Academic literature on the topic 'Pyrolysis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Pyrolysis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Pyrolysis"
Adeboye, B. S., S. O. Obayopo, A. A. Asere, and I. K. Okediran. "Production of Pyrolytic Oil from Cassava Peel Wastes." Journal of Solid Waste Technology and Management 47, no. 4 (November 1, 2021): 726–31. http://dx.doi.org/10.5276/jswtm/2021.726.
Full textASSUMPÇÃO, Luiz Carlos Fonte Nova de, Mônica Regina da Costa MARQUES, and Montserrat Motas CARBONELL. "CO-PYROLYSIS OF POLYPROPYLENE WITH PETROLEUM OF BACIA DE CAMPOS." Periódico Tchê Química 06, no. 11 (January 20, 2009): 23–30. http://dx.doi.org/10.52571/ptq.v6.n11.2009.24_periodico11_pgs_23_30.pdf.
Full textUrbanovičs, Igors, Gaļina Dobele, Vilhelmīne Jurkjane, Valdis Kampars, and Ēriks Samulis. "PYROLYTIC OIL - A PRODUCT OF FAST PYROLYSIS OF WOOD RESIDUES FOR ENERGY RESOURCES." Environment. Technology. Resources. Proceedings of the International Scientific and Practical Conference 1 (June 23, 2007): 16. http://dx.doi.org/10.17770/etr2007vol1.1742.
Full textUsino, David O., Päivi Ylitervo, and Tobias Richards. "Primary Products from Fast Co-Pyrolysis of Palm Kernel Shell and Sawdust." Molecules 28, no. 19 (September 26, 2023): 6809. http://dx.doi.org/10.3390/molecules28196809.
Full textMercl, Filip, Zdeněk Košnář, Lorenzo Pierdonà, Leidy Marcela Ulloa-Murillo, Jiřina Száková, and Pavel Tlustoš. "Changes in availability of Ca, K, Mg, P and S in sewage sludge as affected by pyrolysis temperature." Plant, Soil and Environment 66, No. 4 (April 30, 2020): 143–48. http://dx.doi.org/10.17221/605/2019-pse.
Full textAlagu, R. M., and E. Ganapathy Sundaram. "Experimental Studies on Thermal and Catalytic Slow Pyrolysis of Groundnut Shell to Pyrolytic Oil." Applied Mechanics and Materials 787 (August 2015): 67–71. http://dx.doi.org/10.4028/www.scientific.net/amm.787.67.
Full textLee, Nahyeon, Junghee Joo, Kun-Yi Andrew Lin, and Jechan Lee. "Waste-to-Fuels: Pyrolysis of Low-Density Polyethylene Waste in the Presence of H-ZSM-11." Polymers 13, no. 8 (April 7, 2021): 1198. http://dx.doi.org/10.3390/polym13081198.
Full textLu, Tao, Hao Ran Yuan, Shun Gui Zhou, Hong Yu Huang, Kobayashi Noriyuki, and Yong Chen. "On the Pyrolysis of Sewage Sludge: The Influence of Pyrolysis Temperature on Biochar, Liquid and Gas Fractions." Advanced Materials Research 518-523 (May 2012): 3412–20. http://dx.doi.org/10.4028/www.scientific.net/amr.518-523.3412.
Full textCARNEIRO, Débora da Silva, and Mônica Regina da Costa MARQUES. "CO-PYROLYSIS OF POLYETHYLENE S WASTE WITH BACIA DE CAMPOS'S GASOIL." Periódico Tchê Química 07, no. 13 (January 20, 2010): 16–21. http://dx.doi.org/10.52571/ptq.v7.n13.2010.17_periodico13_pgs_16_21.pdf.
Full textKumar, Sachin, and R. K. Singh. "Thermolysis of High-Density Polyethylene to Petroleum Products." Journal of Petroleum Engineering 2013 (May 30, 2013): 1–7. http://dx.doi.org/10.1155/2013/987568.
Full textDissertations / Theses on the topic "Pyrolysis"
Tam, Tina Sui-Man. "Pyrolysis of oil shale in a spouted bed pyrolyser." Thesis, University of British Columbia, 1987. http://hdl.handle.net/2429/26742.
Full textApplied Science, Faculty of
Chemical and Biological Engineering, Department of
Graduate
Zanzi, Rolando. "Pyrolysis of biomass. Rapid pyrolysis at high temperature. Slow pyrolysis for active carbon preparation." Doctoral thesis, KTH, Chemical Engineering and Technology, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3180.
Full textPyrolysis of biomass consists of heating solid biomass inthe absence of air to produce solid, liquid and gaseous fuels.In the first part of this thesis rapid pyrolysis of wood(birch) and some agricultural residues (olive waste, sugarcanebagasse and wheat straw in untreated and in pelletized form) athigh temperature (800ºC1000ºC) is studied ina free fall reactor at pilot scale. These conditions are ofinterest for gasification in fluidized beds. Of main interestare the gas and char yields and compositions as well as thereactivity of the produced char in gasification.
A higher temperature and smaller particles increase theheating rate resulting in a decreased char yield. The crackingof the hydrocarbons with an increase of the hydrogen content inthe gaseous product is favoured by a higher temperature and byusing smaller particles. Wood gives more volatiles and lesschar than straw and olive waste. The higher ash content inagricultural residues favours the charring reactions. Charsfrom olive waste and straw are more reactive in gasificationthan chars from birch because of the higher ash content. Thecomposition of the biomass influences the product distribution.Birch and bagasse give more volatiles and less char thanquebracho, straw and olive waste. Longer residence time inrapid pyrolysis increase the time for contact between tar andchar which makes the char less reactive. The secondary charproduced from tar not only covers the primary char but alsoprobably encapsulates the ash and hinders the catalytic effectof the ash. High char reactivity is favoured by conditionswherethe volatiles are rapidly removed from the particle, i.e.high heating rate, high temperature and small particles.
The second part of this thesis deals with slow pyrolysis inpresence of steam for preparation of active carbon. Theinfluence of the type of biomass, the type of reactor and thetreatment conditions, mainly temperature and activation time,on the properties and the yield of active carbons are studied.The precursors used in the experiments are birch (wood) anddifferent types of agricultural residues such as sugarcanebagasse, olive waste, miscanthus pellets and straw in untreatedand pelletized form.
The results from the pyrolysis of biomass in presence ofsteam are compared with those obtained in inert atmosphere ofnitrogen. The steam contributes to the formation of solidresidues with high surface area and good adsorption capacity.The yield of liquid products increases significantly at theexpense of the gaseous and solid products. Large amount ofsteam result in liquid products consisting predominantly ofwater-soluble polar compounds.
In comparison to the stationary fixed bed reactor, therotary reactor increases the production of energy-rich gases atthe expense of liquid products.
The raw materials have strong effect on the yields and theproperties of the pyrolysis products. At equal time oftreatment an increase of the temperature results in a decreaseof the yield of solid residue and improvement of the adsorptioncapacity until the highest surface area is reached. Furtherincrease of the temperature decreases the yield of solidproduct without any improvement in the adsorption capacity. Therate of steam flow influences the product distribution. Theyield of liquid products increases while the gas yielddecreases when the steam flow is increased.
Keywords: rapid pyrolysis, pyrolysis, wood, agriculturalresidues,biomass, char, tar, gas, char reactivity,gasification, steam, active carbon
Munoz, hoyos Mariana. "Contribution à la compréhension du procédé de spray pyrolyse par une double approche modélisation/expérience." Thesis, Limoges, 2017. http://www.theses.fr/2017LIMO0081/document.
Full textMultielement ceramic powders in the Si/C/N system could be obtained by spray pyrolysis process. Synthesis parameters and their effect on powder chemical composition and morphology have been already studied. Nevertheless, the mechanisms of precursor decomposition and gas phase species recombination that take place in the reaction zone are still unknown. The aim of this study is the comprehension of the process, from the aerosol generation to the solid powders formation mechanisms. The shadowgraphy technique was used to characterize the spray, and coupled with the implementation of a numerical model of droplets transport and treatment through the device allowed to identify bimodal size distributions at the furnace entrance. This double approach let confirm the effect of physical and hydrodynamic phenomenon in drop size evolution. The introduction of a bimodal distribution into the pyrolysis furnace allows to consider a precursor decomposition mechanism in two steps, depending on the drop sizes. This hypothesis combined to the study of precursor decomposition at high temperature led to the proposal of powder formation mechanisms in which their chemical composition varies with the synthesis atmosphere
Oh, Myongsook Susan. "Softening coal pyrolysis." Thesis, Massachusetts Institute of Technology, 1985. http://hdl.handle.net/1721.1/15245.
Full textMICROFICHE COPY AVAILABLE IN ARCHIVES AND SCIENCE.
Bibliography: leaves 275-284.
by Myongsook Susan Oh.
Sc.D.
Alkhatib, Radwan. "Development of an alternative fuel from waste of used tires by pyrolysis." Thesis, Nantes, Ecole des Mines, 2014. http://www.theses.fr/2014EMNA0197/document.
Full textThe objective of this work is to get alternative fuel comparable with the available diesel in the market following the EN590. The fuel getting was via optimization of pyrolysis conditions which are temperature, heating rate (power of electrical resistance) and inert gas flow rate. The optimum values are 465°C, 650 Watts and without inert gas flow rate. Inert gas role is limited to purge the system for 30 minutes before start the pyrolysis to get rid of oxidative gases. The obtained product is comparable with the diesel as it has GCV 45 KJ/kg, low density of 0,85 and 7% tar content
Melzer, Michael. "Valorisation énergétique des sous-produits agricoles en zone sub-saharienne : pré-conditionnement de la biomasse par pyrolyse flash." Thesis, Compiègne, 2013. http://www.theses.fr/2013COMP2098/document.
Full textSub-Saharan West Africa lacks of natural resources, especially for energy production. By-products of agro-industry as cashew nut shells (CNS), jatropha (Jc) and shea (Sc) press cakes were identified as available resources for energetic valorisation. These biomasses are characterized by high extractive contents (cashew nut shell liquid/CNSL or triglycerides) which are the reason for toxic fumes during combustion. The thesis investigated the feasibility of flash pyrolysis as alternative process for these resources, more specifically the impact of the extractives on yields, the composition and the stability of flash pyrolysis oils. The feedstock were derived into samples covering the whole range of extractive contents (from de-oiled press cakes, ~0 wt%; to pure extractives, 100 wt%) which were characterized and pyrolysed in two laboratory devices (TGA and tubular furnace), then by applying flash pyrolysis conditions in a fluidized bed reactor. No significant interaction in-between the solid matrix and the extractives during pyrolysis were observed but different products were identified. CNSL volatises between 250 and 320°C, several phenolic compounds and typical compounds of crude CNSL were found to be present in the pyrolysis oil. In contrast, triglycerides are entirely decomposed at 380 to 420°C to give linear hydro-carbon chains. Some interaction products of the triglycerides with proteins were identified. Additionally, the experiments with the pilot plant have shown operational difficulties in the fluidized bed, which are linked to specific properties of the press cakes. Thus, further optimisations of process conditions are suggested. To overcome the observed phase separation of the pyrolysis oils mixtures with other biofuels were studied. The obtained emulsions are more homogeneous but the physical stability is still insufficient despite the addition of surfactants
Safdari, Mohammad Saeed. "Characterization of Pyrolysis Products from Fast Pyrolysis of Live and Dead Vegetation." BYU ScholarsArchive, 2018. https://scholarsarchive.byu.edu/etd/8807.
Full textOfoma, Ifedinma. "Catalytic Pyrolysis of Polyolefins." Thesis, Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/10439.
Full textHugo, Thomas Johannes. "Pyrolysis of sugarcane bagasse." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/5238.
Full textENGLISH ABSTRACT: The world’s depleting fossil fuels and increasing greenhouse gas emissions have given rise to much research into renewable and cleaner energy. Biomass is unique in providing the only renewable source of fixed carbon. Agricultural residues such as Sugarcane Bagasse (SB) are feedstocks for ‘second generation fuels’ which means they do not compete with production of food crops. In South Africa approximately 6 million tons of raw SB is produced annually, most of which is combusted onsite for steam generation. In light of the current interest in bio-fuels and the poor utilization of SB as energy product in the sugar industry, alternative energy recovery processes should be investigated. This study looks into the thermochemical upgrading of SB by means of pyrolysis. Biomass pyrolysis is defined as the thermo-chemical decomposition of organic materials in the absence of oxygen or other reactants. Slow Pyrolysis (SP), Vacuum Pyrolysis (VP), and Fast Pyrolysis (FP) are studied in this thesis. Varying amounts of char and bio-oil are produced by the different processes, which both provide advantages to the sugar industry. Char can be combusted or gasified as an energy-dense fuel, used as bio-char fertilizer, or upgraded to activated carbon. High quality bio-oil can be combusted or gasified as a liquid energy-dense fuel, can be used as a chemical feedstock, and shows potential for upgrading to transport fuel quality. FP is the most modern of the pyrolysis technologies and is focused on oil production. In order to investigate this process a 1 kg/h FP unit was designed, constructed and commissioned. The new unit was tested and compared to two different FP processes at Forschungszentrum Karlsruhe (FZK) in Germany. As a means of investigating the devolatilization behaviour of SB a Thermogravimetric Analysis (TGA) study was conducted. To investigate the quality of products that can be obtained an experimental study was done on SP, VP, and FP. Three distinct mass loss stages were identified from TGA. The first stage, 25 to 110°C, is due to evaporation of moisture. Pyrolitic devolatilization was shown to start at 230°C. The final stage occurs at temperatures above 370°C and is associated with the cracking of heavier bonds and char formation. The optimal decomposition temperatures for hemicellulose and cellulose were identified as 290°C and 345°C, respectively. Lignin was found to decompose over the entire temperature range without a distinct peak. These results were confirmed by a previous study on TGA of bagasse. SP and VP of bagasse were studied in the same reactor to allow for accurate comparison. Both these processes were conducted at low heating rates (20°C/min) and were therefore focused on char production. Slow pyrolysis produced the highest char yield, and char calorific value. Vacuum pyrolysis produced the highest BET surface area chars (>300 m2/g) and bio-oil that contained significantly less water compared to SP bio-oil. The short vapour residence time in the VP process improved the quality of liquids. The mechanism for pore formation is improved at low pressure, thereby producing higher surface area chars. A trade-off exists between the yield of char and the quality thereof. FP at Stellenbosch University produced liquid yields up to 65 ± 3 wt% at the established optimal temperature of 500°C. The properties of the bio-oil from the newly designed unit compared well to bio-oil from the units at FZK. The char properties showed some variation for the different FP processes. At the optimal FP conditions 20 wt% extra bio-oil is produced compared to SP and VP. The FP bio-oil contained 20 wt% water and the calorific value was estimated at 18 ± 1 MJ/kg. The energy per volume of FP bio-oil was estimated to be at least 11 times more than dry SB. FP was found to be the most effective process for producing a single product with over 60% of the original biomass energy. The optimal productions of either high quality bio-oil or high surface area char were found to be application dependent.
AFRIKAANSE OPSOMMING: As gevolg van die uitputting van fossielbrandstofreserwes, en die toenemende vrystelling van kweekhuisgasse word daar tans wêreldwyd baie navorsing op hernubare en skoner energie gedoen. Biomassa is uniek as die enigste bron van hernubare vaste koolstof. Landbouafval soos Suikerriet Bagasse (SB) is grondstowwe vir ‘tweede generasie bio-brandstowwe’ wat nie die mark van voedselgewasse direk affekteer nie. In Suid Afrika word jaarliks ongeveer 6 miljoen ton SB geproduseer, waarvan die meeste by die suikermeulens verbrand word om stoom te genereer. Weens die huidige belangstelling in bio-brandstowwe en ondoeltreffende benutting van SB as energieproduk in die suikerindustrie moet alternatiewe energie-onginningsprosesse ondersoek word. Hierdie studie is op die termo-chemiese verwerking van SB deur middel van pirolise gefokus. Biomassa pirolise word gedefinieer as die termo-chemiese afbreking van organiese bio-materiaal in die afwesigheid van suurstof en ander reagense. Stadige Pirolise (SP), Vakuum Pirolise (VP), en Vinnige Pirolise word in hierdie tesis ondersoek. Die drie prosesse produseer veskillende hoeveelhede houtskool en bio-olie wat albei voordele bied vir die suikerindustrie. Houtskool kan as ‘n vaste energie-digte brandstof verbrand of vergas word, as bio-houtskoolkompos gebruik word, of kan verder tot geaktiveerde koolstof geprosesseer word. Hoë kwaliteit bio-olie kan verbrand of vergas word, kan as bron vir chemikalië gebruik word, en toon potensiaal om in die toekoms opgegradeer te kan word tot vervoerbrandstof kwaliteit. Vinnige pirolise is die mees moderne pirolise tegnologie en is op bio-olie produksie gefokus. Om die laasgenoemde proses te toets is ‘n 1 kg/h vinnige pirolise eenheid ontwerp, opgerig en in werking gestel. Die nuwe pirolise eenheid is getoets en vegelyk met twee verskillende vinnige pirolise eenhede by Forschungszentrum Karlsruhe (FZK) in Duitsland. Termo-Gravimetriese Analise (TGA) is gedoen om die ontvlugtigingskenmerke van SB te bestudeer. Eksperimentele werk is verrig om die kwaliteit van produkte van SP, VP, vinnige pirolise te vergelyk. Drie duidelike massaverlies fases van TGA is geïdentifiseer. Die eerste fase (25 – 110°C) is as gevolg van die verdamping van vog. Pirolitiese ontvlugtiging het begin by 230°C. Die finale fase (> 370°C) is met die kraking van swaar verbindings en die vorming van houtskool geassosieer. Die optimale afbrekingstemperatuur vir hemisellulose en sellulose is as 290°C en 345°C, respektiewelik, geïdentifiseer. Daar is gevind dat lignien stadig oor die twede en derde fases afgebreek word sonder ‘n duidelike optimale afbrekingstemperatuur. Die resultate is deur vorige navorsing op TGA van SB bevestig. SP en VP van bagasse is in dieselfde reaktor bestudeer, om ‘n akkurate vergelyking moontlik te maak. Beide prosesse was by lae verhittingstempo’s (20°C/min) ondersoek, wat gevolglik op houtskoolformasie gefokus is. SP het die hoogste houtskoolopbrengs, met die hoogste verbrandingsenergie, geproduseer. VP het hootskool met die hoogste BET oppervlakarea geproduseer, en die bio-olie was weens ‘n dramatiese afname in waterinhoud van beter gehalte. Die meganisme vir die vorming van ‘n poreuse struktuur word deur lae atmosferiese druk verbeter. Daar bestaan ‘n inverse verband tussen die kwantiteit en kwaliteit van die houtskool. Vinnige pirolise by die Universiteit van Stellenbosch het ‘n bio-olie opbrengs van 65 ± 3 massa% by ‘n vooraf vasgestelde optimale temperatuur van 500°C geproduseer. Die eienskappe van bio-olie wat deur die nuwe vinnige pirolise eenheid geproduseer is het goed ooreengestem met die bio-olie afkomstig van FZK se pirolise eenhede. Die houtskool eienskappe van die drie pirolise eenhede het enkele verskille getoon. By optimale toestande vir vinnige pirolise word daar 20 massa% meer bio-olie as by SP en VP geproduseer. Vinnige pirolise bio-olie het ‘n waterinhoud van 20 massa% en ‘n verbrandingswarmte van 18 ± 1 MJ/kg. Daar is gevind dat ten opsigte van droë SB die energie per enheidsvolume van bio-olie ongeveer 11 keer meer is. Vinnige pirolise is die mees doeltreffende proses vir die vervaardiging van ‘n produk wat meer as 60% van die oorspronklike biomassa energie bevat. Daar is gevind dat die optimale hoeveelhede van hoë kwaliteit bio-olie en hoë oppervlakarea houtskool doelafhanklik is.
Joubert, Jan-Erns. "Pyrolysis of Eucalyptus grandis." Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/80179.
Full textENGLISH ABSTRACT: In recent times, governments around the world have placed increasing focus on cleaner technologies and sustainable methods of power generation in an attempt to move away from fossil fuel derived power, which is deemed unsustainable and unfriendly to the environment. This trend has also been supported by the South African government, with clear intentions to diversify the country’s power generation by including, among others, biomass as a renewable resource for electricity generation. Woody biomass and associated forestry residues in particular, could potentially be used as such a renewable resource when considering the large amount of fast growing hardwood species cultivated in South Africa. Approximately 6.3 million ton of Eucalyptus grandis is sold annually for pulp production while a further 7 million ton of Eucalyptus species are sold as round wood. With these tree species reaching commercial maturity within 7 – 9 years in the South African climate, there is real potential in harnessing woody biomass as a renewable energy source. In this study, pyrolysis was investigated as a method to condense and upgrade E.grandis into energy and chemical rich products. The pyrolysis of E.grandis is the study of the thermal degradation of the biomass, in the absence of oxygen, to produce char and bio-oil. The thermal degradation behaviour of E.grandis was studied using thermo-gravimetric analysis (TGA) at the Karlsruhe Institute of Technology (KIT) in Germany and subsequently used to determine the isoconversional kinetic constants for E.grandis and its main lignocellulosic components. Slow, Vacuum and Fast Pyrolysis were investigated and optimised to maximise product yields and to identify the key process variables affecting product quality. The Fast Pyrolysis of E.grandis was investigated and compared on bench (KIT0.1 kg/h), laboratory (SU1 kg/h) and pilot plant scale (KIT10 kg/h), using Fast Pyrolysis reactors at Stellenbosch University (SU) in South Africa and at KIT in Germany. The Slow and Vacuum Pyrolysis of E.grandis was investigated and compared using a packed bed reactor at Stellenbosch University. The TGA revealed that biomass particle size had a negligible effect on the thermal degradation behaviour of E.grandis at a heating rate set point of 50 °C/min. It was also shown that increasing the furnace heating rates shifted the thermo-gravimetric (TG) and differential thermo-gravimetric (DTG) curves towards higher temperatures while also increasing the maximum rate of volatilisation. Lignin resulted in the largest specific char yield and also reacted across the widest temperature range of all the samples investigated. The average activation energies found for the samples investigated were 177.8, 141.0, 106.2 and 170.4 kJ/mol for holocellulose, alpha-cellulose, Klason lignin and raw E.grandis, respectively. Bio-oil yield was optimised at 76 wt. % (daf) for the SU1 kg/h Fast Pyrolysis plant using an average biomass particle size of 570 μm and a reactor temperature of 470 °C. Differences in the respective condensation chains of the various Fast Pyrolysis reactor configurations investigated resulted in higher gas and char yields for the KIT reactor configurations compared to the SU1 kg/h Fast Pyrolysis plant. Differences in the vapour residence time between Slow (>400 s) and Vacuum Pyrolysis (< 2 s) resulted in a higher liquid and lower char yield for Vacuum Pyrolysis. Local liquid yield maxima of 41.1 and 64.4 wt. % daf were found for Slow and Vacuum Pyrolysis, respectively (achieved at a reactor temperature of 450 °C and a heating rate of 17 °C/min). Even though char yields were favoured at low reactor temperatures (269 – 300 °C), the higher heating values of the char were favoured at high reactor temperatures (29 – 34 MJ/kg for 375 – 481 °C). Reactor temperature had the most significant effects on product yield and quality for the respective Slow and Vacuum Pyrolysis experimental runs. The bio-oils yielded for SP and VP were found to be rich in furfural and acetic acid.
AFRIKAANSE OPSOMMING: Regerings regoor die wêreld het in die afgelope tyd toenemende fokus geplaas op skoner tegnologie en volhoubare metodes van kragopwekking in 'n poging om weg te beweeg van fossielbrandstof gebasseerde energie, wat geag word as nie volhoubaar nie en skadelik vir die omgewing. Hierdie tendens is ook ondersteun deur die Suid-Afrikaanse regering, met 'n duidelike bedoeling om die land se kragopwekking te diversifiseer deur, onder andere, biomassa as 'n hernubare bron vir die opwekking van elektrisiteit te gebruik. Houtagtige biomassa en verwante bosbou afval in die besonder, kan potensieel gebruik word as so 'n hernubare hulpbron, veral aangesien ‘n groot aantal vinnig groeiende hardehout spesies tans in Suid-Afrika verbou word. Ongeveer 6,3 miljoen ton Eucalyptus grandis word jaarliks verkoop vir pulp produksie, terwyl 'n verdere 7 miljoen ton van Eucalyptus spesies verkoop word as paal hout. Met hierdie boom spesies wat kommersiële volwassenheid bereik binne 7 - 9 jaar in die Suid-Afrikaanse klimaat, is daar werklike potensiaal vir die benutting van houtagtige biomassa as 'n hernubare energiebron. In hierdie studie is pirolise ondersoek as 'n metode om E.grandis te kondenseer en op te gradeer na energie en chemikalie ryke produkte. Die pirolise van E.grandis is die proses van termiese afbreking van die biomassa, in die afwesigheid van suurstof, om houtskool en bio-olie te produseer. Die termiese afbrekingsgedrag van E.grandis is bestudeer deur gebruik te maak van termo-gravimetriese analise (TGA) by die Karlsruhe Instituut van Tegnologie in Duitsland en daarna gebruik om die kinetiese konstantes vir die iso-omskakeling van E.grandis en sy hoof komponente te bepaal. Stadige, Vakuum en Snel pirolise is ondersoek en geoptimiseer om produk opbrengste te maksimeer en die sleutel proses veranderlikes wat die kwaliteit van die produk beïnvloed te identifiseer. Die Snel Pirolise van E.grandis is ondersoek en vergelyk op bank- (KIT0.1 kg / h), laboratorium- (SU1 kg / h) en proefaanlegskaal (KIT10 kg / h) deur gebruik te maak van Snel pirolise reaktore by die Universiteit van Stellenbosch (US) in Suid-Afrika en die Karlsruhe Instituut van Tegnologie (KIT) in Duitsland. Die Stadige en Vakuum Pirolise van E.grandis is ondersoek en vergelyk met behulp van 'n gepakte bed reaktor aan die Universiteit van Stellenbosch. Die TGA studie het openbaar dat biomassa deeltjiegrootte 'n onbeduidende uitwerking op die termiese afbrekingsgedrag van E.grandis het by 'n verhittings tempo van 50 ° C / min. Dit is ook bewys dat die verhoging van die oond verwarming tempo die termo-gravimetriese (TG) en differensiële termo-gravimetriese (DTG) kurwes na hoër temperature verskuif, terwyl dit ook die maksimum tempo van vervlugtiging laat toeneem het. Lignien het gelei tot die grootste spesifieke houtskool opbrengs en het ook oor die wydste temperatuur interval gereageer van al die monsters wat ondersoek is. Die gemiddelde aktiveringsenergieë vir die monsters wat ondersoek is, was 177,8, 141,0, 106,2 en 170,4 kJ / mol, onderskeidelik vir holosellulose, alpha-sellulose, Klason lignien en rou E.grandis. Bio-olie opbrengs is geoptimeer teen 76 wt. % (DAF) vir die SU1 kg / h Snel Pirolise aanleg met behulp van 'n gemiddelde biomassa deeltjiegrootte van 570 μm en 'n reaktor temperatuur van 470 ° C. Verskille in die onderskeie kondensasie kettings van die verskillende Snel Pirolise aanlegte wat ondersoek is, het gelei tot hoër gas- en houtskool opbrengste vir die KIT reaktor konfigurasies in vergelyking met die SU1kg/h FP plant. Verskille in die damp retensie tyd tussen Stadige (> 400 s) en Vakuum pirolise (<2 s) het gelei tot 'n hoër vloeistof en laer houtskool opbrengs vir Vakuum Pirolise. Plaaslike vloeistof opbrengs maksima van 41,1 en 64,4 wt. % (daf) is gevind vir Stadig en Vakuum pirolise onderskeidelik, bereik by 'n reaktor temperatuur van 450 ° C en 'n verhittingstempo van 17 ° C / min. Selfs al is houtskool opbrengste bevoordeel by lae reaktor temperature (269 - 300 ° C), is die hoër warmte waardes van die houtskool bevoordeel deur hoë reaktor temperature (29 - 34 MJ / kg vir 375 - 481 ° C). Reaktor temperatuur het die mees beduidende effek op die produk opbrengs en kwaliteit vir die onderskeie Stadige Pirolise en Vakuum Pirolise eksperimentele lopies gehad. Die bio-olies geproduseer tydens Stadige en Vakuum Pirolise was ryk aan furfuraal en asynsuur.
Books on the topic "Pyrolysis"
United States. Environmental Protection Agency. Office of Emergency and Remedial Response. and United States. Environmental Protection Agency. Office of Research and Development., eds. Pyrolysis treatment. Washington, DC: U.S. Environmental Protection Agency, Office of Emergency and Remedial Response, 1992.
Find full textUnited States. Environmental Protection Agency. Office of Emergency and Remedial Response. and United States. Environmental Protection Agency. Office of Research and Development., eds. Pyrolysis treatment. Washington, DC: U.S. Environmental Protection Agency, Office of Emergency and Remedial Response, 1992.
Find full textSam, Karen D., and Thomas P. Wampler, eds. Analytical Pyrolysis Handbook. 3rd ed. Third edition. | Boca Raton : CRC Press, 2021. | Revised edition of: Applied pyrolysis handbook / edited by Thomas P. Wampler. 2nd ed. c2007.: CRC Press, 2021. http://dx.doi.org/10.1201/9780429201202.
Full textL, Ferrero G., and Commission of the European Communities., eds. Pyrolysis and gasification. London: Elsevier Applied Science, 1989.
Find full text1948-, Wampler Thomas P., ed. Applied pyrolysis handbook. 2nd ed. Boca Raton: CRC Press/Taylor & Francis, 2007.
Find full text1948-, Wampler Thomas P., ed. Applied pyrolysis handbook. New York: M. Dekker, 1995.
Find full textvan Oost, Guido, Milan Hrabovsky, and Michal Jeremias. Plasma Gasification and Pyrolysis. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003096887.
Full textSoltes, Ed J., and Thomas A. Milne, eds. Pyrolysis Oils from Biomass. Washington, DC: American Chemical Society, 1988. http://dx.doi.org/10.1021/bk-1988-0376.
Full textBrown, Robert C., and Kaige Wang, eds. Fast Pyrolysis of Biomass. Cambridge: Royal Society of Chemistry, 2017. http://dx.doi.org/10.1039/9781788010245.
Full textPeacocke, George Vernon Cordner. Ablative pyrolysis of biomass. Birmingham: Aston University. Department of Chemical Engineering and Applied Chemistry, 1994.
Find full textBook chapters on the topic "Pyrolysis"
Dörr, Mark. "Pyrolysis." In Encyclopedia of Astrobiology, 1393. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_1317.
Full textGooch, Jan W. "Pyrolysis." In Encyclopedic Dictionary of Polymers, 598. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_9658.
Full textDörr, Mark. "Pyrolysis." In Encyclopedia of Astrobiology, 2097. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_1317.
Full textLautenberger, Chris. "Pyrolysis." In Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires, 1–6. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-51727-8_4-1.
Full textLautenberger, Chris. "Pyrolysis." In Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires, 863–68. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-52090-2_4.
Full textSolomon, Peter R., and David G. Hamblen. "Pyrolysis." In Chemistry of Coal Conversion, 121–251. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4899-3632-5_5.
Full textHornung, Andreas. "Pyrolysis." In Transformation of Biomass, 99–112. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118693643.ch4.
Full textKolanowski, Bernard F. "Pyrolysis." In Small-Scale Cogeneration Handbook, 183–93. New York: River Publishers, 2021. http://dx.doi.org/10.1201/9781003207382-24.
Full textDörr, Mark. "Pyrolysis." In Encyclopedia of Astrobiology, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27833-4_1317-2.
Full textCapareda, Sergio C. "Pyrolysis." In Introduction to Biomass Energy Conversions, 277–320. 2nd ed. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003294306-9.
Full textConference papers on the topic "Pyrolysis"
Zhu, Baozhong, and Yunlan Sun. "Co-pyrolysis Polystyrene/Fir: Pyrolysis Characteristics and Pyrolysis Kinetic Studies." In 2011 International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). IEEE, 2011. http://dx.doi.org/10.1109/icmtma.2011.198.
Full textGupta, Ashwani K., and Eugene L. Keating. "Pyrolysis and Oxidative Pyrolysis of Polystyrene." In ASME 1993 International Computers in Engineering Conference and Exposition. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/cie1993-0055.
Full texthiba, Rejeb, Emna Berrich, and CHAHBANI Mohamed Hachemi. "Pyrolysers configurations effects on scrap waste tires pyrolysis products." In 2019 10th International Renewable Energy Congress (IREC). IEEE, 2019. http://dx.doi.org/10.1109/irec.2019.8754571.
Full textHu, Xizhuo, Zhi Tao, Jianqin Zhu, and Haiwang Li. "Numerical Study of Pyrolysis Effects on Supercritical-Pressure Flow and Conjugate Heat Transfer of N-Decane in the Square Channel." In ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gt2017-63970.
Full textThankachan, Smitha, Robin Xeona, Alwin Roy, Dibin George, and Kiran Sasidharan. "Waste plastic pyrolysis." In INTERNATIONAL CONFERENCE ON SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS: STAM 20. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0017572.
Full textPutra, Putri Humairah Monashofian, Shaifulazuar Rozali, Muhamad Fazly Abdul Patah, and Aida Idris. "Microwave Pyrolysis of Polypropylene with Iron Susceptor." In International Technical Postgraduate Conference 2022. AIJR Publisher, 2022. http://dx.doi.org/10.21467/proceedings.141.29.
Full textPortales Picazo, Paulina, Alexander Gray, and Navid Zobeiry. "A Novel Framework for Accelerated Characterization of Pyrolysis Kinetics of High-Temperature Composites Using Theory-Guided Probabilistic Machine Learning." In ASME 2023 Aerospace Structures, Structural Dynamics, and Materials Conference. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/ssdm2023-105683.
Full text"Model analysis of biomass pyrolysis and a new model of pyrolysis." In 2016 ASABE International Meeting. American Society of Agricultural and Biological Engineers, 2016. http://dx.doi.org/10.13031/aim.20162461006.
Full textSimanjuntak, Janter Pangaduan, Bisrul Hapis Tambunan, Junifa Layla Sihombing, and Riduwan Riduwan. "Thermal Design Approach of a Shell and Tube Heat Exchanger for Pyrolysis-Vapor Condensations." In The 4th International Conference on Science and Technology Applications. Switzerland: Trans Tech Publications Ltd, 2023. http://dx.doi.org/10.4028/p-8r6j84.
Full textChen, Guanyi, Qiang Li, Xiaoyang Lv, Na Deng, and Lifei Jiao. "Production of Hydrogen-Rich Gas Through Pyrolysis of Biomass in a Two-Stage Reactor." In ASME Turbo Expo 2004: Power for Land, Sea, and Air. ASMEDC, 2004. http://dx.doi.org/10.1115/gt2004-53582.
Full textReports on the topic "Pyrolysis"
Womat, Mary J., Michelle L. Somers, Jennifer W. McClaine, Jorge O. Ona, and Elmer B. Ledesma. Supercritical Fuel Pyrolysis. Fort Belvoir, VA: Defense Technical Information Center, May 2007. http://dx.doi.org/10.21236/ada469734.
Full textSeery, D. J., J. D. Freihaut, W. M. Proscia, J. B. Howard, W. Peters, J. Hsu, M. Hajaligol, et al. Kinetics of coal pyrolysis. Office of Scientific and Technical Information (OSTI), July 1989. http://dx.doi.org/10.2172/6307052.
Full textZamecnik, Robert. Tire Pyrolysis Feasibility Study Approach. Office of Scientific and Technical Information (OSTI), March 2016. http://dx.doi.org/10.2172/1482998.
Full textSugama, T. Pre-Ceramic Monocomposite and Ceramic Coatings by Sol-Gel-Pyrolysis and Slurry-Pyrolysis Processing. Office of Scientific and Technical Information (OSTI), January 1997. http://dx.doi.org/10.2172/770457.
Full textSeery, D. J., J. D. Freihaut, and W. M. Proscia. Kinetics of coal pyrolysis and devolatilization. Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/5248874.
Full textSeery, D. J., J. D. Freihaut, and W. M. Proscia. Kinetics of coal pyrolysis and devolatilization. Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/5180127.
Full textArzoumanidis, G. G., M. J. McIntosh, and E. J. Steffensen. Catalytic pyrolysis of automobile shredder residue. Office of Scientific and Technical Information (OSTI), July 1995. http://dx.doi.org/10.2172/95489.
Full textMarinangelli, Richard, Edwin Boldingh, Stella Cabanban, Zhihao Fei, Graham Ellis, Richard Bain, David Hsu, and Douglas C. Elliott. Pyrolysis Oil to Gasoline-Final Report. Office of Scientific and Technical Information (OSTI), December 2009. http://dx.doi.org/10.2172/1567776.
Full textBurnham, A. K. Relationship between hydrous and ordinary pyrolysis. Office of Scientific and Technical Information (OSTI), June 1993. http://dx.doi.org/10.2172/10185297.
Full textGlassman, Irvin. Fuels Combustion Research, Supercritical Fuel Pyrolysis. Fort Belvoir, VA: Defense Technical Information Center, August 1998. http://dx.doi.org/10.21236/ada353435.
Full text