerance in Saccharomyces cerevisiae." Applied and Environmental Microbiology 69, no. 11 (November 2003): 6527–32. http://dx.doi.org/10.1128/aem.69.11.6527-6532.2003.

Full text
Abstract:
ABSTRACT We have previously reported that l-proline has cryoprotective activity in Saccharomyces cerevisiae. A freeze-tolerant mutant with l-proline accumulation was recently shown to carry an allele of the PRO1 gene encoding γ-glutamyl kinase, which resulted in a single amino acid substitution (Asp154Asn). Interestingly, this mutation enhanced the activities of γ-glutamyl kinase and γ-glutamyl phosphate reductase, both of which catalyze the first two steps of l-proline synthesis and which together may form a complex in vivo. Here, we found that the Asp154Asn mutant γ-glutamyl kinase was more thermostable than the wild-type enzyme, which suggests that this mutation elevated the apparent activities of two enzymes through a stabilization of the complex. We next examined the gene dosage effect of three l-proline biosynthetic enzymes, including Δ1-pyrroline-5-carboxylate reductase, which converts Δ1-pyrroline-5-carboxylate into l-proline, on l-proline accumulation and freeze tolerance in a non-l-proline-utilizing strain. Overexpression of the wild-type enzymes has no influence on l-proline accumulation, which suggests that the complex is very unstable in nature. However, co-overexpression of the mutant γ-glutamyl kinase and the wild-type γ-glutamyl phosphate reductase was effective for l-proline accumulation, probably due to a stabilization of the complex. These results indicate that both enzymes, not Δ1-pyrroline-5-carboxylate reductase, are rate-limiting enzymes in yeast cells. A high tolerance for freezing clearly correlated with higher levels of l-proline in yeast cells. Our findings also suggest that, in addition to its cryoprotective activity, intracellular l-proline could protect yeast cells from damage by oxidative stress. The approach described here provides a valuable method for breeding novel yeast strains that are tolerant of both freezing and oxidative stresses.
APA, Harvard, Vancouver, ISO, and other styles
2

Ion, Bogdan F., Mohamed M. Aboelnga, and James W. Gauld. "Insights from molecular dynamics on substrate binding and effects of active site mutations in Δ1-pyrroline-5-carboxylate dehydrogenase." Canadian Journal of Chemistry 94, no. 12 (December 2016): 1151–62. http://dx.doi.org/10.1139/cjc-2016-0286.

Full text
Abstract:
The NAD+-dependent enzyme, Δ1-pyrroline-5-carboxylate dehydrogenase (P5CDH), has an important role in proline and hydroxyproline catabolism for humans. Specifically, this aldehyde dehydrogenase is responsible for the oxidation of both l-glutamate-γ-semialdehyde (GSA) and 4-erythro-hydroxy-l-glutamate-γ-semialdehyde (4-OH-GSA) to their respective l-glutamate product forms. We have performed a detailed molecular dynamics (MD) study of both the reactant and product complex structures of P5CDH to gain insights into ligand binding (i.e., GSA, 4-OH-GSA, NAD+, GLU) in the active site. Moreover, our investigations were further extended to examine the structural impact of S352L, S352A, and E314A mutations on the deficiency in the P5CDH enzymatic activity. Our in silico mutation analysis indicated that the conserved Glu447 has significantly shifted in both the S352L and E314A mutants, causing NAD+ to be displaced from its predictive orientation in the binding site and hence forming a catalytically inactive enzyme. However in the case of S352A, the catalytic site including the oxyanion hole and Cys348 remain virtually unchanged, and the coenzyme maintains its binding position.
APA, Harvard, Vancouver, ISO, and other styles
3

Kretz, Rita, Bita Bozorgmehr, Mohamad Hasan Kariminejad, Marianne Rohrbach, Ingrid Hausser, Alessandra Baumer, Matthias Baumgartner, Cecilia Giunta, Ariana Kariminejad, and Johannes Häberle. "Defect in proline synthesis: pyrroline-5-carboxylate reductase 1 deficiency leads to a complex clinical phenotype with collagen and elastin abnormalities." Journal of Inherited Metabolic Disease 34, no. 3 (April 13, 2011): 731–39. http://dx.doi.org/10.1007/s10545-011-9319-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pallag, Gergely, Sara Nazarian, Dora Ravasz, David Bui, Timea Komlódi, Carolina Doerrier, Erich Gnaiger, Thomas N. Seyfried, and Christos Chinopoulos. "Proline Oxidation Supports Mitochondrial ATP Production When Complex I Is Inhibited." International Journal of Molecular Sciences 23, no. 9 (May 4, 2022): 5111. http://dx.doi.org/10.3390/ijms23095111.

Full text
Abstract:
The oxidation of proline to pyrroline-5-carboxylate (P5C) leads to the transfer of electrons to ubiquinone in mitochondria that express proline dehydrogenase (ProDH). This electron transfer supports Complexes CIII and CIV, thus generating the protonmotive force. Further catabolism of P5C forms glutamate, which fuels the citric acid cycle that yields the reducing equivalents that sustain oxidative phosphorylation. However, P5C and glutamate catabolism depend on CI activity due to NAD+ requirements. NextGen-O2k (Oroboros Instruments) was used to measure proline oxidation in isolated mitochondria of various mouse tissues. Simultaneous measurements of oxygen consumption, membrane potential, NADH, and the ubiquinone redox state were correlated to ProDH activity and F1FO-ATPase directionality. Proline catabolism generated a sufficiently high membrane potential that was able to maintain the F1FO-ATPase operation in the forward mode. This was observed in CI-inhibited mouse liver and kidney mitochondria that exhibited high levels of proline oxidation and ProDH activity. This action was not observed under anoxia or when either CIII or CIV were inhibited. The duroquinone fueling of CIII and CIV partially reproduced the effects of proline. Excess glutamate, however, could not reproduce the proline effect, suggesting that processes upstream of the glutamate conversion from proline were involved. The ProDH inhibitors tetrahydro-2-furoic acid and, to a lesser extent, S-5-oxo-2-tetrahydrofurancarboxylic acid abolished all proline effects. The data show that ProDH-directed proline catabolism could generate sufficient CIII and CIV proton pumping, thus supporting ATP production by the F1FO-ATPase even under CI inhibition.
APA, Harvard, Vancouver, ISO, and other styles
5

Silao, Fitz Gerald S., Tong Jiang, Biborka Bereczky-Veress, Andreas Kühbacher, Kicki Ryman, Nathalie Uwamohoro, Sabrina Jenull, et al. "Proline catabolism is a key factor facilitating Candida albicans pathogenicity." PLOS Pathogens 19, no. 11 (November 2, 2023): e1011677. http://dx.doi.org/10.1371/journal.ppat.1011677.

Full text
Abstract:
Candida albicans, the primary etiology of human mycoses, is well-adapted to catabolize proline to obtain energy to initiate morphological switching (yeast to hyphal) and for growth. We report that put1-/- and put2-/- strains, carrying defective Proline UTilization genes, display remarkable proline sensitivity with put2-/- mutants being hypersensitive due to the accumulation of the toxic intermediate pyrroline-5-carboxylate (P5C), which inhibits mitochondrial respiration. The put1-/- and put2-/- mutations attenuate virulence in Drosophila and murine candidemia models and decrease survival in human neutrophils and whole blood. Using intravital 2-photon microscopy and label-free non-linear imaging, we visualized the initial stages of C. albicans cells infecting a kidney in real-time, directly deep in the tissue of a living mouse, and observed morphological switching of wildtype but not of put2-/- cells. Multiple members of the Candida species complex, including C. auris, are capable of using proline as a sole energy source. Our results indicate that a tailored proline metabolic network tuned to the mammalian host environment is a key feature of opportunistic fungal pathogens.
APA, Harvard, Vancouver, ISO, and other styles
6

Lagautriere, Thomas, Ghader Bashiri, and Edward N. Baker. "Use of a “silver bullet” to resolve crystal lattice dislocation disorder: A cobalamin complex of Δ1-pyrroline-5-carboxylate dehydrogenase from Mycobacterium tuberculosis." Journal of Structural Biology 189, no. 2 (February 2015): 153–57. http://dx.doi.org/10.1016/j.jsb.2014.12.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sun, Chenglong, Tiegang Li, Xiaowei Song, Luojiao Huang, Qingce Zang, Jing Xu, Nan Bi, et al. "Spatially resolved metabolomics to discover tumor-associated metabolic alterations." Proceedings of the National Academy of Sciences 116, no. 1 (December 17, 2018): 52–57. http://dx.doi.org/10.1073/pnas.1808950116.

Full text
Abstract:
Characterization of tumor metabolism with spatial information contributes to our understanding of complex cancer metabolic reprogramming, facilitating the discovery of potential metabolic vulnerabilities that might be targeted for tumor therapy. However, given the metabolic variability and flexibility of tumors, it is still challenging to characterize global metabolic alterations in heterogeneous cancer. Here, we propose a spatially resolved metabolomics approach to discover tumor-associated metabolites and metabolic enzymes directly in their native state. A variety of metabolites localized in different metabolic pathways were mapped by airflow-assisted desorption electrospray ionization mass spectrometry imaging (AFADESI-MSI) in tissues from 256 esophageal cancer patients. In combination with in situ metabolomics analysis, this method provided clues into tumor-associated metabolic pathways, including proline biosynthesis, glutamine metabolism, uridine metabolism, histidine metabolism, fatty acid biosynthesis, and polyamine biosynthesis. Six abnormally expressed metabolic enzymes that are closely associated with the altered metabolic pathways were further discovered in esophageal squamous cell carcinoma (ESCC). Notably, pyrroline-5-carboxylate reductase 2 (PYCR2) and uridine phosphorylase 1 (UPase1) were found to be altered in ESCC. The spatially resolved metabolomics reveal what occurs in cancer at the molecular level, from metabolites to enzymes, and thus provide insights into the understanding of cancer metabolic reprogramming.
APA, Harvard, Vancouver, ISO, and other styles
8

Yildiz, Ibrahim. "Computational insights on the hydride and proton transfer mechanisms of L-proline dehydrogenase." PLOS ONE 18, no. 11 (November 15, 2023): e0290901. http://dx.doi.org/10.1371/journal.pone.0290901.

Full text
Abstract:
L-Proline dehydrogenase (ProDH) is a flavin-dependent oxidoreductase, which catalyzes the oxidation of L-proline to (S)-1-pyrroline-5-carboxylate. Based on the experimental studies, a stepwise proton and hydride transfer mechanism is supported. According to this mechanism, the amino group of L-proline is deprotonated by a nearby Lys residue, which is followed by the hydride transfer process from C5 position of L-proline to N5 position of isoalloxazine ring of FAD. It was concluded that the hydride transfer step is rate limiting in the reductive half-reaction, however, in the overall reaction, the oxidation of FAD is the rate limiting step. In this study, we performed a computational mechanistic investigation based on ONIOM method to elucidate the mechanism of the reductive half-reaction corresponding to the oxidation of L-proline into iminoproline. Our calculations support the stepwise mechanism in which the deprotonation occurs initially as a fast step as result of a proton transfer from L-proline to the Lys residue. Subsequently, a hydride ion transfers from L-proline to FAD with a higher activation barrier. The enzyme-product complex showed a strong interaction between reduced FAD and iminoproline, which might help to explain why a step in the oxidative half-reaction is rate-limiting.
APA, Harvard, Vancouver, ISO, and other styles
9

DelVecchio, Vito G., Joseph P. Connolly, Timothy G. Alefantis, Alexander Walz, Marian A. Quan, Guy Patra, John M. Ashton, et al. "Proteomic Profiling and Identification of Immunodominant Spore Antigens of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis." Applied and Environmental Microbiology 72, no. 9 (September 2006): 6355–63. http://dx.doi.org/10.1128/aem.00455-06.

Full text
Abstract:
ABSTRACT Differentially expressed and immunogenic spore proteins of the Bacillus cereus group of bacteria, which includes Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis, were identified. Comparative proteomic profiling of their spore proteins distinguished the three species from each other as well as the virulent from the avirulent strains. A total of 458 proteins encoded by 232 open reading frames were identified by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry analysis for all the species. A number of highly expressed proteins, including elongation factor Tu (EF-Tu), elongation factor G, 60-kDa chaperonin, enolase, pyruvate dehydrogenase complex, and others exist as charge variants on two-dimensional gels. These charge variants have similar masses but different isoelectric points. The majority of identified proteins have cellular roles associated with energy production, carbohydrate transport and metabolism, amino acid transport and metabolism, posttranslational modifications, and translation. Novel vaccine candidate proteins were identified using B. anthracis polyclonal antisera from humans postinfected with cutaneous anthrax. Fifteen immunoreactive proteins were identified in B. anthracis spores, whereas 7, 14, and 7 immunoreactive proteins were identified for B. cereus and in the virulent and avirulent strains of B. thuringiensis spores, respectively. Some of the immunodominant antigens include charge variants of EF-Tu, glyceraldehyde-3-phosphate dehydrogenase, dihydrolipoamide acetyltransferase, Δ-1-pyrroline-5-carboxylate dehydrogenase, and a dihydrolipoamide dehydrogenase. Alanine racemase and neutral protease were uniquely immunogenic to B. anthracis. Comparative analysis of the spore immunome will be of significance for further nucleic acid- and immuno-based detection systems as well as next-generation vaccine development.
APA, Harvard, Vancouver, ISO, and other styles
10

Lewoniewska, Sylwia, Ilona Oscilowska, Antonella Forlino, and Jerzy Palka. "Understanding the Role of Estrogen Receptor Status in PRODH/POX-Dependent Apoptosis/Survival in Breast Cancer Cells." Biology 10, no. 12 (December 10, 2021): 1314. http://dx.doi.org/10.3390/biology10121314.

Full text
Abstract:
It has been suggested that activation of estrogen receptor α (ER α) stimulates cell proliferation. In contrast, estrogen receptor β (ER β) has anti-proliferative and pro-apoptotic activity. Although the role of estrogens in estrogen receptor-positive breast cancer progression has been well established, the mechanism of their effect on apoptosis is not fully understood. It has been considered that ER status of breast cancer cells and estrogen availability might determine proline dehydrogenase/proline oxidase (PRODH/POX)-dependent apoptosis. PRODH/POX is a mitochondrial enzyme that converts proline into pyrroline-5-carboxylate (P5C). During this process, ATP (adenosine triphosphate) or ROS (reactive oxygen species) are produced, facilitating cell survival or death, respectively. However, the critical factor in driving PRODH/POX-dependent functions is proline availability. The amount of this amino acid is regulated at the level of prolidase (proline releasing enzyme), collagen biosynthesis (proline utilizing process), and glutamine, glutamate, α-ketoglutarate, and ornithine metabolism. Estrogens were found to upregulate prolidase activity and collagen biosynthesis. It seems that in estrogen receptor-positive breast cancer cells, prolidase supports proline for collagen biosynthesis, limiting its availability for PRODH/POX-dependent apoptosis. Moreover, lack of free proline (known to upregulate the transcriptional activity of hypoxia-inducible factor 1, HIF-1) contributes to downregulation of HIF-1-dependent pro-survival activity. The complex regulatory mechanism also involves PRODH/POX expression and activity. It is induced transcriptionally by p53 and post-transcriptionally by AMPK (AMP-activated protein kinase), which is regulated by ERs. The review also discusses the role of interconversion of proline/glutamate/ornithine in supporting proline to PRODH/POX-dependent functions. The data suggest that PRODH/POX-induced apoptosis is dependent on ER status in breast cancer cells.
APA, Harvard, Vancouver, ISO, and other styles
11

Fang, Yan, Jeffrey A. Coulter, Junyan Wu, Lijun Liu, Xuecai Li, Yun Dong, Li Ma, et al. "Identification of differentially expressed genes involved in amino acid and lipid accumulation of winter turnip rape (Brassica rapa L.) in response to cold stress." PLOS ONE 16, no. 2 (February 8, 2021): e0245494. http://dx.doi.org/10.1371/journal.pone.0245494.

Full text
Abstract:
Winter turnip rape (Brassica rapa L.) is an important overwintering oil crop that is widely planted in northwestern China. It considered to be a good genetic resource for cold-tolerant research because its roots can survive harsh winter conditions. Here, we performed comparative transcriptomics analysis of the roots of two winter turnip rape varieties, Longyou7 (L7, strong cold tolerance) and Tianyou2 (T2, low cold tolerance), under normal condition (CK) and cold stress (CT) condition. A total of 8,366 differentially expressed genes (DEGs) were detected between the two L7 root groups (L7CK_VS_L7CT), and 8,106 DEGs were detected for T2CK_VS_T2CT. Among the DEGs, two ω-3 fatty acid desaturase (FAD3), two delta-9 acyl-lipid desaturase 2 (ADS2), one diacylglycerol kinase (DGK), and one 3-ketoacyl-CoA synthase 2 (KCS2) were differentially expressed in the two varieties and identified to be related to fatty acid synthesis. Four glutamine synthetase cytosolic isozymes (GLN), serine acetyltransferase 1 (SAT1), and serine acetyltransferase 3 (SAT3) were down-regulated under cold stress, while S-adenosylmethionine decarboxylase proenzyme 1 (AMD1) had an up-regulation tendency in response to cold stress in the two samples. Moreover, the delta-1-pyrroline-5-carboxylate synthase (P5CS), δ-ornithine aminotransferase (δ-OAT), alanine-glyoxylate transaminase (AGXT), branched-chain-amino-acid transaminase (ilvE), alpha-aminoadipic semialdehyde synthase (AASS), Tyrosine aminotransferase (TAT) and arginine decarboxylase related to amino acid metabolism were identified in two cultivars variously expressed under cold stress. The above DEGs related to amino acid metabolism were suspected to the reason for amino acids content change. The RNA-seq data were validated by real-time quantitative RT-PCR of 19 randomly selected genes. The findings of our study provide the gene expression profile between two varieties of winter turnip rape, which lay the foundation for a deeper understanding of the highly complex regulatory mechanisms in plants during cold treatment.
APA, Harvard, Vancouver, ISO, and other styles
12

Zheng, Yao, Cécile Cabassa-Hourton, Holger Eubel, Guillaume Chevreux, Laurent Lignieres, Emilie Crilat, Hans-Peter Braun, Sandrine Lebreton, and Arnould Savouré. "Pyrroline-5-carboxylate metabolism protein complex detected in Arabidopsis thaliana leaf mitochondria." Journal of Experimental Botany, October 16, 2023. http://dx.doi.org/10.1093/jxb/erad406.

Full text
Abstract:
Abstract Proline dehydrogenase (ProDH) and pyrroline-5-carboxylate (P5C) dehydrogenase (P5CDH) catalyze the oxidation of proline into glutamate via the intermediates P5C and glutamate-semialdehyde (GSA), which spontaneously interconvert. P5C and GSA are also intermediates in the production of glutamate from ornithine and α-ketoglutarate catalyzed by ornithine δ-aminotransferase (OAT). ProDH and P5CDH form a fused bifunctional PutA enzyme in Gram-negative bacteria and are associated in a bifunctional substrate channelling complex in Thermus thermophilus, but the physical proximity of ProDH and P5CDH in eukaryotes has not been described. Here we report evidence of physical proximity and interactions between Arabidopsis ProDH, P5CDH and OAT in the mitochondria of plants during dark-induced leaf senescence when all three enzymes are expressed. Pairwise interactions and localization of the three enzymes were investigated using bimolecular fluorescence complementation (BiFC) with confocal microscopy in tobacco and sub-mitochondrial fractionation in Arabidopsis. Evidence for a complex composed of ProDH, P5CDH, and OAT was revealed by co-migration of the proteins in native conditions upon gel electrophoresis. Co-immunoprecipitation coupled with mass spectrometry analysis confirmed the presence of the P5C metabolism complex in Arabidopsis. Pull-down assays further demonstrated a direct interaction between ProDH1 and P5CDH. P5C metabolism complexes may channel P5C among the constituent enzymes and directly provide electrons to the respiratory electron chain via ProDH.
APA, Harvard, Vancouver, ISO, and other styles
13

Forlani, Giuseppe, Giuseppe Sabbioni, Simone Barera, and Dietmar Funck. "A complex array of factors regulate the activity of Arabidopsis thaliana δ1‐pyrroline‐5‐carboxylate synthetase isoenzymes to ensure their specific role in plant cell metabolism." Plant, Cell & Environment, January 15, 2024. http://dx.doi.org/10.1111/pce.14817.

Full text
Abstract:
AbstractThe first and committed step in proline synthesis from glutamate is catalyzed by δ1‐pyrroline‐5‐carboxylate synthetase (P5CS). Two P5CS genes have been found in most angiosperms, one constitutively expressed to satisfy proline demand for protein synthesis, the other stress‐induced. Despite the number of papers to investigate regulation at the transcriptional level, to date, the properties of the enzymes have been subjected to limited study. The isolation of Arabidopsis thaliana P5CS isoenzymes was achieved through heterologous expression and affinity purification. The two proteins were characterized with respect to kinetic and biochemical properties. AtP5CS2 showed KM values in the micro‐ to millimolar range, and its activity was inhibited by NADP+, ADP and proline, and by glutamine and arginine at high levels. Mg2+ ions were required for activity, which was further stimulated by K+ and other cations. AtP5CS1 displayed positive cooperativity with glutamate and was almost insensitive to inhibition by proline. In the presence of physiological, nonsaturating concentrations of glutamate, proline was slightly stimulatory, and glutamine strongly increased the catalytic rate. Data suggest that the activity of AtP5CS isoenzymes is differentially regulated by a complex array of factors including the concentrations of proline, glutamate, glutamine, monovalent cations and pyridine dinucleotides.
APA, Harvard, Vancouver, ISO, and other styles
14

Palka, Jerzy, Ilona Oscilowska, and Lukasz Szoka. "Collagen metabolism as a regulator of proline dehydrogenase/proline oxidase-dependent apoptosis/autophagy." Amino Acids, April 5, 2021. http://dx.doi.org/10.1007/s00726-021-02968-y.

Full text
Abstract:
AbstractRecent studies on the regulatory role of amino acids in cell metabolism have focused on the functional significance of proline degradation. The process is catalysed by proline dehydrogenase/proline oxidase (PRODH/POX), a mitochondrial flavin-dependent enzyme converting proline into ∆1-pyrroline-5-carboxylate (P5C). During this process, electrons are transferred to electron transport chain producing ATP for survival or they directly reduce oxygen, producing reactive oxygen species (ROS) inducing apoptosis/autophagy. However, the mechanism for switching survival/apoptosis mode is unknown. Although PRODH/POX activity and energetic metabolism were suggested as an underlying mechanism for the survival/apoptosis switch, proline availability for this enzyme is also important. Proline availability is regulated by prolidase (proline supporting enzyme), collagen biosynthesis (proline utilizing process) and proline synthesis from glutamine, glutamate, α-ketoglutarate (α-KG) and ornithine. Proline availability is dependent on the rate of glycolysis, TCA and urea cycles, proline metabolism, collagen biosynthesis and its degradation. It is well established that proline synthesis enzymes, P5C synthetase and P5C reductase as well as collagen prolyl hydroxylases are up-regulated in most of cancer types and control rates of collagen biosynthesis. Up-regulation of collagen prolyl hydroxylase and its exhaustion of ascorbate and α-KG may compete with DNA and histone demethylases (that require the same cofactors) to influence metabolic epigenetics. This knowledge led us to hypothesize that up-regulation of prolidase and PRODH/POX with inhibition of collagen biosynthesis may represent potential pharmacotherapeutic approach to induce apoptosis or autophagic death in cancer cells. These aspects of proline metabolism are discussed in the review as an approach to understand complex regulatory mechanisms driving PRODH/POX-dependent apoptosis/survival.
APA, Harvard, Vancouver, ISO, and other styles
15

Kok, Andrew De-Xian, Wan Muhamad Asrul Nizam Wan Abdullah, Chu-Nie Tang, Lee-Yoon Low, Mohd Hafis Yuswan, Janna Ong-Abdullah, Ngai-Paing Tan, and Kok-Song Lai. "Sodium lignosulfonate improves shoot growth of Oryza sativa via enhancement of photosynthetic activity and reduced accumulation of reactive oxygen species." Scientific Reports 11, no. 1 (June 24, 2021). http://dx.doi.org/10.1038/s41598-021-92401-x.

Full text
Abstract:
AbstractLignosulfonate (LS) is a by-product obtained during sulfite pulping process and is commonly used as a growth enhancer in plant growth. However, the underlying growth promoting mechanism of LS on shoot growth remains largely unknown. Hence, this study was undertaken to determine the potential application of eco-friendly ion-chelated LS complex [sodium LS (NaLS) and calcium LS (CaLS)] to enhance recalcitrant indica rice MR 219 shoot growth and to elucidate its underlying growth promoting mechanisms. In this study, the shoot apex of MR 219 rice was grown on Murashige and Skoog medium supplemented with different ion chelated LS complex (NaLS and CaLS) at 100, 200, 300 and 400 mg/L The NaLS was shown to be a better shoot growth enhancer as compared to CaLS, with optimum concentration of 300 mg/L. Subsequent comparative proteomic analysis revealed an increase of photosynthesis-related proteins [photosystem II (PSII) CP43 reaction center protein, photosystem I (PSI) iron-sulfur center, PSII CP47 reaction center protein, PSII protein D1], ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), carbohydrate metabolism-related proteins (glyceraldehyde-3-phosphate dehydrogenase 3, fructose-bisphosphate aldolase) and stress regulator proteins (peptide methionine sulfoxide reductase A4, delta-1-pyrroline-5-carboxylate synthase 1) abundance in NaLS-treated rice as compared to the control (MSO). Consistent with proteins detected, a significant increase in biochemical analyses involved in photosynthetic activities, carbohydrate metabolism and protein biosynthesis such as total chlorophyll, rubisco activity, total sugar and total protein contents were observed in NaLS-treated rice. This implies that NaLS plays a role in empowering photosynthesis activities that led to plant growth enhancement. In addition, the increased in abundance of stress regulator proteins were consistent with low levels of peroxidase activity, malondialdehyde content and phenylalanine ammonia lyase activity observed in NaLS-treated rice. These results suggest that NaLS plays a role in modulating cellular homeostasis to provide a conducive cellular environment for plant growth. Taken together, NaLS improved shoot growth of recalcitrant MR 219 rice by upregulation of photosynthetic activities and reduction of ROS accumulation leading to better plant growth.
APA, Harvard, Vancouver, ISO, and other styles
16

Harb, Ola A., Mariem A. Elfeky, Fady M. Wadea, Ahmed M. Elsayed, Shereen Elshorbagy, Ahmed F. Amin, Ehab M. Oraby, Mohamed Farouk Amin, and Abdelwahab S. Almoregy. "The Prognostic Roles of PYCR2 and ZBTB18 Expression in Tissues of Colorectal Carcinoma and Non-Neoplastic Tissues: An Immunohistochemical Study." Journal of Coloproctology, August 1, 2022. http://dx.doi.org/10.1055/s-0042-1746204.

Full text
Abstract:
Abstract Background It is important to detect novel biomarkers responsible for the progression and spread of colorectal cancer (CRC) to better evaluate the prognosis of the patients, provide better management, and foster the development of therapeutic targets. In humans, pyrroline-5-carboxylate reductase 2 (PYCR2) is encoded on chromosome 1q42.12, and its metabolic activity has been linked to oncogenesis in many cancers. Zinc finger and broad-complex, tramtrack, and bric-à-brac (BTB) domain-containing protein 18 (ZBTB18), a zinc finger transcriptional repressor, has been found to have a tumor-suppressor role and to be methylated in CRCs. To date, the prognostic roles of PYCR2 and ZBTB18 in CRC patients have not been thoroughly studied. Objective To evaluate the tissue protein expression of PYCR2 and ZBTB18 in CRC and adjacent non-neoplastic intestinal tissues, to detect their roles in CRC carcinogenesis, progression and metastases. Patients and methods After applying the inclusion criteria, 60 CRC patients were included in the study. Tissue samples from the tumor and the adjacent non-neoplastic tissues were stained with PYCR2 and ZBTB18. The patients were followed up for about 30 months (range: 10 to 36 months). We performed a correlation regarding the expression of the markers, and clinicopathological and prognostic parameters. Results Upregulation of PYCR2 and downregulation of ZBTB18 were found to be higher in CRC tissue than in the adjacent non-neoplastic colonic mucosa (p = 0.026 and p < 0.001 respectively). High expression of PYCR2 and low expression of ZBTB18 were positively correlated with large tumor size, higher tumor grade, advanced tumor stage, presence of spread to lymph nodes, and presence of distant metastases (p < 0.001). High PYCR2 and low ZBTB18 expressions were significantly associated with poor response to therapy (p = 0.008 and 0.0.17 respectively), as well as high incidence of progression and recurrence (p = 0.005), and unfavorable overall survival (OS) rates (p = 0.001). Conclusion High expression of PYCR2 and low expression of ZBTB18 were independent predictors of CRC, progression, poor prognosis and unfavorable patient OS and progression-free survival (PFS) rates.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography