Journal articles on the topic 'Pyrazolopyrimidines'

To see the other types of publications on this topic, follow the link: Pyrazolopyrimidines.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Pyrazolopyrimidines.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

George, CFP. "Pyrazolopyrimidines." Lancet 358, no. 9293 (November 2001): 1623–26. http://dx.doi.org/10.1016/s0140-6736(01)06656-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wald, Jiri, Marion Pasin, Martina Richter, Christin Walther, Neann Mathai, Johannes Kirchmair, Vadim A. Makarov, et al. "Cryo-EM structure of pleconaril-resistant rhinovirus-B5 complexed to the antiviral OBR-5-340 reveals unexpected binding site." Proceedings of the National Academy of Sciences 116, no. 38 (August 28, 2019): 19109–15. http://dx.doi.org/10.1073/pnas.1904732116.

Full text
Abstract:
Viral inhibitors, such as pleconaril and vapendavir, target conserved regions in the capsids of rhinoviruses (RVs) and enteroviruses (EVs) by binding to a hydrophobic pocket in viral capsid protein 1 (VP1). In resistant RVs and EVs, bulky residues in this pocket prevent their binding. However, recently developed pyrazolopyrimidines inhibit pleconaril-resistant RVs and EVs, and computational modeling has suggested that they also bind to the hydrophobic pocket in VP1. We studied the mechanism of inhibition of pleconaril-resistant RVs using RV-B5 (1 of the 7 naturally pleconaril-resistant rhinoviruses) and OBR-5-340, a bioavailable pyrazolopyrimidine with proven in vivo activity, and determined the 3D-structure of the protein-ligand complex to 3.6 Å with cryoelectron microscopy. Our data indicate that, similar to other capsid binders, OBR-5-340 induces thermostability and inhibits viral adsorption and uncoating. However, we found that OBR-5-340 attaches closer to the entrance of the pocket than most other capsid binders, whose viral complexes have been studied so far, showing only marginal overlaps of the attachment sites. Comparing the experimentally determined 3D structure with the control, RV-B5 incubated with solvent only and determined to 3.2 Å, revealed no gross conformational changes upon OBR-5-340 binding. The pocket of the naturally OBR-5-340-resistant RV-A89 likewise incubated with OBR-5-340 and solved to 2.9 Å was empty. Pyrazolopyrimidines have a rigid molecular scaffold and may thus be less affected by a loss of entropy upon binding. They interact with less-conserved regions than known capsid binders. Overall, pyrazolopyrimidines could be more suitable for the development of new, broadly active inhibitors.
APA, Harvard, Vancouver, ISO, and other styles
3

Lu, Shi-Han, Po-Lin Liu, and Fung Fuh Wong. "Vilsmeier reagent-mediated synthesis of 6-[(formyloxy)methyl]-pyrazolopyrimidines via a one-pot multiple tandem reaction." RSC Advances 5, no. 58 (2015): 47098–107. http://dx.doi.org/10.1039/c5ra07707a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Agrebi, Asma, Fatma Allouche, Hamadi Fetoui, and Fakher Chabchoub. "Synthesis and biological evaluation of new pyrazolo[3,4-d]pyrimidine derivatives." Mediterranean Journal of Chemistry 3, no. 2 (May 13, 2014): 864. http://dx.doi.org/10.13171/mjc.3.2.2014.13.05.23agrebi.

Full text
Abstract:
<p class="Default">Several new pyrazolopyrimidine compounds were achieved from aminocyanopyarazole <strong>1</strong>. The starting material <strong>1 </strong>was initially coupled with orthoester at refluxed with various primary amines, ammonia, hydrazines and hydroxylamine to furnish a series of pyrazolo[3,4-<em>d</em>]pyrimidines. The reaction of imidate <strong>2a-b </strong>with hydrazide derivatives led to the formation of pyrazolo[3,4-<em>d</em>][1,2,4]triazolo[4,3-<em>c</em>]pyrimidines. Some of the synthesized compounds <strong>3a </strong>and <strong>4c </strong>were evaluated for their anti-inflammatory, antipyretic and nociceptive activities. We start by studing the toxicity of these two molecules by measuring the corresponding DL50. The DL50 of <strong>3a </strong>and <strong>4c </strong>are estimated to 1333.2mg / kg and 1593.5mg / kg respectively. Pharmacological evaluation showed that compounds <strong>3a </strong>and <strong>4c </strong>at doses (5.5-22.2 mg / Kg, i.p) exhibited anti-inflammatory activities compared to Ibuprofen (150 mg / Kg, i.p), used as a refer ence drug. Further, our study showed that the injection of derived pyrazolopyrimidines on hyperthermic animal leads to a decrease in temperature after 1 hours of treatment compared to paracetamol used as reference. In addition, the injection of derived pyrazolopyrimidines at different doses contains a potent nociceptive activity. This effect is dose-dependent compared to aspirin.</p>
APA, Harvard, Vancouver, ISO, and other styles
5

Elnagdi, Mohamed Hilmy, Ahmed Hafiz Husein Elghandour, Mohamed Kamal Ahmed Ibrahim, and Ibrahim Saad Abdel Hafiz. "Studies with Polyfunctionally Substituted Heterocycles: Synthesis of New Pyridines, Naphtho[1,2-b]pyrans, Pyrazolo[3,4-b]pyridines and Pyrazolo[l,5-a]pyrimidines." Zeitschrift für Naturforschung B 47, no. 4 (April 1, 1992): 572–78. http://dx.doi.org/10.1515/znb-1992-0419.

Full text
Abstract:
A variety of new polyfunctionally substituted pyridines, naphthopyrans and pyrazolopyrimidines were prepared via reacting ylidenemalononitriles with thiophenol, thionaphthol, naphthols and or aminopyrazoles.
APA, Harvard, Vancouver, ISO, and other styles
6

Kolosov, Maksim A., Dmitriy A. Beloborodov, Valeriy D. Orlov, and Victor V. Dotsenko. "Catalyst-free Biginelli-type synthesis of new functionalized 4,7-dihydropyrazolo[1,5-a]pyrimidines." New Journal of Chemistry 40, no. 9 (2016): 7573–79. http://dx.doi.org/10.1039/c6nj00336b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

El-Dean, Adel M. Kamal, and Maisa E. Abdel-Moneam. "Synthesis of Pyrimidines, Thienopyrimidines, and Pyrazolopyrimidines." Phosphorus, Sulfur, and Silicon and the Related Elements 177, no. 12 (December 1, 2002): 2745–51. http://dx.doi.org/10.1080/10426500214894.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Weitensteiner, Sabine B., Johanna Liebl, Vladimir Krystof, Libor Havlíček, Tomáš Gucký, Miroslav Strnad, Robert Fürst, Angelika M. Vollmar, and Stefan Zahler. "Trisubstituted Pyrazolopyrimidines as Novel Angiogenesis Inhibitors." PLoS ONE 8, no. 1 (January 15, 2013): e54607. http://dx.doi.org/10.1371/journal.pone.0054607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rice, Kenneth D., Moon H. Kim, Joerg Bussenius, Neel K. Anand, Charles M. Blazey, Owen J. Bowles, Lynne Canne-Bannen, et al. "Pyrazolopyrimidines as dual Akt/p70S6K inhibitors." Bioorganic & Medicinal Chemistry Letters 22, no. 8 (April 2012): 2693–97. http://dx.doi.org/10.1016/j.bmcl.2012.03.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ahmed, Sayed A., Ahmed M. Hussein, Walaa G. M. Hozayen, Ahmed H. H. El-Ghandour, and Abdou O. Abdelhamid. "Synthesis of some pyrazolopyrimidines as purine analogues." Journal of Heterocyclic Chemistry 44, no. 4 (July 2007): 803–10. http://dx.doi.org/10.1002/jhet.5570440408.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Kumar, Hansal, Rudradip Das, Asmita Choithramani, Astha Gupta, Datta Khude, Gourav Bothra, and Amit Shard. "Efficient Green Protocols for the Preparation of Pyrazolopyrimidines." ChemistrySelect 6, no. 23 (June 18, 2021): 5807–37. http://dx.doi.org/10.1002/slct.202101298.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Looker, D. L., J. J. Marr, and R. L. Berens. "Mechanisms of action of pyrazolopyrimidines in Leishmania donovani." Journal of Biological Chemistry 261, no. 20 (July 1986): 9412–15. http://dx.doi.org/10.1016/s0021-9258(18)67670-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Gudmundsson, Kristjan S., Brian A. Johns, and Jason Weatherhead. "Pyrazolopyrimidines and pyrazolotriazines with potent activity against herpesviruses." Bioorganic & Medicinal Chemistry Letters 19, no. 19 (October 2009): 5689–92. http://dx.doi.org/10.1016/j.bmcl.2009.08.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Di Grandi, Martin J., Dan M. Berger, Darrin W. Hopper, Chunchun Zhang, Minu Dutia, Alejandro L. Dunnick, Nancy Torres, et al. "Novel pyrazolopyrimidines as highly potent B-Raf inhibitors." Bioorganic & Medicinal Chemistry Letters 19, no. 24 (December 2009): 6957–61. http://dx.doi.org/10.1016/j.bmcl.2009.10.058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

M. Kamal El-Dean, Adel, and Ahmed A. Geies. "Synthesis of Some New Pyrazolotriazines, Pyrazolothiazines and Pyrazolopyrimidines." Journal of Chemical Research, no. 10 (1997): 352. http://dx.doi.org/10.1039/a702058i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Azimioara, Mihai, Phil Alper, Christopher Cow, Daniel Mutnick, Victor Nikulin, Gerald Lelais, John Mecom, et al. "Novel tricyclic pyrazolopyrimidines as potent and selective GPR119 agonists." Bioorganic & Medicinal Chemistry Letters 24, no. 23 (December 2014): 5478–83. http://dx.doi.org/10.1016/j.bmcl.2014.10.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Osuma, Augustine T., Xiangdong Xu, Zhi Wang, Jennifer A. Van Camp, and Gail M. Freiberg. "Design and evaluation of pyrazolopyrimidines as KCNQ channel modulators." Bioorganic & Medicinal Chemistry Letters 29, no. 19 (October 2019): 126603. http://dx.doi.org/10.1016/j.bmcl.2019.08.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Shamroukh, Ahmed H., Aymn E. Rashad, Hatem S. Ali, and Farouk M. E. Abdel-Megeid. "Some New Pyrazole and Pyrazolopyrimidines: Synthesis and Antimicrobial Evaluation." Journal of Heterocyclic Chemistry 50, no. 4 (June 24, 2013): 758–65. http://dx.doi.org/10.1002/jhet.1550.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Rashad, Aymn E., Mohamed Abdelmegid, Ahmed H. Shamroukh, and Farouk M. E. Abdelmegeid. "ChemInform Abstract: The Chemistry of Pyrazolopyrimidines and Their Applications." ChemInform 45, no. 52 (December 11, 2014): no. http://dx.doi.org/10.1002/chin.201452265.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Ahmed, Sayed A., Hussein S. Elgendy, and Walaa O. Younis. "ChemInform Abstract: Pyrazolopyrimidines: Synthesis, Chemical Reactions and Biological Activity." ChemInform 46, no. 14 (March 19, 2015): no. http://dx.doi.org/10.1002/chin.201514291.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Gu, Yun-Qiong, Wen-Ying Shen, Qi-Yuan Yang, Zhen-Feng Chen, and Hong Liang. "Ru(iii) complexes with pyrazolopyrimidines as anticancer agents: bioactivities and the underlying mechanisms." Dalton Transactions 51, no. 4 (2022): 1333–43. http://dx.doi.org/10.1039/d1dt02765d.

Full text
Abstract:
Ruthenium(III) complex with pyrazolopyrimidine inhibited tumor cells proliferation, caused DNA damage by interacting with DNA and inhibition of the Topo I enzyme, induced cell cycle arrest in S phase and apoptosis via mitochondrial dysfunction.
APA, Harvard, Vancouver, ISO, and other styles
22

El-Naggar, Mohamed, Ashraf Hassan, Hanem Awad, and Mohamed Mady. "Design, Synthesis and Antitumor Evaluation of Novel Pyrazolopyrimidines and Pyrazoloquinazolines." Molecules 23, no. 6 (May 23, 2018): 1249. http://dx.doi.org/10.3390/molecules23061249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Goshu, Gashaw M., Debarati Ghose, Joy M. Bain, Phillip G. Pierce, Darren W. Begley, Stephen N. Hewitt, Hannah S. Udell, Peter J. Myler, R. Meganathan, and Timothy J. Hagen. "Synthesis and biological evaluation of pyrazolopyrimidines as potential antibacterial agents." Bioorganic & Medicinal Chemistry Letters 25, no. 24 (December 2015): 5699–704. http://dx.doi.org/10.1016/j.bmcl.2015.10.096.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Makarov, Vadim A., Heike Braun, Martina Richter, Olga B. Riabova, Johannes Kirchmair, Elena S. Kazakova, Nora Seidel, Peter Wutzler, and Michaela Schmidtke. "Pyrazolopyrimidines: Potent Inhibitors Targeting the Capsid of Rhino- and Enteroviruses." ChemMedChem 10, no. 10 (August 10, 2015): 1629–34. http://dx.doi.org/10.1002/cmdc.201500304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Hassan, Ghaneya S., Doaa E. Abdel Rahman, Yassin M. Nissan, Esraa A. Abdelmajeed, and Tamer M. Abdelghany. "Novel pyrazolopyrimidines: Synthesis, in vitro cytotoxic activity and mechanistic investigation." European Journal of Medicinal Chemistry 138 (September 2017): 565–76. http://dx.doi.org/10.1016/j.ejmech.2017.07.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

EL-DEAN, A. M. K., and A. A. GEIES. "ChemInform Abstract: Synthesis of Some New Pyrazolotriazines, Pyrazolothiazines and Pyrazolopyrimidines." ChemInform 29, no. 8 (June 23, 2010): no. http://dx.doi.org/10.1002/chin.199808034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

C. S. Pinheiro, Luiz, Lívia M. Feitosa, Marilia O. Gandi, Flávia F. Silveira, and Nubia Boechat. "The Development of Novel Compounds Against Malaria: Quinolines, Triazolpyridines, Pyrazolopyridines and Pyrazolopyrimidines." Molecules 24, no. 22 (November 13, 2019): 4095. http://dx.doi.org/10.3390/molecules24224095.

Full text
Abstract:
Based on medicinal chemistry tools, new compounds for malaria treatment were designed. The scaffolds of the drugs used to treat malaria, such as chloroquine, primaquine, amodiaquine, mefloquine and sulfadoxine, were used as inspiration. We demonstrated the importance of quinoline and non-quinoline derivatives in vitro with activity against the W2 chloroquine-resistant (CQR) Plasmodium falciparum clone strain and in vivo against Plasmodium berghei-infected mouse model. Among the quinoline derivatives, new hybrids between chloroquine and sulfadoxine were designed, which gave rise to an important prototype that was more active than both chloroquine and sulfadoxine. Hybrids between chloroquine–atorvastatin and primaquine–atorvastatin were also synthesized and shown to be more potent than the parent drugs alone. Additionally, among the quinoline derivatives, new mefloquine derivatives were synthesized. Among the non-quinoline derivatives, we obtained excellent results with the triazolopyrimidine nucleus, which gave us prototype I that inspired the synthesis of new heterocycles. The pyrazolopyrimidine derivatives stood out as non-quinoline derivatives that are potent inhibitors of the P. falciparum dihydroorotate dehydrogenase (PfDHODH) enzyme. We also examined the pyrazolopyridine and pyrazolopyrimidine nuclei.
APA, Harvard, Vancouver, ISO, and other styles
28

Colombo, Raffaele, Kyu Ok Jeon, Donna M. Huryn, Matthew G. LaPorte, and Peter Wipf. "A New Synthesis of 4,5,6,7-Tetrahydropyrazolo[1,5-c]pyrimidines by a Retro-Mannich Cascade Rearrangement." Australian Journal of Chemistry 67, no. 3 (2014): 420. http://dx.doi.org/10.1071/ch13468.

Full text
Abstract:
We discovered a new retro-Mannich reaction of in situ prepared pyrazolopyridines to give pyrazolopyrimidines that have hitherto been underrepresented in the heterocyclic chemistry literature. The isolation of a linear hydrolysis product supports a mechanistic hypothesis for this rearrangement process. In order to establish a broader access and explore potential biological applications for these medicinal chemistry building blocks, we investigated the scope of the reaction and generated small amine- as well as amide-based libraries through reductive aminations and amide couplings, respectively.
APA, Harvard, Vancouver, ISO, and other styles
29

Rao, V. V. V. N. S. Rama, B. P. V. Lingaiah, G. Venkat Reddy, G. Ezikiel, R. Yadla, and P. Shanthan Rao. "Facile synthesis of fluorinated 2-aryl-5,7-bisalkyl pyrazolopyrimidines from arylalkynenitriles." Arkivoc 2006, no. 12 (June 28, 2006): 51–57. http://dx.doi.org/10.3998/ark.5550190.0007.c06.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Rao, R. Nishanth, and Kaushik Chanda. "An assessment study of known pyrazolopyrimidines: Chemical methodology and cellular activity." Bioorganic Chemistry 99 (June 2020): 103801. http://dx.doi.org/10.1016/j.bioorg.2020.103801.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Bussenius, Joerg, Neel K. Anand, Charles M. Blazey, Owen J. Bowles, Lynne Canne Bannen, Diva S. M. Chan, Baili Chen, et al. "Design and evaluation of a series of pyrazolopyrimidines as p70S6K inhibitors." Bioorganic & Medicinal Chemistry Letters 22, no. 6 (March 2012): 2283–86. http://dx.doi.org/10.1016/j.bmcl.2012.01.105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Shamroukh, Ahmed H., Aymn E. Rashad, Hatem S. Ali, and Farouk M. E. Abdel-Megeid. "ChemInform Abstract: Some New Pyrazole and Pyrazolopyrimidines: Synthesis and Antimicrobial Evaluation." ChemInform 44, no. 51 (December 2, 2013): no. http://dx.doi.org/10.1002/chin.201351194.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Asati, Vivek, Arjun Anant, Preeti Patel, Kamalpreet Kaur, and G. D. Gupta. "Pyrazolopyrimidines as anticancer agents: A review on structural and target-based approaches." European Journal of Medicinal Chemistry 225 (December 2021): 113781. http://dx.doi.org/10.1016/j.ejmech.2021.113781.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Ahmed, Hatem Abdel Moniem. "A Facile One-pot Synthesis of New Pyrazolopyrimidines and Pyrazolo Pyridines Derivatives." JOURNAL OF ADVANCES IN CHEMISTRY 8, no. 1 (March 12, 2014): 1533–38. http://dx.doi.org/10.24297/jac.v8i1.6789.

Full text
Abstract:
A Simple Facile One-pot reaction, novel and efficient rout for the synthesis of substituted pyrazolo [3, 4-d] pyrimidines, and pyrazolo [3, 4-b] pyridines, results from reaction of substituted-5-amino-4-cyanopyrazoles with malononitrile and diethylmalonate respectively. The structures of the products and conceivable mechanisms are discussed. The antibacterial activity of some new synthesized compounds was evaluated and seemed to be significant.
APA, Harvard, Vancouver, ISO, and other styles
35

Rageh, Nasr M. "Acidity Constants of Some Hydroxy Azo Pyrazolopyrimidines in Mixed Aqueous−Organic Solvents." Journal of Chemical & Engineering Data 43, no. 3 (May 1998): 373–77. http://dx.doi.org/10.1021/je970167g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Wu, Tom Y. H., Peter G. Schultz, and Sheng Ding. "One-Pot Two-Step Microwave-Assisted Reaction in Constructing 4,5-Disubstituted Pyrazolopyrimidines." Organic Letters 5, no. 20 (October 2003): 3587–90. http://dx.doi.org/10.1021/ol035226w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Rajeswar Rao, V., and V. Ravinder Reddy. "Synthesis of some new types of 3-coumarinyl-substituted pyrazolopyrimidines and imidazothiazoles." Chemistry of Heterocyclic Compounds 44, no. 3 (March 2008): 360–65. http://dx.doi.org/10.1007/s10593-008-0053-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Abdel-Jalil, Raid J., Monther Khanfar, Kayed Abu-Safieh, Samer Al-Gharabli, Mustafa El-Abadelah, and Wolfgang Voelter. "An Efficient One-Pot Synthesis of Pyrazolopyrimidines, Intermediates for Potential Phosphodiesterase Inhibitors." Monatshefte f�r Chemie - Chemical Monthly 136, no. 4 (January 14, 2005): 619–24. http://dx.doi.org/10.1007/s00706-004-0252-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Rashad, Aymn E., Mohamed I. Hegab, Randa E. Abdel-Megeid, Nahed Fathalla, and Farouk M. E. Abdel-Megeid. "Synthesis and anti-HSV-1 evaluation of some pyrazoles and fused pyrazolopyrimidines." European Journal of Medicinal Chemistry 44, no. 8 (August 2009): 3285–92. http://dx.doi.org/10.1016/j.ejmech.2009.02.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Alsaedi, Farghaly, and Shaaban. "Synthesis and Antimicrobial Evaluation of Novel Pyrazolopyrimidines Incorporated with Mono- and Diphenylsulfonyl Groups." Molecules 24, no. 21 (November 5, 2019): 4009. http://dx.doi.org/10.3390/molecules24214009.

Full text
Abstract:
A novel series of pyrazolo[1,5-a]pyrimidine ring systems containing phenylsulfonyl moiety have been synthesized via the reaction of 2-(phenylsulfonyl)-1-(4-(phenylsulfonyl) phenyl)ethan-1-one, 2-benzenesulfonyl-1-(4-benzenesulfonyl-phenyl)-3-dimethylamino-propenone and 3-(dimethylamino)-1-(4-(phenylsulfonyl)phenyl)prop-2-en-1-one each with various substituted aminoazopyrazole derivatives in one pot reaction strategy. The proposed structure as well as the mechanism of their reactions were discussed and proved with all possible spectral data. The results of antimicrobial activities of the new sulfone derivatives revealed that several derivatives showed activity exceeding the activity of reference drug. Contrary to expectations, we found that derivatives containing one sulfone group are more effective against all bacteria and fungi used than those contain two sulfone groups.
APA, Harvard, Vancouver, ISO, and other styles
41

Voelter, Wolfgang, Raid J. Abdel-Jalil, Monther Khanfar, Samer Al-Gharabli, Mustafa M. El-Abadelah, Klaus Eichele, and Muhammad Usman Anwar. "High Throughput Synthesis of Pyrazolopyrimidines via Copper-catalysed Cyclization and X-Ray Study." HETEROCYCLES 65, no. 8 (2005): 1821. http://dx.doi.org/10.3987/com-05-10398.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Azam, Mohammed Afzal, Loganathan Dharanya, Charu Chandrakant Mehta, and Sumit Sachdeva. "Synthesis and biological evaluation of some novel pyrazolopyrimidines incorporating a benzothiazole ring system." Acta Pharmaceutica 63, no. 1 (March 1, 2013): 19–30. http://dx.doi.org/10.2478/acph-2013-0001.

Full text
Abstract:
In the present study, a series of benzothiazol derivatives 3a-l containing pyrazolo[3,4-d]pyrimidine moiety at the second position were synthesized and characterized by analytical and spectral data. The compounds were tested for their in vitro antimicrobial activity. Compounds 1-(1,3-benzothiazol-2- yl)-3-methyl-4-phenyl-1H-pyrazolo[3,4-d]pyrimidine (3a), 1- (1,3-benzothiazol-2-yl)-4-(4-chlorophenyl)-3-methyl-1H-pyrazolo[ 3,4-d]pyrimidine (3d) and 1-(1,3-benzothiazol-2-yl)- 3-methyl-4-substituted phenyl-1H-pyrazolo[3,4-d]pyrimidines (3h-j) showed significant inhibitory activity against P. aeruginosa whereas compounds 1-(1,3-benzothiazol-2-yl)-4- (2-chlorophenyl)-3-methyl-1H-pyrazolo[3,4-d]pyrimidine (3b), 2-[1-(1,3-benzothiazol-2-yl)-3-methyl-1H-pyrazolo[3,4-d]pyrimidin- 4-yl]phenol (3e), 1-(1,3-benzothiazol-2-yl)-4-(3,4-dimethoxyphenyl)- 3-methyl-1H-pyrazolo[3,4-d]pyrimidine (3h), 4-[1-(1,3-benzothiazol-2-yl)-3-methyl-1H-pyrazolo[3,4-d]pyri midin-4-yl]-N,N-dimethylaniline (3j) and 1-(1,3-benzothiazol- 2-yl)-3-methyl-4-[2-phenylvinyl]-1H-pyrazolo[3,4-d]pyrimidine (3k) were found to be active against C. albicans. Some of these synthesized compounds were evaluated for their in vivo acute toxicity, analgesic, anti-inflammatory, and ulcerogenic actions. The tested compound 4-[1-(1,3-benzothiazol- 2-yl)-3-methyl-1H-pyrazolo[3,4-d]pyrimidin-4-yl]-N, N-dimethylaniline (3j) exhibited maximum analgesic and anti-inflammatory activities. Compounds 1-(1,3-benzothiazol- -2-yl)-3-methyl-4-(3-nitrophenyl)-1H-pyrazolo[3,4-d]pyrimidine (3i) and 3j showed a significant gastrointestinal protection compared to the standard drug diclofenac sodium.
APA, Harvard, Vancouver, ISO, and other styles
43

Qu, Chunrong, Mingmin Ding, Yingmin Zhu, Yungang Lu, Juan Du, Melissa Miller, Jinbin Tian, et al. "Pyrazolopyrimidines as Potent Stimulators for Transient Receptor Potential Canonical 3/6/7 Channels." Journal of Medicinal Chemistry 60, no. 11 (April 28, 2017): 4680–92. http://dx.doi.org/10.1021/acs.jmedchem.7b00304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Hameed P, Shahul, Praveena Manjrekar, Murugan Chinnapattu, Vaishali Humnabadkar, Gajanan Shanbhag, Chaitanyakumar Kedari, Naina Vinay Mudugal, et al. "Pyrazolopyrimidines Establish MurC as a Vulnerable Target in Pseudomonas aeruginosa and Escherichia coli." ACS Chemical Biology 9, no. 10 (August 5, 2014): 2274–82. http://dx.doi.org/10.1021/cb500360c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Liu, Xu, Alvin Kung, Brock Malinoski, G. K. Surya Prakash, and Chao Zhang. "Development of Alkyne-Containing Pyrazolopyrimidines To Overcome Drug Resistance of Bcr-Abl Kinase." Journal of Medicinal Chemistry 58, no. 23 (November 20, 2015): 9228–37. http://dx.doi.org/10.1021/acs.jmedchem.5b01125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Singsardar, Mukta, Rajib Sarkar, Koushik Majhi, Subrata Sinha, and Alakananda Hajra. "Brønsted Acidic Ionic Liquid-Catalyzed Regioselective Synthesis of Pyrazolopyrimidines and Their Photophysical Properties." ChemistrySelect 3, no. 5 (February 5, 2018): 1404–10. http://dx.doi.org/10.1002/slct.201702767.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Alcaro, Stefano, Anna Artese, Maurizio Botta, Alessandra T Zizzari, Francisco Orallo, Francesco Ortuso, Silvia Schenone, Chiara Brullo, and Matilde Yáñez. "Hit Identification and Biological Evaluation of Anticancer Pyrazolopyrimidines Endowed with Anti-inflammatory Activity." ChemMedChem 5, no. 8 (June 16, 2010): 1242–46. http://dx.doi.org/10.1002/cmdc.201000165.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Jia, Cong-Cong, Wang Chen, Zi-Li Feng, and Zhao-Peng Liu. "Recent developments of RET protein kinase inhibitors with diverse scaffolds as hinge binders." Future Medicinal Chemistry 13, no. 1 (January 2021): 45–62. http://dx.doi.org/10.4155/fmc-2020-0170.

Full text
Abstract:
RET is a proto-oncogene encoding a receptor tyrosine kinase. RET regulates key aspects of cellular proliferation, differentiation and survival. The activation of RET via gene fusions or point mutations is closely related to lung, thyroid and other cancers. This review summarizes the developments of a diversity of small molecule RET protein kinase inhibitors in the past 10 years. These RET inhibitors are classified according to their hinge binder chemotypes as: pyrimidines, including the pyrazolopyrimidines, pyrimidine oxazines, quinazolines, 4-aminopyrimidines and 4-aminopyridines; indolinones; 5-aminopyrazole-4-carboxamides; 3-trifluoromethylanilines; imidazopyridines, imidazopyridazines and pyrazopyridines; nicotinonitriles; pyridones and 1,2,4-triazoles. In each section, the biological activities of the inhibitors, their structure–activity relationships and possible binding modes with the RET kinase are introduced.
APA, Harvard, Vancouver, ISO, and other styles
49

Li, Wen, Jinyang Zhang, Min Wang, Ru Dong, Xin Zhou, Xin Zheng, and Liping Sun. "Pyrimidine-fused Dinitrogenous Penta-heterocycles as a Privileged Scaffold for Anti-Cancer Drug Discovery." Current Topics in Medicinal Chemistry 22, no. 4 (February 2022): 284–304. http://dx.doi.org/10.2174/1568026622666220111143949.

Full text
Abstract:
Abstract: Pyrimidine-fused derivatives that are the inextricable part of DNA and RNA play a key role in the normal life cycle of cells. Pyrimidine-fused dinitrogenous penta-heterocycles, including pyrazolopyrimidines and imidazopyrimidines are a special class of pyrimidine-fused compounds contributing to an important portion in anti-cancer drug discovery, which has been discovered as the core structure for promising anti-cancer agents used in the clinic or clinical evaluations. Pyrimidine-fused dinitrogenous penta-heterocycles have become one privileged scaffold for anti-cancer drug discovery. This review consists of the recent progress of pyrimidine-fused dinitrogenous penta-heterocycles as anti-cancer agents and their synthetic strategies. In addition, this review also summa-rizes some key structure-activity relationships (SARs) of pyrimidine-fused dinitrogenous penta-heterocycle derivatives as anti-cancer agents.
APA, Harvard, Vancouver, ISO, and other styles
50

Akhramez, Soufiane, Asmaa Oumessaoud, Achraf Hibot, Soumaya Talbi, Salha Hamri, El Mostafa Ketatni, Hajiba Ouchetto, et al. "Synthesis of pyrazolo-enaminones, bipyrazoles and pyrazolopyrimidines and evaluation of antioxidant and antimicrobial properties." Arabian Journal of Chemistry 15, no. 1 (January 2022): 103527. http://dx.doi.org/10.1016/j.arabjc.2021.103527.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography