To see the other types of publications on this topic, follow the link: Pyridylphosphines.

Journal articles on the topic 'Pyridylphosphines'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Pyridylphosphines.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Newkome, George R. "Pyridylphosphines." Chemical Reviews 93, no. 6 (September 1993): 2067–89. http://dx.doi.org/10.1021/cr00022a006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

NEWKOME, G. R. "ChemInform Abstract: Pyridylphosphines." ChemInform 25, no. 3 (August 19, 2010): no. http://dx.doi.org/10.1002/chin.199403292.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Deeming, Antony J., and Martin B. Smith. "Triosmium clusters with 2-pyridylphosphines as ligands." Journal of the Chemical Society, Dalton Transactions, no. 22 (1993): 3383. http://dx.doi.org/10.1039/dt9930003383.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Berners-Price, Susan J., Richard J. Bowen, Mark J. McKeage, Peter Galettis, Li Ding, Bruce C. Baguley, and Wandy Brouwer. "Selective antitumour activity of metal complexes of bidentate pyridylphosphines." Journal of Inorganic Biochemistry 67, no. 1-4 (July 1997): 154. http://dx.doi.org/10.1016/s0162-0134(97)80032-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Budzelaar, Peter H. M. "Theoretical Study of the Reaction of Alkyllithium with Pyridylphosphines." Journal of Organic Chemistry 63, no. 4 (February 1998): 1131–37. http://dx.doi.org/10.1021/jo9716136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Deeming, Antony J., and Martin B. Smith. "Fluxional ligand migrations in triosmium clusters containing 2-pyridylphosphines." Journal of the Chemical Society, Chemical Communications, no. 10 (1993): 844. http://dx.doi.org/10.1039/c39930000844.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wajda-Hermanowicz, Katarzyna, and Florian P. Pruchnik. "Carbonylrhodium complexes with pyridylphosphines: [Rh(chel)(CO)(PPhxpyl3?x)]." Transition Metal Chemistry 13, no. 1 (February 1988): 22–24. http://dx.doi.org/10.1007/bf01041492.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kluwer, Alexander M., Irshad Ahmad, and Joost N. H. Reek. "Improved synthesis of monodentate and bidentate 2- and 3-pyridylphosphines." Tetrahedron Letters 48, no. 17 (April 2007): 2999–3001. http://dx.doi.org/10.1016/j.tetlet.2007.02.127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhang, Tianle, Yu Qin, Deyou Wu, Rong Zhou, Xiaowei Yi, and Changlin Liu. "One‐Pot Synthetic Route to a Class of Polydental Pyridylphosphines." Synthetic Communications 35, no. 14 (July 2005): 1889–95. http://dx.doi.org/10.1081/scc-200064921.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Musina*, Elvira I., Igor D. Strelnik, Tatyana I. Fesenko, Dmitry B. Krivolapov, Andrey A. Karasik, Evamarie Hey-Hawkins, and Oleg G. Sinyashin. "Nickel(II) Complexes of Novel P,N-Heterocycles Based on Pyridylphosphines." Phosphorus, Sulfur, and Silicon and the Related Elements 188, no. 1-3 (January 1, 2013): 59–60. http://dx.doi.org/10.1080/10426507.2012.729117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Wajda-Hermanowicz, K., M. Koralewicz, and F. P. Pruchnik. "Iridium carbonyl clusters with pyridylphosphines: [Ir4(CO)9(PPhxpyl3?x)3]." Applied Organometallic Chemistry 4, no. 2 (March 1990): 173–75. http://dx.doi.org/10.1002/aoc.590040212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Wajda-Hermanowicz, Katarzyna, and Florian P. Pruchnik. "Rhodium carbonyl complexes of thetrans-[RhCl(CO)(PR3)2] type with pyridylphosphines." Transition Metal Chemistry 13, no. 2 (April 1988): 101–3. http://dx.doi.org/10.1007/bf01087797.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Durran, Sean E., Martin B. Smith, Alexandra M. Z. Slawin, and Jonathan W. Steed. "The synthesis and co-ordination chemistry of new functionalised pyridylphosphines derived from Ph2PCH2OH †." Journal of the Chemical Society, Dalton Transactions, no. 16 (2000): 2771–78. http://dx.doi.org/10.1039/b003759l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Schutte, Richard P., Steven J. Rettig, and Brian R. James. "Synthesis, characterization, and reactivity of a ruthenium(II) N,N′,N″-tris(2-pyridyl)phosphine complex. X-ray analysis of RuCl2(PPh3)(Ppy3) (py = 2-pyridyl)." Canadian Journal of Chemistry 74, no. 11 (November 1, 1996): 2064–72. http://dx.doi.org/10.1139/v96-235.

Full text
Abstract:
Reaction of RuCl2(PPh3)3 with Ppy3 (py = 2-pyridyl) in benzene produced the N,N′,N″-Ppy3 complex RuCl2(PPh3)(Ppy3) 1. Crystals of RuCl2(PPh3)(Ppy3)•2CH2Cl2 (C35H31Cl6N3P2Ru) are monoclinic, a = 17.269(2), b = 10.797(1), c = 20.604(1) Å, β = 107.461(6)°, Z = 4, space group P21/c. The structure was solved by the Patterson method and was refined by full-matrix least-squares procedures to R = 0.039 and Rw = 0.035 for 4184 reflections with I ≥ 3σ(I). Complex 1 reacts in MeOH or benzene with two-electron donors (L) to give the chloride-substituted, [RuCl(L)(PPh3)(Ppy3)]PF6, or the triphenylphosphine-substituted products, RuCl2(L)(Ppy3), (L = CO, MeCN, PhCN), respectively. [RuCl(MeOH)(PPh3)(Ppy3)]BPh4 was also isolated. The non-coordinated phosphorus atom in 1 was oxidized to form RuCl2(PPh3)(OPpy3). Key words: ruthenium, pyridylphosphines, crystal structure
APA, Harvard, Vancouver, ISO, and other styles
15

Casares, Juan A., Pablo Espinet, José M. Martín-Alvarez, and Verónica Santos. "Anionic Platinum Complexes with 2-Pyridylphosphines as Ligands for Rhodium: Synthesis of Zwitterionic Pt−Rh Organometallic Compounds." Inorganic Chemistry 43, no. 1 (January 2004): 189–97. http://dx.doi.org/10.1021/ic034863f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Chen, Shuli, Joseph Kok-Peng Ng, Sumod A. Pullarkat, Fengli Liu, Yongxin Li, and Pak-Hing Leung. "Asymmetric Synthesis of New Diphosphines and Pyridylphosphines via a Kinetic Resolution Process Promoted and Controlled by a Chiral Palladacycle." Organometallics 29, no. 15 (August 9, 2010): 3374–86. http://dx.doi.org/10.1021/om100358g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Nishide, Katsunori, Shigekazu Ito, and Masaaki Yoshifuji. "Preparation of carbonyltungsten(0) complexes of 2-pyridylphosphines showing a stepwise coordination pattern by way of monodentate to chelate mode." Journal of Organometallic Chemistry 682, no. 1-2 (October 2003): 79–84. http://dx.doi.org/10.1016/s0022-328x(03)00698-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Xie, Yun, Chung-Li Lee, Yeping Yang, Steven J. Rettig, and Brian R. James. "Mono- and dinuclear palladium complexes containing 2-pyridylphosphine ligands, including X-ray characterization of Pd2I2(µ-PPh2py)2 and a dimethylacetylenedicarboxylate A-frame complex Pd2Cl2(µ-Ppy3)2(µ-MeO2C•C=C•CO2Me); py = 2-pyridyl." Canadian Journal of Chemistry 70, no. 3 (March 1, 1992): 751–62. http://dx.doi.org/10.1139/v92-100.

Full text
Abstract:
Dibromo- and diiodo[(2-pyridyl)phosphine]palladium(II) complexes are prepared by metathesis of cis-PdCl2(PPh3−npyn)2 species (n = 1–3) using the appropriate sodium halide; py = 2-pyridyl. NMR spectroscopy, particularly,13C{1H}, is used to distinguish cis and trans isomers. The dinuclear complexes Pd2X2(μ-PPh3−npyn)2, X = halide, are synthesized via a conproportionation reaction using PdX2(PPh3−npyn)2 and Pd2(dba)3; dba = dibenzylideneacetone. Both Pd2l2(μ-PPh2py)2 and a dimethylacetylenedicarboxylate A-frame complex Pd2Cl2(μ-Ppy3)2(μ-MeO2C•C=C•CO2Me) are characterized crystallographically as head-to-tail isomers. The former crystallizes in the monoclinic space group C2/c with a = 30.992(3), b = 18.764(1), c = 13.100(1) Å, β = 100.676(5)°, and Z = 8; the data were refined to R = 0.035 for 5874 reflections with I ≥ 3σ(I). The A-frame compound is triclinic of space group [Formula: see text] with a = 13.545(2), b = 15.064(2), c = 11.991(2) Å, α = 111.56(1), β = 95.36(1), γ = 97.63(1)°, and Z = 2; R = 0.033 from 7128 reflections with I ≥ 3σ(I). The Pd2X2(μ-PPhpy2)2 complexes exist as a mixture of diastereomers because of chirality induced at the phosphorus atoms. The Pd2X2(μ-Ppy3)2 complexes in water generate the [Pd2(H2O)2(μ-Ppy3)2]2+ dication, which is isolated as various salts. The mononuclear complexes in water generate aquo and hydroxo species. Keywords: dimethylacetylenedicarboxylate adducts, palladium complexes (dinuclear), pyridylphosphines.
APA, Harvard, Vancouver, ISO, and other styles
19

Casares, Juan A., Pablo Espinet, José M. Martín-Álvarez, and Verónica Santos. "Neutral and Cationic Complexes with P-Bonded 2-Pyridylphosphines as N-Donor Ligands toward Rhodium. Electrical Charge vs Steric Hindrance on the Conformational Control." Inorganic Chemistry 45, no. 17 (August 2006): 6628–36. http://dx.doi.org/10.1021/ic0600477.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

He, Yu-Tao, Joonghee Won, Jiyun Kim, Bohyun Park, Taehwan Kim, Mu-Hyun Baik, and Sungwoo Hong. "One-pot bifunctionalization of unactivated alkenes, P(O)–H compounds, and N-methoxypyridinium salts for the construction of β-pyridyl alkylphosphonates." Organic Chemistry Frontiers 5, no. 17 (2018): 2595–603. http://dx.doi.org/10.1039/c8qo00689j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

He, Guosen, Soh-Kheang Loh, Jagadese J. Vittal, K. F. Mok, and Pak-Hing Leung. "Palladium-Complex-Promoted Asymmetric Synthesis of Stereoisomeric P-Chiral Pyridylphosphines via an Unusual Exo−Endo Stereochemically Controlled Asymmetric Diels−Alder Reaction between 2-Vinylpyridine and Coordinated 3,4-Dimethyl-1-phenylphosphole." Organometallics 17, no. 18 (August 1998): 3931–36. http://dx.doi.org/10.1021/om980318o.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Dervisi, Athanasia, Peter G. Edwards, Paul D. Newman, Robert P. Tooze, Simon J. Coles, and Michael B. Hursthouse. "Palladium diphenyl-2-pyridylphosphine complexes." Journal of the Chemical Society, Dalton Transactions, no. 22 (1998): 3771–76. http://dx.doi.org/10.1039/a805102j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Camp, D., and ID Jenkins. "The Use of a Phosphine Containing a Basic Group in the Mitsunobu Esterification Reaction." Australian Journal of Chemistry 41, no. 12 (1988): 1835. http://dx.doi.org/10.1071/ch9881835.

Full text
Abstract:
Use of diphenyl (2-pyridyl) phosphine instead of triphenylphosphine in the Mitsunobu esterification reaction facilitates isolation of the desired ester. The resulting phosphine oxide is readily removed by a dilute acid wash. 31P n.m.r , investigations of the mechanism suggest that the pyridylphosphine behaves in an analogous manner to triphenylphosphine.
APA, Harvard, Vancouver, ISO, and other styles
24

HE, G., S. K. LOH, J. J. VITTAL, K. F. MOK, and P. H. LEUNG. "ChemInform Abstract: Palladium-Complex-Promoted Asymmetric Synthesis of Stereoisomeric P-Chiral Pyridylphosphines via an Unusual exo-endo Stereochemically Controlled Asymmetric Diels-Alder Reaction Between 2-Vinylpyridine and Coordinated 3,4-Dimethyl-1-ph." ChemInform 30, no. 2 (June 18, 2010): no. http://dx.doi.org/10.1002/chin.199902180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Crespo, Olga, M. Concepción Gimeno, Antonio Laguna, and Carmen Larraz. "Luminescent Silver(I) and Copper(I) Systems Containing Pyridyl Phosphine Bridges." Zeitschrift für Naturforschung B 64, no. 11-12 (December 1, 2009): 1525–34. http://dx.doi.org/10.1515/znb-2009-11-1236.

Full text
Abstract:
Luminescent silver(I) and copper(I) complexes containing pyridylphosphine ligands have been synthesized and structurally characterized by single crystal X-ray diffraction methods. The reaction of Ag(OTf) (OTf = trifluoromethanesulfonate) with 2-pyridyldiphenylphosphine in different molar ratios gives the species [Ag2(OTf)2(μ-PPh2py)2] (1), [Ag(PPh2py)2]OTf (2), [Ag(PPh2py)3]OTf (3), and [Ag2(PPh2py)3](OTf)2 (4) with several modes of coordination of the pyridylphosphine. The oxidation of the phosphine in compound 4 gave [Ag2(OTf)(μ-PPh2py)2(OPPh2py)]OTf (5) which has been structurally characterized. It shows two bridging phosphine ligands and one chelating OPPh2py ligand. The reactions of the silver salt with bis(2-pyridyl)phenylphosphine in different molar ratios affords the complex [Ag2(OTf)2(μ-PPhpy2)2] (6), while the corresponding reactions with [Cu(NCMe)4]PF6 lead to two different compounds, namely [Cu2(NCMe)2(μ-PPhpy2)2](PF6)2 (7) and [Cu2(PPhpy2)2(μ-PPhpy2)2](PF6)2 (8). All complexes exhibit luminescence in the solid state at room temperature and at 77 K
APA, Harvard, Vancouver, ISO, and other styles
26

Schutte, Richard P., Steven J. Rettig, Ajey M. Joshi, and Brian R. James. "Synthesis, Structure, and Reactivity of [RuCl(PP)L]PF6(PP = (PPh3)2, Ph2P(CH2)4PPh2; L = P(py)3, PPh(py)2, py = 2-pyridyl). The “Missing”P,N,N‘-Coordination Mode for 2-Pyridylphosphines." Inorganic Chemistry 36, no. 25 (December 1997): 5809–17. http://dx.doi.org/10.1021/ic970835j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

de Boer, Sandra Y., Yann Gloaguen, Martin Lutz, and Jarl Ivar van der Vlugt. "CuI click catalysis with cooperative noninnocent pyridylphosphine ligands." Inorganica Chimica Acta 380 (January 2012): 336–42. http://dx.doi.org/10.1016/j.ica.2011.10.037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Gogoi, Rajjyoti, Chandan Pathak, and Geetika Borah. "Synthesis and Characterization of Cobalt(II) Complexes with Hemilabile P^N Donor Ligands." Asian Journal of Chemistry 31, no. 3 (2019): 566–68. http://dx.doi.org/10.14233/ajchem.2019.21685.

Full text
Abstract:
Two cobalt(II) complexes viz. CoCl2{PPh2(p-C6H4NMe2)}2 (C1) and CoCl2(PPh2Py)2 (C2) were synthesized by reacting CoCl2·6H2O and 4-(dimethylamino)phenyldiphenylphosphine and diphenyl-2-pyridylphosphine ligands, respectively. The complexes were characterized by elemental analysis, FT-IR, UV-visible and electronic spin resonance (ESR) spectroscopic technique. Both the complexes were found stable at room temperature. EPR measurements and UV-visible spectra analysis of C1 and C2 are consistent with a tetrahedral Co(II) and tetragonally distorted octahedral Co(II) ions, respectively.
APA, Harvard, Vancouver, ISO, and other styles
29

Berners-Price, Susan J., Richard J. Bowen, and Peter C. Healy. "1,2-Bis(di-4-pyridylphosphino)ethane (d4pype)." Acta Crystallographica Section E Structure Reports Online 60, no. 1 (December 12, 2003): o43—o44. http://dx.doi.org/10.1107/s1600536803027405.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Palominos, Franco, Carolina Muñoz, Poldie Oyarzun, Marianela Saldías, and Andrés Vega. "Crystal structures and Hirshfeld surface analysis of [κ2-P,N-{(C6H5)2(C5H5N)P}Re(CO)3Br]·2CHCl3 and the product of its reaction with piperidine, [P-{(C6H5)2(C5H5N)P}(C5H11N)Re(CO)3Br]." Acta Crystallographica Section E Crystallographic Communications 75, no. 7 (June 21, 2019): 1005–10. http://dx.doi.org/10.1107/s2056989019008089.

Full text
Abstract:
The coordination of the ligands with respect to the central atom in the complex bromidotricarbonyl[diphenyl(pyridin-2-yl)phosphane-κ2 N,P]rhenium(I) chloroform disolvate, [ReBr(C17H14NP)(CO)3]·2CHCl3 or [κ2-P,N-{(C6H5)2(C5H5N)P}Re(CO)3Br]·2CHCl3, (I·2CHCl3), is best described as a distorted octahedron with three carbonyls in a facial conformation, a bromide atom, and a biting P,N-diphenylpyridylphosphine ligand. Hirshfeld surface analysis shows that C—Cl...H interactions contribute 26%, the distance of these interactions are between 2.895 and 3.213 Å. The reaction between I and piperidine (C5H11N) at 313 K in dichloromethane leads to the partial decoordination of the pyridylphosphine ligand, whose pyridyl group is replaced by a piperidine molecule, and the complex bromidotricarbonyl[diphenyl(pyridin-2-yl)phosphane-κP](piperidine-κN)rhenium(I), [ReBr(C5H11N)(C17H14NP)(CO)3] or [P-{(C6H5)2(C5H5N)P}(C5H11N)Re(CO)3Br] (II). The molecule has an intramolecular N—H...N hydrogen bond between the non-coordinated pyridyl nitrogen atom and the amine hydrogen atom from piperidine with D...A = 2.992 (9) Å. Thermogravimetry shows that I·2CHCl3 losses 28% of its mass in a narrow range between 318 and 333 K, which is completely consistent with two solvating chloroform molecules very weakly bonded to I. The remaining I is stable at least to 573 K. In contrast, II seems to lose solvent and piperidine (12% of mass) between 427 and 463 K, while the additional 33% loss from this last temperature to 573 K corresponds to the release of 2-pyridylphosphine. The contribution to the scattering from highly disordered solvent molecules in II was removed with the SQUEEZE routine [Spek (2015). Acta Cryst. C71, 9-18] in PLATON. The stated crystal data for M r, μ etc. do not take this solvent into account.
APA, Harvard, Vancouver, ISO, and other styles
31

Chan, Albert S. C., Chih-Chiang Chen, Rong Cao, Maw-Rong Lee, Shie-Ming Peng, and Gene Hsiang Lee. "New Rhodium Pyridylphosphine Complexes and Their Application in Hydrogenation Reactions." Organometallics 16, no. 15 (July 1997): 3469–73. http://dx.doi.org/10.1021/om970010h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Gaŀdecka, Ewa, Zdzisŀaw Gaŀdecki, Katarzyna Wajda-Hermanowicz, and Florian P. Pruchnik. "Crystal structure of tri-μ-carbonyl-pentacarbonyl {diphenyl-2-pyridylphosphine-(P,N)} bis {diphenyl-2-pyridylphosphine-(P)} tetrairidium (0), [Ir4(CO)8(PPh2pyl)3]." Journal of Chemical Crystallography 25, no. 11 (November 1995): 717–23. http://dx.doi.org/10.1007/bf01670324.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Vaughan, Teresa F., and John L. Spencer. "Transition metal complexes of the pyridylphosphine ligand o-C6H4(CH2PPy2)2." Dalton Transactions 45, no. 42 (2016): 16826–37. http://dx.doi.org/10.1039/c6dt02041k.

Full text
Abstract:
The coordination chemistry of a new pyridyldiphosphine ligand, o-C6H4(PPy2)2, was explored with platinum, palladium, silver and iridium. The rare P,P,N coordination mode and hemilabile behaviour was observed in the iridium complexes.
APA, Harvard, Vancouver, ISO, and other styles
34

Loibl, Antonia, Manuela Weber, Martin Lutz, and Christian Müller. "ReI Complexes of Pyridylphosphinines and 2,2′-Bipyridine Derivatives: A Comparison." European Journal of Inorganic Chemistry 2019, no. 11-12 (December 17, 2018): 1575–85. http://dx.doi.org/10.1002/ejic.201801234.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Kiankarimi, Mehrak, Richard Lowe, James R. McCarthy, and Jeffrey P. Whitten. "Diphenyl 2-pyridylphosphine and di-tert-butylazodicarboxylate:Convenient reagents for the Mitsunobu reaction." Tetrahedron Letters 40, no. 24 (June 1999): 4497–500. http://dx.doi.org/10.1016/s0040-4039(99)00819-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Zhang, Guofang, Jin Zhao, Gabriele Raudaschl-Sieber, Eberhardt Herdtweck, and Fritz E. Kühn. "Syntheses and characterization of dimolybdenum and dirhodium complexes containing 2-pyridylphosphine ligands." Polyhedron 21, no. 17 (July 2002): 1737–46. http://dx.doi.org/10.1016/s0277-5387(02)01023-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Siemeling, Ulrich, Thorsten Klemann, Clemens Bruhn, Jiří Schulz, and Petr Štěpnička. "The Coordination Behaviour of Ferrocene-based Pyridylphosphine Ligands towards AgI and AuI." Zeitschrift für anorganische und allgemeine Chemie 637, no. 12 (August 11, 2011): 1824–33. http://dx.doi.org/10.1002/zaac.201100209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Siemeling, Ulrich, Thorsten Klemann, Clemens Bruhn, Jiří Schulz, and Petr Štěpnička. "The coordination behaviour of ferrocene-based pyridylphosphine ligands towards ZnII, CdII and HgII." Dalton Transactions 40, no. 17 (2011): 4722. http://dx.doi.org/10.1039/c0dt01810d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Das, Pankaj, Malabika Borah, Francois Michaud, François Y. Pétillon, and Philippe Schollhammer. "Phosphorus–carbon(pyridyl) bond cleavage on reacting diphenyl-2-pyridylphosphine with triiron dodecacarbonyl." Inorganica Chimica Acta 376, no. 1 (October 2011): 641–44. http://dx.doi.org/10.1016/j.ica.2011.06.035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Xue, Zhigang, Bae Wook Lee, Seok Kyun Noh, and Won Seok Lyoo. "Pyridylphosphine ligands for iron-based atom transfer radical polymerization of methyl methacrylate and styrene." Polymer 48, no. 16 (July 2007): 4704–14. http://dx.doi.org/10.1016/j.polymer.2007.06.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Koshevoy, Igor O., Matti Haukka, Tapani A. Pakkanen, Sergey P. Tunik, and Pirjo Vainiotalo. "Supermolecular Assembly of Tetra- and Hexanuclear Carbonyl Clusters Using a Novel Polydentate Pyridylphosphine Ligand." Organometallics 24, no. 14 (July 2005): 3516–26. http://dx.doi.org/10.1021/om0502032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Purcell, Walter, Jeanet Conradie, Trevor T. Chiweshe, Johan A. Venter, Hendrik G. Visser, and Michael P. Coetzee. "Characterization of acetylacetonato carbonyl diphenyl-2-pyridylphosphine rhodium(I): Comparison with other carbonyl complexes." Journal of Molecular Structure 1038 (April 2013): 220–29. http://dx.doi.org/10.1016/j.molstruc.2013.01.061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Su, Chi-Hung, and Michael Y. Chiang. "Crystal Structure of the Coordinatively Unsaturated 2-Pyridylphosphine Pd(0) Complex Pd(PPh2Py)3." Journal of the Chinese Chemical Society 44, no. 5 (October 1997): 539–43. http://dx.doi.org/10.1002/jccs.199700082.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Baird, Ian R., Martin B. Smith, and Brian R. James. "Nickel(II) and nickel(0) complexes containing 2-pyridylphosphine ligands, including water-soluble species." Inorganica Chimica Acta 235, no. 1-2 (July 1995): 291–97. http://dx.doi.org/10.1016/0020-1693(95)90070-m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Batista, Alzir A., Salete L. Queiroz, Peter C. Healy, Robbie W. Buckley, Sue E. Boyd, Susan J. Berners-Price, Eduardo E. Castellano, and Javier Ellena. "A novel coordination mode for a pyridylphosphine ligand. X-ray structures of [RuCl2(NO)L] (I) and [RuCl2(NO)L]·DMSO (II) (L = [(2-py)2PC2H4POO(2-py)2]-)." Canadian Journal of Chemistry 79, no. 5-6 (May 1, 2001): 1030–35. http://dx.doi.org/10.1139/v01-038.

Full text
Abstract:
The ruthenium(II) complex, [RuCl2(NO)L] (I), (L = [(2-py)2PC2H4PO2(2-py)]-) was obtained from recrystallization of RuCl3NO(d2pype) (d2pype = (2-py)2PC2H4P(2-py)2) in the presence of HNO3, crystallizing in the monoclinic space group P21 (no. 4), with a = 8.012(4) Å, b = 14.454(4) Å, c = 9.353(3) Å, β = 105.77(3)°, and Z = 2. Crystals of the DMSO solvate of the complex (II) were obtained from (CD3)2SO solution, crystallizing in the monoclinic space group P21/c (no.14) with a = 9.7080(2) Å, b = 22.2920(5) Å, c = 11.5230(3) Å, β = 92.0450(10)°, and Z = 4. In both complexes, the geometry about the ruthenium atom is a distorted octahedron mainly as a result of the tridentate [P,N,O]-bonding mode of L. The ν (NO) bands at 1875 cm–1 in both complexes are consistent with the linear disposition of the NO group and the Ru atom as is observed in the X-ray crystal structure (Ru-N1-O1 angle = 178.5(4)°).Key words: pyridylphosphine, nitrosyl, ruthenium complex, X-ray structure.
APA, Harvard, Vancouver, ISO, and other styles
46

Štěpnička, Petr, Jiří Schulz, Thorsten Klemann, Ulrich Siemeling, and Ivana Císařová. "Synthesis, Structural Characterization, and Catalytic Evaluation of Palladium Complexes with Homologous Ferrocene-Based Pyridylphosphine Ligands." Organometallics 29, no. 14 (July 26, 2010): 3187–200. http://dx.doi.org/10.1021/om100339p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Tairai, Archana, Nasifa Shahnaz, Chandan Sarmah, and Pankaj Das. "Diphenyl-2-Pyridylphosphine Based Palladium Catalysts for the Suzuki- Miyaura Reactions in Environment Friendly Solvents." Letters in Organic Chemistry 9, no. 7 (July 1, 2012): 509–15. http://dx.doi.org/10.2174/157017812802139690.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Fesenko, Tatyana I., Alia V. Shamsieva, Elvira I. Musina, Igor D. Strelnik, Andrey A. Karasik, and Oleg G. Sinyashin. "Synthesis of Bis(2-Pyridylphosphino)Alkanes in Superbasic Medium and Their Hydroxymethyl Derivatives." Phosphorus, Sulfur, and Silicon and the Related Elements 188, no. 1-3 (January 1, 2013): 63–65. http://dx.doi.org/10.1080/10426507.2012.729118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Ishii, Hirotoshi, Meenakshi Goyal, Mitsuru Ueda, Kazuhiko Takeuchi, and Michihiko Asai. "Oxidative carbonylation of phenol to diphenyl carbonate catalyzed by Pd dinuclear complex bridged with pyridylphosphine ligand." Journal of Molecular Catalysis A: Chemical 148, no. 1-2 (December 1999): 289–93. http://dx.doi.org/10.1016/s1381-1169(99)00288-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Kiankarimi, Mehrak, Richard Lowe, James R. McCarthy, and Jeffrey P. Whitten. "ChemInform Abstract: Diphenyl 2-Pyridylphosphine and Di-tert-Butyl Azodicarboxylate: Convenient Reagents for the Mitsunobu Reaction." ChemInform 30, no. 35 (June 13, 2010): no. http://dx.doi.org/10.1002/chin.199935036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography