Journal articles on the topic 'Pyroclastic fountains'

To see the other types of publications on this topic, follow the link: Pyroclastic fountains.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 28 journal articles for your research on the topic 'Pyroclastic fountains.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Calvari, Sonia, and Giuseppe Nunnari. "Comparison between Automated and Manual Detection of Lava Fountains from Fixed Monitoring Thermal Cameras at Etna Volcano, Italy." Remote Sensing 14, no. 10 (May 16, 2022): 2392. http://dx.doi.org/10.3390/rs14102392.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The Etna volcano is renowned worldwide for its extraordinary lava fountains that rise several kilometers above the vent and feed eruptive columns, then drift hundreds of kilometers away from the source. The Italian Istituto Nazionale di Geofisica e Vulcanologia-Osservatorio Etneo (INGV-OE) is responsible for the monitoring of Mt. Etna, and for this reason, has deployed a network of visible and thermal cameras around the volcano. From these cameras, INGV-OE keeps a keen eye, and is able to observe the eruptive activity, promptly advising the civil protection and aviation authorities of any changes, as well as quantifying the spread of lava flows and the extent of pyroclastic and ash plumes by using a careful analysis of the videos recorded by the monitoring cameras. However, most of the work involves analysis carried out by hand, which is necessarily approximate and time-consuming, thus limiting the usefulness of these results for a prompt hazard assessment. In addition, the start of lava fountains is often a gradual process, increasing in strength from Strombolian activity, to intermediate explosive activity, and eventually leading to sustained lava fountains. The thresholds between these different fields (Strombolian, Intermediate, and lava fountains) are not clear cut, and are often very difficult to distinguish by a manual analysis of the images. In this paper, we presented an automated routine that, when applied to thermal images and with good weather conditions, allowed us to detect (1) the starting and ending time of each lava fountain, (2) the area occupied by hot pyroclasts, (3) the elevation reached by the lava fountains over time, and (4) eventually, to calculate in real-time the erupted volume of pyroclasts, giving results close to the manual analysis but more focused on the sustained portion of the lava fountain, which is also the most dangerous. This routine can also be applied to other active volcanoes, allowing a prompt and uniform definition of the timing of the lava fountain eruptive activity, as well as the magnitude and intensity of the event.
2

Lepore, S., and C. Scarpati. "New developments in the analysis of column-collapse pyroclastic density currents through numerical simulations of multiphase flows." Solid Earth 3, no. 1 (June 8, 2012): 161–73. http://dx.doi.org/10.5194/se-3-161-2012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Abstract. A granular multiphase model has been used to evaluate the action of differently sized particles on the dynamics of fountains and associated pyroclastic density currents. The model takes into account the overall disequilibrium conditions between a gas phase and several solid phases, each characterized by its own physical properties. The dynamics of the granular flows (fountains and pyroclastic density currents) has been simulated by adopting a Reynolds-averaged Navier-Stokes model for describing the turbulence effects. Numerical simulations have been carried out by using different values for the eruptive column temperature at the vent, solid particle frictional concentration, turbulent kinetic energy, and dissipation. The results obtained provide evidence of the multiphase nature of the model and describe several disequilibrium effects. The low concentration (≤5 × 10−4) zones lie in the upper part of the granular flow, above the fountain, and above the tail and body of pyroclastic density current as thermal plumes. The high concentration zones, on the contrary, lie in the fountain and at the base of the current. Hence, pyroclastic density currents are assimilated to granular flows constituted by a low concentration suspension flowing above a high concentration basal layer (boundary layer), from the proximal regions to the distal ones. Interactions among the solid particles in the boundary layer of the granular flow are controlled by collisions between particles, whereas the dispersal of particles in the suspension is determined by the dragging of the gas phase. The simulations describe well the dynamics of a tractive boundary layer leading to the formation of stratified facies during Strombolian to Plinian eruptions.
3

Lepore, S., and C. Scarpati. "New developments in the analysis of volcanic pyroclastic density currents through numerical simulations of multiphase flows." Solid Earth Discussions 4, no. 1 (January 26, 2012): 173–202. http://dx.doi.org/10.5194/sed-4-173-2012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Abstract. A granular multiphase model has been used to evaluate the action of differently sized particles on the dynamics of fountains and associated pyroclastic density currents. The model takes into account the overall disequilibrium conditions between a gas phase and several solid phases, each characterized by its own physical properties. The dynamics of the granular flows has been simulated by adopting a Reynolds Average Navier-Stokes model for describing the turbulence effects. Numerical simulations have been carried out by using different values for the eruptive column temperature at the vent, solid particles frictional concentration, turbulent kinetic energy, and dissipation. The results obtained underline the importance of the multiphase nature of the model and characterize several disequilibrium effects. The low concentration (≤ 5 · 10–4) sectors lie in the upper part of the granular flow, above the fountain, and above the pyroclastic current tail and body as thermal plumes. The high concentration sectors, on the contrary, form the fountain and remain along the ground of the granular flow. Hence, pyroclastic density currents are assimilated to granular flows constituted by a low concentration suspension flowing above a high concentration basal layer (boundary layer), from the proximal regions to the distal ones. Interactions among solid, differently sized particles in the boundary layer of the granular flow are controlled by collisions between particles, whereas particles dispersal in the suspension is determined by the dragging of the gas phase. The simulations describe well the dynamics of a tractive boundary layer leading to the formation of stratified facies during eruptions having a different magnitude.
4

Becerra-Ramírez, Rafael, Rafael U. Gosálvez, Estela Escobar, Elena González, Mario Serrano-Patón, and Darío Guevara. "Characterization and Geotourist Resources of the Campo de Calatrava Volcanic Region (Ciudad Real, Castilla-La Mancha, Spain) to Develop a UNESCO Global Geopark Project." Geosciences 10, no. 11 (November 6, 2020): 441. http://dx.doi.org/10.3390/geosciences10110441.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The Campo de Calatrava Volcanic Region is located in Central Spain (Ciudad Real province, Castilla-La Mancha) where some eruptions of different intensity and spatial location took place throughout a period of more than 8 million years. As a result, more than 360 volcanic edifices spread over 5000 km2. Eruptions of this volcanic system were derived from alkaline magmas with events of low explosivity (Hawaiian and Strombolian). These events are characterized by three different manifestations: the emission of pyroclasts (cinder and spatter cones) and lava flows; some hydromagmatic events, which lead to the formation of wide craters (maars) and pyroclastic flows; and remnant volcanic activity related to gas emission (CO2), hot springs (hervideros) and carbonic water fountains (fuentes agrias). The methods used for this study are based on analytical studies of geography, geomorphology and geoheritage to identify volcanoes and their resources and attractions linked to the historical-cultural heritage. These volcanoes are a potential economic resource and attraction for the promotion of volcano tourism (geotourism), and they are the basis for achieving a UNESCO Global Geopark Project, as a sustainable territorial and economic management model, to be part of the international networks of conservation and protection of nature and, especially, that of volcanoes.
5

Ganci, Gaetana, Giuseppe Bilotta, Francesco Zuccarello, Sonia Calvari, and Annalisa Cappello. "A Multi-Sensor Satellite Approach to Characterize the Volcanic Deposits Emitted during Etna’s Lava Fountaining: The 2020–2022 Study Case." Remote Sensing 15, no. 4 (February 7, 2023): 916. http://dx.doi.org/10.3390/rs15040916.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Between December 2020 and February 2022, the South East Crater of Etna has been the source of numerous eruptions, mostly characterized by the emission of lava fountains, pyroclastic material and short-lasting lava flows. Here we estimate the volume and distribution of the lava deposits by elaborating multi-source satellite imagery. SEVIRI data have been elaborated using CL-HOTSAT to estimate the lava volume emitted during each event and calculate the cumulative volume; Pléiades and WorldView-1 data have been used to derive Digital Surface Models, whose differences provide thickness distributions and hence volumes of the volcanic deposits. We find a good agreement, with the total average lava volume obtained by SEVIRI reaching 73.2 × 106 m3 and the one from optical data amounting to 67.7 × 106 m3. This proves the robustness of both techniques and the accuracy of the volume estimates, which provide important information on the lava flooding history and evolution of the volcano.
6

Iguchi, Masato, Haruhisa Nakamichi, and Takeshi Tameguri. "Integrated Study on Forecasting Volcanic Hazards of Sakurajima Volcano, Japan." Journal of Disaster Research 15, no. 2 (March 20, 2020): 174–86. http://dx.doi.org/10.20965/jdr.2020.p0174.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Several types of eruptions have occurred at Sakurajima volcano in the past 100 years. The eruption in 1914 was of a Plinian type followed by an effusion of lava. The progression of seismicity of volcanic earthquakes prior to the eruption is reexamined and seismic energy is estimated to be an order of 1014 J. Lava also effused from the Showa crater in 1946. Since 1955, eruptions frequently have occurred at the Minamidake or Showa craters at the summit area. Vulcanian eruptions are a well-known type of summit eruption of Sakurajima, however Strombolian type eruptions and continuous ash emissions have also occurred at the Minamidake crater. The occurrence rate of pyroclastic flows significantly increased during the eruptivity of Showa crater, with the occurrence of lava fountains. Tilt and strain observations are reliable tools to forecast the eruptions, and their combination with the seismicity of volcanic earthquakes is applicable to forecasting the occurrence of pyroclastic flows. An empirical event branch logic based on magma intrusion rate is proposed to forecast the scale and type of eruption. Forecasting the scale of an eruption and real-time estimations of the discharge rate of volcanic ash allows us to assess ash fall deposition around the volcano. Volcanic ash estimation is confirmed by an integrated monitoring system of X Band Multi-Parameter radars, lidar and the Global Navigation Satellite System to detect volcanic ash particles with different wave lengths. Evaluation of the imminence of eruptions and forecasting of their scale are used for the improvement of planning and drilling of volcanic disaster measures.
7

Brown, R. J., S. Blake, T. Thordarson, and S. Self. "Pyroclastic edifices record vigorous lava fountains during the emplacement of a flood basalt flow field, Roza Member, Columbia River Basalt Province, USA." Geological Society of America Bulletin 126, no. 7-8 (March 6, 2014): 875–91. http://dx.doi.org/10.1130/b30857.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

COLE, PAUL D., and CLAUDIO SCARPATI. "The 1944 eruption of Vesuvius, Italy: combining contemporary accounts and field studies for a new volcanological reconstruction." Geological Magazine 147, no. 3 (November 11, 2009): 391–415. http://dx.doi.org/10.1017/s0016756809990495.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
AbstractWe integrate the different contemporary sources together with new field data on the pyroclastic deposits to make a new volcanological reconstruction of the explosive phases of the 1944 Vesuvius eruption. We adopt the four successive phases of the eruption first defined by Imbò (1945), who made the most detailed contemporary description of the eruption: Phase 1 – effusive, Phase 2 – lava fountains, Phase 3 – mixed explosions and Phase 4 – seismic-explosive. Phase 1 consisted of four days of effusive activity. Phase 2 generated eight successive lava fountains which formed agglutinated spatter in a restricted area around the crater. At distances of > 1 km from the crater, reverse graded, well-sorted, scoria lapilli with up to 94 wt % juvenile material and calculations indicate a volume of 8.2 × 106 m3 DRE (Dense Rock Equivalent) for Phase 2. A short pause in scoria fallout was observed that coincides with the transition between Phases 2 and 3 of the eruption. On the crater rim there is clear evidence for the different phases, owing to the stratification of the deposits; however, away from the crater, stratigraphic breaks suggesting any discontinuity in the eruptive activity are absent. The beginning of Phase 3 is marked by the appearance of abundant dense scoria fragments, coincident with the coarsest part of the lapilli. High-density scoria forms 10 wt % of juvenile material in Phase 2, increasing to 45% in the upper part of Phase 3. Isopach maps derived from field measurements indicate a mean volume of 40.2 × 106 m3 DRE for Phase 3. Distal ash, mainly formed during Phase 3, was dispersed to the SE as far as Albania, and calculations yield a volume of 102 × 106 m3 DRE. Intermittent activity associated with Phase 4 generated ash-rich plumes dispersed towards the SW and contemporary thickness descriptions yield a bulk volume of 4.2 × 106 m3 (2.5 × 106 m3 DRE). Small pyroclastic density currents (PDCs) were observed during Phases 3 and 4. The deposits (200 m from the crater rim) of these currents have been identified on the flanks of the cone. Thin, massive and poorly sorted ash layers, that occur up to 2.5 km from the crater rim, are interpreted to represent the distal facies of these PDCs. Mass discharge rate (MDR) estimates for the paroxysmal phase (end of Phase 2 and start of Phase 3) of this event are around 3.5 × 106 kg/s, however, this increases to > 107 kg/s if the mass of distal ash is taken into account. Column height estimates from fallout isopleths associated with the eruption's paroxysmal phase are > 10 km. Based on the contemporaneous chronicles, we were able to define the type and extent of damage associated with the different styles (or temporal phases) of the eruption. Our calculations demonstrate that the present-day population at risk has doubled compared to 1944. The contemporaneous (and also subsequent) scientific literature underestimated the magnitude and intensity of this eruption and very little attention has been dedicated to the damage that occurred. We suggest that this is at least partly related to the extensive destruction of Neapolitan area and the deaths of tens of thousands of civilians related to the Second World War.
9

Marchese, Francesco, Carolina Filizzola, Teodosio Lacava, Alfredo Falconieri, Mariapia Faruolo, Nicola Genzano, Giuseppe Mazzeo, et al. "Mt. Etna Paroxysms of February–April 2021 Monitored and Quantified through a Multi-Platform Satellite Observing System." Remote Sensing 13, no. 16 (August 5, 2021): 3074. http://dx.doi.org/10.3390/rs13163074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
On 16 February 2021, an eruptive paroxysm took place at Mt. Etna (Sicily, Italy), after continuous Strombolian activity recorded at summit craters, which intensified in December 2020. This was the first of 17 short, but violent, eruptive events occurring during February–April 2021, mostly at a time interval of about 2–3 days between each other. The paroxysms produced lava fountains (up to 1000 m high), huge tephra columns (up to 10–11 km above sea level), lava and pyroclastic flows, expanding 2–4 km towards East and South. The last event, which was characterised by about 3 days of almost continuous eruptive activity (30 March–1 April), generated the most lasting lava fountain (8–9 h). During some paroxysms, volcanic ash led to the temporary closure of the Vincenzo Bellini Catania International Airport. Heavy ash falls then affected the areas surrounding the volcano, in some cases reaching zones located hundreds of kilometres away from the eruptive vent. In this study, we investigate the Mt. Etna paroxysms mentioned above through a multi-platform satellite system. Results retrieved from Advanced Very High Resolution Radiometer (AVHRR), Moderate Resolution Imaging Spectroradiometer (MODIS), and Spinning Enhanced Visible and Infrared Imager (SEVIRI), starting from outputs of the Robust Satellite Techniques for Volcanoes (RSTVOLC), indicate that the 17th paroxysm (31 March–1 April) was the most powerful, with values of radiative power estimated around 14 GW. Moreover, by the analysis of SEVIRI data, we found that the 5th and 17th paroxysms were the most energetic. The Multispectral Instrument (MSI) and the Operational Land Imager (OLI), providing shortwave infrared (SWIR) data at 20/30 m spatial resolution, enabled an accurate localisation of active vents and the mapping of the areas inundated by lava flows. In addition, according to the Normalized Hotspot Indices (NHI) tool, the 1st and 3rd paroxysm (18 and 28 February) generated the largest thermal anomaly at Mt. Etna after June 2013, when Landsat-8 OLI data became available. Despite the impact of clouds/plumes, pixel saturation, and other factors (e.g., satellite viewing geometry) on thermal anomaly identification, the used multi-sensor approach allowed us to retrieve quantitative information about the 17 paroxysms occurring at Mt. Etna. This approach could support scientists in better interpreting changes in thermal activity, which could lead to future and more dangerous eruptions.
10

Calvari, Sonia, Alessandro Bonaccorso, and Gaetana Ganci. "Anatomy of a Paroxysmal Lava Fountain at Etna Volcano: The Case of the 12 March 2021, Episode." Remote Sensing 13, no. 15 (August 3, 2021): 3052. http://dx.doi.org/10.3390/rs13153052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
On 13 December 2020, Etna volcano entered a new eruptive phase, giving rise to a number of paroxysmal episodes involving increased Strombolian activity from the summit craters, lava fountains feeding several-km high eruptive columns and ash plumes, as well as lava flows. As of 2 August 2021, 57 such episodes have occurred in 2021, all of them from the New Southeast Crater (NSEC). Each paroxysmal episode lasted a few hours and was sometimes preceded (but more often followed) by lava flow output from the crater rim lasting a few hours. In this paper, we use remote sensing data from the ground and satellite, integrated with ground deformation data recorded by a high precision borehole strainmeter to characterize the 12 March 2021 eruptive episode, which was one of the most powerful (and best recorded) among that occurred since 13 December 2020. We describe the formation and growth of the lava fountains, and the way they feed the eruptive column and the ash plume, using data gathered from the INGV visible and thermal camera monitoring network, compared with satellite images. We show the growth of the lava flow field associated with the explosive phase obtained from a fixed thermal monitoring camera. We estimate the erupted volume of pyroclasts from the heights of the lava fountains measured by the cameras, and the erupted lava flow volume from the satellite-derived radiant heat flux. We compare all erupted volumes (pyroclasts plus lava flows) with the total erupted volume inferred from the volcano deflation recorded by the borehole strainmeter, obtaining a total erupted volume of ~3 × 106 m3 of magma constrained by the strainmeter. This volume comprises ~1.6 × 106 m3 of pyroclasts erupted during the lava fountain and 2.4 × 106 m3 of lava flow, with ~30% of the erupted pyroclasts being remobilized as rootless lava to feed the lava flows. The episode lasted 130 min and resulted in an eruption rate of ~385 m3 s−1 and caused the formation of an ash plume rising from the margins of the lava fountain that rose up to 12.6 km a.s.l. in ~1 h. The maximum elevation of the ash plume was well constrained by an empirical formula that can be used for prompt hazard assessment.
11

Formenti, Y., and T. H. Druitt. "Vesicle connectivity in pyroclasts and implications for the fluidisation of fountain-collapse pyroclastic flows, Montserrat (West Indies)." Earth and Planetary Science Letters 214, no. 3-4 (September 2003): 561–74. http://dx.doi.org/10.1016/s0012-821x(03)00386-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Cole, P. D., E. S. Calder, R. S. J. Sparks, A. B. Clarke, T. H. Druitt, S. R. Young, R. A. Herd, C. L. Harford, and G. E. Norton. "Deposits from dome-collapse and fountain-collapse pyroclastic flows at Soufrière Hills Volcano, Montserrat." Geological Society, London, Memoirs 21, no. 1 (2002): 231–62. http://dx.doi.org/10.1144/gsl.mem.2002.021.01.11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Calvari, Sonia, and Giuseppe Nunnari. "Etna Output Rate during the Last Decade (2011–2022): Insights for Hazard Assessment." Remote Sensing 14, no. 23 (December 6, 2022): 6183. http://dx.doi.org/10.3390/rs14236183.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
During the last two decades, the Etna volcano has undergone several sequences of lava fountaining (LF) events that have had a major impact on road conditions, infrastructure and the local population. In this paper, we consider the LF episodes occurring between 2011 and 2022, calculating their erupted volumes using the images recorded by the monitoring thermal cameras and applying a manual procedure and a dedicated software to determine the lava fountain height over time, which is necessary to obtain the erupted volume. The comparison between the results indicates the two procedures match quite well, the main differences occurring when the visibility is poor and data are interpolated. With the aim of providing insights for hazard assessment, we have fitted some probabilistic models of both the LF inter-event times and the erupted volumes of pyroclastic material. In more detail, we have tested power-law distributions against log-normal, Weibull, generalised Pareto and log-logistic. Results show that the power-law distribution is the most likely among the alternatives. This implies the lack of characteristic scales for both the inter-event time and the pyroclastic volume, which means that we have no indication as to when a new episode of LF will occur and/or how much material will be erupted. What we can reasonably say is only that short inter-event times are more frequent than long inter-event times, and that LF characterised by small volumes are more frequent than LF with high volumes. However, if the hypothesis that magma accumulates on Etna at a rate of about 0.8 m3s−1 holds, the material accumulated in the source region from the beginning of the observation period (2011) to the present (2022) has already been ejected. In simple terms, there is no accumulated magma in the shallow storage that is prone to be erupted in the near future.
14

Mereu, Luigi, Simona Scollo, Costanza Bonadonna, Valentin Freret-Lorgeril, and Frank Silvio Marzano. "Multisensor Characterization of the Incandescent Jet Region of Lava Fountain-Fed Tephra Plumes." Remote Sensing 12, no. 21 (November 5, 2020): 3629. http://dx.doi.org/10.3390/rs12213629.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Explosive basaltic eruptions eject a great amount of pyroclastic material into the atmosphere, forming columns rising to several kilometers above the eruptive vent and causing significant disruption to both proximal and distal communities. Here, we analyze data, collected by an X-band polarimetric weather radar and an L-band Doppler fixed-pointing radar, as well as by a thermal infrared (TIR) camera, in relation to lava fountain-fed tephra plumes at the Etna volcano in Italy. We clearly identify a jet, mainly composed of lapilli and bombs mixed with hot gas in the first portion of these volcanic plumes and here called the incandescent jet region (IJR). At Etna and due to the TIR camera configuration, the IJR typically corresponds to the region that saturates thermal images. We find that the IJR is correlated to a unique signature in polarimetric radar data as it represents a zone with a relatively high reflectivity and a low copolar correlation coefficient. Analyzing five recent Etna eruptions occurring in 2013 and 2015, we propose a jet region radar retrieval algorithm (JR3A), based on a decision-tree combining polarimetric X-band observables with L-band radar constraints, aiming at the IJR height detection during the explosive eruptions. The height of the IJR does not exactly correspond to the height of the lava fountain due to a different altitude, potentially reached by lapilli and blocks detected by the X-band weather radar. Nonetheless, it can be used as a proxy of the lava fountain height in order to obtain a first approximation of the exit velocity of the mixture and, therefore, of the mass eruption rate. The comparisons between the JR3A estimates of IJR heights with the corresponding values recovered from TIR imagery, show a fairly good agreement with differences of less than 20% in clear air conditions, whereas the difference between JR3A estimates of IJR height values and those derived from L-band radar data only are greater than 40%. The advantage of using an X-band polarimetric weather radar in an early warning system is that it provides information in all weather conditions. As a matter of fact, we show that JR3A retrievals can also be obtained in cloudy conditions when the TIR camera data cannot be processed.
15

Fries, Allan, Olivier Roche, and Guillaume Carazzo. "Granular mixture deflation and generation of pore fluid pressure at the impact zone of a pyroclastic fountain: Experimental insights." Journal of Volcanology and Geothermal Research 414 (June 2021): 107226. http://dx.doi.org/10.1016/j.jvolgeores.2021.107226.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

De Beni, Emanuela, Cristina Proietti, Simona Scollo, Massimo Cantarero, Luigi Mereu, Francesco Romeo, Laura Pioli, Mariangela Sciotto, and Salvatore Alparone. "A Hidden Eruption: The 21 May 2023 Paroxysm of the Etna Volcano (Italy)." Remote Sensing 16, no. 9 (April 27, 2024): 1555. http://dx.doi.org/10.3390/rs16091555.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
On 21 May 2023, a hidden eruption occurred at the Southeast Crater (SEC) of Etna (Italy); indeed, bad weather prevented its direct and remote observation. Tephra fell toward the southwest, and two lava flows propagated along the SEC’s southern and eastern flanks. The monitoring system of the Istituto Nazionale di Geofisica e Vulcanologia testified to its occurrence. We analyzed the seismic and infrasound signals to constrain the temporal evolution of the fountain, which lasted about 5 h. We finally reached Etna’s summit two weeks later and found an unexpected pyroclastic density current (PDC) deposit covering the southern lava flow at its middle portion. We performed unoccupied aerial system and field surveys to reconstruct in 3D the SEC, lava flows, and PDC deposits and to collect some samples. The data allowed for detailed mapping, quantification, and characterization of the products. The resulting lava flows and PDC deposit volumes were (1.54 ± 0.47) × 106 m3 and (1.30 ± 0.26) × 105 m3, respectively. We also analyzed ground-radar and satellite data to evaluate that the plume height ranges between 10 and 15 km. This work is a comprehensive analysis of the fieldwork, UAS, volcanic tremor, infrasound, radar, and satellite data. Our results increase awareness of the volcanic activity and potential dangers for visitors to Etna’s summit area.
17

Head, James W., and Lionel Wilson. "Basaltic pyroclastic eruptions: Influence of gas-release patterns and volume fluxes on fountain structure, and the formation of cinder cones, spatter cones, rootless flows, lava ponds and lava flows." Journal of Volcanology and Geothermal Research 37, no. 3-4 (July 1989): 261–71. http://dx.doi.org/10.1016/0377-0273(89)90083-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Penlou, Baptiste, Olivier Roche, and Siet van den Wildenberg. "Experimental Study of the Generation of Pore Gas Pressure in Pyroclastic Density Currents Resulting From Eruptive Fountain Collapse." Journal of Geophysical Research: Solid Earth 128, no. 12 (December 2023). http://dx.doi.org/10.1029/2023jb027510.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
AbstractPyroclastic density currents formed through collapse of eruptive fountains commonly have runout distances of the order of tens of kilometers. A possible cause of this high flow mobility is elevated interstitial pore gas pressure, which may have various origins. We investigated experimentally the generation of pore pressure at the impact zone of an eruptive fountain, where concentrated pyroclastic density currents emerge from compaction of a free falling gas‐particle mixture. We simulated pyroclastic fountain collapse by releasing glass beads of mean sizes of 29–269 µm from a hopper at height of 3.27 m above a 5 m‐long horizontal channel, and we measured pore air pressure in the impact zone. During free fall, the granular mixtures accelerated and expanded to reach particle concentrations of 1.6–4.4 vol.% before they impacted the base of the channel. Upon impact, the particles accumulated to form concentrated granular flows with particle concentrations of 45–48 vol.% and pore air pressures that indicated almost full weight support for particle sizes ≤76 µm. Both the amount of pore pressure in the impact zone and the flow runout distance increased as we decreased the particle size and hence the hydraulic permeability of the concentrated granular mixtures. Our results suggest that pore gas pressure in concentrated pyroclastic density currents can be generated at the impact zone of collapsing fountains and that small particle size conferring low permeability and long pore pressure diffusion timescale is one of the main causes of long flow runout distances.
19

Jones, Thomas J., James K. Russell, Richard J. Brown, and Lea Hollendonner. "Melt stripping and agglutination of pyroclasts during the explosive eruption of low viscosity magmas." Nature Communications 13, no. 1 (February 22, 2022). http://dx.doi.org/10.1038/s41467-022-28633-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
AbstractVolcanism on Earth and on other planets and satellites is dominated by the eruption of low viscosity magmas. During explosive eruption, high melt temperatures and the inherent low viscosity of the fluidal pyroclasts allow for substantial post-fragmentation modification during transport obscuring the record of primary, magmatic fragmentation processes. Here, we show these syn-eruption modifications, in the form of melt stripping and agglutination, to be advantageous for providing fundamental insights into lava fountain and jet dynamics, including eruption velocities, grain size distributions and melt physical properties. We show how enigmatic, complex pyroclasts termed pelletal lapilli form by a two-stage process operating above the magmatic fragmentation surface. Melt stripping from pyroclast surfaces creates a spray of fine melt droplets whilst sustained transport in the fountain allows for agglutination and droplet scavenging, thereby coarsening the grain size distribution. We conclude with a set of universal regime diagrams, applicable for all fluidal fountain products, that link fundamental physical processes to eruption conditions and melt physical properties.
20

Newland, Eric L., Nicola Mingotti, and Andrew W. Woods. "Dynamics of deep-submarine volcanic eruptions." Scientific Reports 12, no. 1 (February 28, 2022). http://dx.doi.org/10.1038/s41598-022-07351-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
AbstractDeposits from explosive submarine eruptions have been found in the deep sea, 1–4 km below the surface, with both flow and fall deposits extending several km’s over the seafloor. A model of a turbulent fountain suggests that after rising 10–20 m above the vent, the erupting particle-laden mixture entrains and mixes with sufficient seawater that it becomes denser than seawater. The momentum of the resulting negatively buoyant fountain is only sufficient to carry the material 50–200 m above the seafloor and much of the solid material then collapses to the seafloor; this will not produce the far-reaching fall deposits observed on the seabed. However, new laboratory experiments show that particle sedimentation at the top of the fountain enables some of the hot, buoyant water in the fountain to separate from the collapsing flow and continue rising as a buoyant plume until it forms a radially spreading intrusion higher in the water column. With eruption rates of 10$$^6$$ 6 –10$$^7$$ 7 $$\hbox {kg s}^{-1}$$ kg s - 1 , we estimate that this warm water may rise a few 100’s m above the fountain. Some of the finer grained pyroclasts can be carried upwards by this flow and as they spread out in the radial intrusion, they gradually sediment to form a fall deposit which may extend 1000’s m from the source. Meanwhile, material collapsing from the dense fountain forms aqueous pyroclastic flows which may also spread 1000’s m from the vent forming a flow deposit on the seabed. Quantification of the controls on the concurrent fall and flow deposits, and comparison with field observations, including from the 2012 eruption of Havre Volcano in the South Pacific, open the way to new understanding of submarine eruptions.
21

Pardo, Natalia, Roberto Sulpizio, Federico Lucchi, Guido Giordano, Shane Cronin, Bernardo A. Pulgarín, Matteo Roverato, Ana María Correa-Tamayo, Ricardo Camacho, and Miguel A. Cabrera. "Late Holocene volcanic stratigraphy and eruption chronology of the dacitic Young Doña Juana volcano, Colombia." GSA Bulletin, January 10, 2023. http://dx.doi.org/10.1130/b36557.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
We present the late Holocene eruption history of the poorly known Doña Juana volcanic complex, in SW Colombia, which last erupted in the twentieth century. This represents a case study for potentially active volcanism in the rural Northern Andes, where tropical climate conditions and a fragmented social memory blur the record of dormant volcanoes. We reconstructed the volcanic stratigraphy of the central-summit vent area by integrating new mapping at 1:5000 scale with radiocarbon ages, sedimentology analysis, and historical chronicles. Our results revealed cyclic transitions from lava-dome growth phases and collapse to explosive Vulcanian and possibly subplinian phases. Pyroclastic density currents were generated by dome collapse producing block-and-ash flows or by pyroclastic fountain/column collapse and were rapidly channelized into the deeply incised fluvial valleys around the volcano summit. The pyroclastic density currents were ∼4−10 × 106 m3 in volume and deposited under granular flow− or fluid escape−dominated depositional regimes at high clast concentrations. In places, more dilute upper portions reached a wider areal distribution that affected the inhabited areas on high depositional terraces. The coefficient of friction (ΔH/L) is higher for block-and-ash flows and dense lava−bearing fountain/low-column-collapse pyroclastic density currents compared to pumice-bearing, column-collapse pyroclastic density currents. Associated mass-wasting processes included syneruptive and intereruptive debris flows, with the last one documented in 1936 CE.
22

Romero, Jorge E., Eduardo Morgado, Alessandro Pisello, Felix Boschetty, Maurizio Petrelli, Francisco Cáceres, Mohammad Ayaz Alam, et al. "Pre-eruptive Conditions of the 3 March 2015 Lava Fountain of Villarrica Volcano (Southern Andes)." Bulletin of Volcanology 85, no. 1 (December 6, 2022). http://dx.doi.org/10.1007/s00445-022-01621-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Abstract Villarrica or Rukapillan (35.9°S; 2,847 m a.s.l.) is one of the most active volcanoes in South America and is the highest-risk volcano in Chile. It has an open conduit with a persistent lava lake. On the 3 March 2015, Strombolian activity rapidly progressed into a 1.5-km-high lava fountain, erupting at least ∼ 2.4 × 106 m3 of tephra. Soon after, the activity returned to mild Strombolian “background” explosions, which lasted until early 2017. Understanding the pre-eruptive conditions of such paroxysmal events is fundamental for volcanic hazard assessment. We present major and trace element geochemistry for glass and crystalline phases of basaltic andesite paroxysm pyroclasts (52–56 wt.% SiO2), and for the subsequent Strombolian “background” activity through February 2017 (54–56 wt.% SiO2). The lava fountain source magma was initially stored in a deeper and hotter region (9.4–16.3 km; ca. 1140 °C) and was then resident in a shallow (≤ 0.8 km) storage zone pre-eruption. During storage, crystallising phases comprised plagioclase (An66–86), olivine (Fo75–78) and augite (En46–47). Equilibrium crystallisation occurred during upper-crustal magmatic ascent. During storage in the shallower region, magma reached H2O saturation, promoting volatile exsolution and over-pressurization, which triggered the eruption. In contrast, subsequent “background” explosions involving basaltic-andesite were sourced from a depth of ≤ 5.3 km (ca. 1110 °C). Pre-eruptive conditions for the 2015 lava fountain contrast with historical twentieth-century eruptions at Villarrica, which were likely driven by magma that underwent a longer period of mixing to feed both effusive and explosive activity. The rapid transition to lava-fountaining activity in 2015 represents a challenging condition in terms of volcano monitoring and eruption forecasting. However, our petrological study of the pyroclastic materials that erupted in 2015 offers significant insights into eruptive processes involving this type of eruption. This aids in deciphering the mechanisms behind sudden eruptions at open conduit systems.
23

Valentine, Greg A., and Meredith A. Cole. "Explosive caldera-forming eruptions and debris-filled vents: Gargle dynamics." Geology, June 24, 2021. http://dx.doi.org/10.1130/g48995.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Large explosive volcanic eruptions are commonly associated with caldera subsidence and ignimbrites deposited by pyroclastic currents. Volumes and thicknesses of intracaldera and outflow ignimbrites at 76 explosive calderas around the world indicate that subsidence is commonly simultaneous with eruption, such that large proportions of the pyroclastic currents are trapped within the developing basins. As a result, much of an eruption must penetrate its own deposits, a process that also occurs in large, debris-filled vent structures even in the absence of caldera formation and that has been termed “gargling eruption.” Numerical modeling of the resulting dynamics shows that the interaction of preexisting deposits (fill) with an erupting (juvenile) mixture causes a dense sheath of fill material to be lifted along the margins of the erupting jet. This can cause an eruption that would otherwise produce a buoyant plume and fallout deposits to instead form pyroclastic currents as the dense sheath drives pulsing jet behavior. Increasing thickness of fill amplifies the time variation in jet height. Increasing the fill grain size relative to that of the juvenile particles can result in a much higher jet due to poorer mixing between the dense sheath and the dilute jet core. In all cases, material collapses along the entire height of the dense sheath rather than from the top of a simple fountain. These gargle dynamics provide strong backing for processes that have been inferred to result in intraplinian ignimbrites and simultaneous deposition from high- and low-energy pyroclastic currents.
24

Kaneko, Takayuki, Fukashi Maeno, Mie Ichihara, Atsushi Yasuda, Takao Ohminato, Kenji Nogami, Setsuya Nakada, Yoshiaki Honda, and Hiroshi Murakami. "Episode 4 (2019–2020) Nishinoshima activity: abrupt transitions in the eruptive style observed by image datasets from multiple satellites." Earth, Planets and Space 74, no. 1 (February 21, 2022). http://dx.doi.org/10.1186/s40623-022-01578-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
AbstractIn December 2019, a new activity started at Nishinoshima volcano in the southern part of the Izu–Ogasawara arc, Japan. This is now referred to as Episode 4 of a series of activities that began in 2013. We analyzed the eruption sequence, including erupted volume and effusion rate, based on combined observations of thermal anomalies by Himawari-8 and topographic changes by ALOS-2. The total eruption volume during Episode 4 was ~ 132 × 106 m3, and the average effusion rate over the entire period was 0.51 × 106 m3 day−1 (5.9 m3 s−1), which was two to three times higher than that of Episode 1. Episode 4 had three stages. In Stage 1, effusive activity was dominant, and most of the lava erupted from a northeast vent at the foot of the pyroclastic cone to cover the northern half of the island. The average effusion rate was estimated to be 0.46 × 106 m3 day−1 (5.3 m3 s−1). In Stage 2, an intensive lava fountain with a high discharge rate developed, and it increased the size of the pyroclastic cone rapidly. The effusion rate temporarily reached 2.6 × 106 m3 day−1 (30 m3 s−1). Pyroclastic rocks accounted for 45–88% of the total erupted volume in this stage. Lava flows with rafted cone material were generated, and those possibly caused by intensive spatter falls on the slope were also formed. These lavas flowed down the southern half of the island. In Stage 3, continuous phreatomagmatic eruptions released ash and spread it over a wide area. The high effusion rate and the drastic change in the activity style in Episode 4 can be explained by deep volatile-rich magma being supplied to a shallower magma chamber prior to Episode 4. When the volatile-rich magma reached a shallow part of the conduit in Stage 2, fragmentation occurred due to rapid volume expansion to eject large amounts of magma and form the intensive lava fountain. Observations by satellite-borne ultraviolet–visible image sensors detected a rapid increase in SO2 emissions in response to the intensive lava-fountain activity. The less-differentiated nature of the ash fragments collected during Stage 2 may reflect the composition of the volatile-rich magma. Large-scale discolored-seawater areas appeared during the late period of Stage 1, which may have been caused by ascent of the volatile-rich magma. Graphical Abstract
25

Pimentel, Adriano, Stephen Self, José M. Pacheco, Adam J. Jeffery, and Ralf Gertisser. "Eruption Style, Emplacement Dynamics and Geometry of Peralkaline Ignimbrites: Insights From the Lajes-Angra Ignimbrite Formation, Terceira Island, Azores." Frontiers in Earth Science 9 (June 25, 2021). http://dx.doi.org/10.3389/feart.2021.673686.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Ignimbrites are relatively uncommon on ocean island volcanoes and yet they constitute a significant portion of the stratigraphy of Terceira Island (Azores). The Lajes-Angra Ignimbrite Formation (ca. 25 cal ka BP) contains the youngest ignimbrites on Terceira and records two ignimbrite-forming eruptions of Pico Alto volcano that occurred closely spaced in time. Here, we present the first detailed lithofacies analysis and architecture of the Angra and Lajes ignimbrites, complemented by petrographic, mineral chemical, whole rock and groundmass glass geochemical data. The two ignimbrites have the same comenditic trachyte composition, but show considerable variability in trace element and groundmass glass compositions, revealing complex petrogenetic processes in the Pico Alto magma reservoir prior to eruption. The Angra Ignimbrite has a high-aspect ratio and is massive throughout its thickness. It was formed by a small-volume but sustained pyroclastic density current (PDC) fed by a short-lived, low pyroclastic fountain. Overall, the PDC had high particle concentration, granular fluid-based flow conditions and was mostly channelled into a valley on the south part of Terceira. By contrast, the Lajes Ignimbrite has a low-aspect ratio and shows vertical and lateral lithofacies variations. It was formed by a sustained quasi-steady PDC generated from vigorous and prolonged pyroclastic fountaining. The ignimbrite architecture reveals that depositional conditions of the parent PDC evolved as the eruption waxed. The dilute front of the current rapidly changed to a high particle concentration, granular fluid-based PDC that extended to the north and south coasts, with limited capacity to surmount topographic highs. Contrary to what is commonly assumed, the low-aspect ratio of the Lajes Ignimbrite is interpreted to result from deposition of a relatively low velocity PDC over a generally flat topography. This work highlights that the geometry (aspect ratio) of ignimbrites does not necessarily reflect the kinetic energy of PDCs and thus should not be used as a proxy for PDC emplacement dynamics. Although the probability of an ignimbrite-forming eruption on Terceira is relatively low, such a scenario should not be underestimated, as a future event would have devastating consequences for the island’s 55,000 inhabitants.
26

Besser, Marcell Leonard, Otavio Augusto Boni Licht, and Eleonora Maria Gouvêa Vasconcellos. "Well-preserved fallout basaltic tuff in central Paraná-Etendeka Large Igneous Province: pyroclastic evidence of high fire-fountain eruptions." Bulletin of Volcanology 86, no. 1 (December 28, 2023). http://dx.doi.org/10.1007/s00445-023-01694-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Whittington, Alan G., and Alexander Sehlke. "Spontaneous reheating of crystallizing lava." Geology, August 12, 2021. http://dx.doi.org/10.1130/g49148.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
We show that recalescence, or spontaneous reheating of a cooling material due to rapid release of latent heat, can occur during disequilibrium crystallization of depolymerized Mg-rich melts. This can only happen at fast cooling rates, where the melt becomes undercooled by tens to hundreds of degrees before crystallization begins. Using a forward-looking infrared (FLIR) camera, we documented recalescence in pyroxene (Fe, Mg)SiO3 and komatiite lavas that initially cooled at 25–50 °C s–1. Local heating at the crystallization front exceeds 150 °C for the pyroxene and 10 °C for komatiite and lasts for several seconds as the crystallization front migrates through. We determined the latent heat release by differential scanning calorimetry to be 440 J g–1 for pyroxene and 275 J g–1 for komatiite with a brief power output of ~100 W g–1 or ~300 MW m–3. Recalescence may be a widespread process in the solar system, particularly in lava fountains, and cooling histories of mafic pyroclasts should not be assumed a priori to be monotonic.
28

Marsh, Jennifer, Marie Edmonds, Bruce Houghton, Iris Buisman, and Richard Herd. "Magma mingling during the 1959 eruption of Kīlauea Iki, Hawaiʻi." Bulletin of Volcanology 86, no. 6 (May 28, 2024). http://dx.doi.org/10.1007/s00445-024-01748-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
AbstractMagma mingling and mixing are common processes at basaltic volcanoes and play a fundamental role in magma petrogenesis and eruption dynamics. Mingling occurs most commonly when hot primitive magma is introduced into cooler magma. Here, we investigate a scenario whereby cool, partially degassed lava is drained back into a conduit, where it mingles with hotter, less degassed magma. The 1959 eruption of Kīlauea Iki, Hawaiʻi involved 16 high fountaining episodes. During each episode, fountains fed a lava lake in a pit crater, which then partially drained back into the conduit during and after each episode. We infer highly crystalline tachylite inclusions and streaks in the erupted crystal-poor scoria to be the result of the recycling of this drain-back lava. The crystal phases present are dendrites of plagioclase, augite and magnetite/ilmenite, at sizes of up to 10 µm. Host sideromelane glass contains 7–8 wt% MgO and the tachylite glass (up to 0.5% by area) contains 2.5–6 wt% MgO. The vesicle population in the tachylite is depleted in the smallest size classes (< 0.5 mm) and has overall lower vesicle number densities and a higher degree of vesicle coalescence than the sideromelane component. The tachylite exhibits increasingly complex ‘stretching and folding’ mingling textures through the episodes, with discrete blocky tachylite inclusions in episodes 1 and 3 giving way to complex, folded, thin filaments of tachylite in pyroclasts erupted in episodes 15 and 16. We calculate that a lava lake crust 8–35 cm thick may have formed in the repose times between episodes, and then foundered and been entrained into the conduit during drain-back. The recycled fragments of crust would have been reheated in the conduit, inducing glass devitrification and crystallisation of pyroxene, magnetite and plagioclase dendrites and eventually undergoing ductile flow as the temperature of the fragments approached the host magma temperature. We use simple models of magma mingling to establish that stretching and folding of recycled, ductile lava could involve thinning of the clasts by up to a factor of 10 during the timescale of the eruption, consistent with observations of streaks and filaments of tachylite erupted during episodes 15 and 16, which may have undergone multiple cycles of eruption, drain-back and reheating.

To the bibliography