Dissertations / Theses on the topic 'PV'

To see the other types of publications on this topic, follow the link: PV.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'PV.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Goodman, Joseph Neal. "Performance measures for residential PV structural response to wind effects." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/54910.

Full text
Abstract:
This thesis applies structural reliability measures for the performance based design of residential PV system structures. These measures are intended to support designers in delivering systems with quantified and consistent reliability. Existing codified practices prescribe global factors (allowable stress design) and partial factors (load and resistance factor design) intended to provide an acceptable level of reliability as defined by historical practice. When applied to residential PV systems this prescriptive approach has two flaws, (1) calibration efforts needed to ensure consistency across structural system types have not kept up with the commercially available system types and (2) the actual expected reliability is not quantified and available to support decisions. The proposed reliability measures include probability of failure conditioned to wind speed in a fragility curve and the reliability index β, both of which are commonly used in performance based design. The approach is demonstrated through the application of the reliability measures to code compliant designs. Diverse system types are utilized to demonstrate how the existing code prescribed approach may lead to non-uniform structural performance. For each of the system types on which the reliability measures are demonstrated, a code compliant design is developed for three roof slopes, wind tunnel testing is conducted to provide an experimental measure of wind pressure coefficients, system specific fragility curves are generated to quantify the probability of failure conditioned to a set of wind speeds, and then, a site specific wind model is applied to produce a probability of failure and reliability index β. Through the performance based approach proposed in this thesis, two key outputs show non-uniform and unanticipated structural performance of PV systems designed according to the prescriptive code method. The two key outputs which illustrate this finding are fragility curves which illustrate the probability of failure over a range of wind speeds and reliability index, β values which couple the structural and wind distributions for a single measure of reliability.
APA, Harvard, Vancouver, ISO, and other styles
2

Westerlund, Martin, and Martin Karlsson. "Tunnelkonsol för Volvo PV." Thesis, Karlstad University, Faculty of Technology and Science, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-1230.

Full text
Abstract:

This degree project has been carried out by Martin Westerlund and Martin Karlsson, students at the Innovation and Design Engineer programme at the Faculty of Technology and Science at Karlstad University during spring 2007. The degree project extend over 15 weeks of full time studies, in addition Martin Westerlund carried out an in depth study in the area of drivers ergonomics concerning the handle brake, giving a total of 20 weeks of full time studies. Assigner for the project was Volvo Car Corporation at Torslanda in Gothenburg, department for design and product development PVC. Orderer was Bernt Lahneljung, Senior Studio Engineer; supervisor at Karlstads Universitet was Lennart Wihk.

Volvo Car Corporation is a car manufacturer in the incredibly competitive car industry. At the department for design and product development the cars interior as well as exterior design is established, driven along by the company’s vision to be the worlds most sought after premium car brand, with a mission to create the safest and most exiting car experience for modern families.

From this, the students were given the assignment to develop a tunnel console with fresh thinking as a parole word. The tunnel console is the part of the interior that sits between both front seats, most commonly including handle brake, gear shifter, arm rest and storage compartments at most cars. The assigner witnessed of stagnation in the innovative thinking at this part of the car and longed for new ideas.

The goal was to develop a complete tunnel console based on a given, soon to come into the market car (classified). A prototype was to be build in full scale and 3D-generated images and animations would present the result. The result was to be presented at an exhibit during two days at Karlstads University, as well as to the assigner.

Through a extensive research of the current market, including a trip down to Geneva for a visit at the Auto Saloon, followed by a creative faze of generating ides and finally an extensive work to tie the whole project together to one presentable product, the degree project has resulted in a complete tunnel console, full of innovative solutions.

The degree project resulted in a full scale prototype, 3D-generated animations, an exhibit display, a presentation made in Flash™ as well as this academic report. The end result was not classified, but were to be used within Volvo CC as a source of inspiration for a future project in the given care model.

APA, Harvard, Vancouver, ISO, and other styles
3

Granum, Christian Møgster. "PV systemer i distribusjonsnettet." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for elkraftteknikk, 2014. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-26167.

Full text
Abstract:
I denne masteroppgaven er distribuert produksjon fra fotovoltaiske systemer studert ved modellering og simulering av produksjon i en radial i distribusjonsnettet til Hafslund Nett. Med den store økningen av distribuert produksjon rundt i verden de siste årene, er det sannsynlig at det blir flere plusskunder også i Norge i årene som kommer. Hensikten med prosjektet har vært å studere påvirkningen distribuert produksjon har på distribusjonsnettet når det gjelder spenningsverdier og leveringskvalitet. Med stor sannsynlighet for flere nye plusskunder i årene som kommer, ønsker nettselskapet å være forberedt på hvilke utfordringer som må løses og hvilke krav som må settes til nettilknyttede fotovoltaiske anlegg. I tillegg er vekselrettere studert nærmere, med fokus på hvilke parametere som er viktige ved valg av vekselretter.Modellering og simulering er utført i dataverktøyet PSCAD. Data er hentet fra GeoNIS som er kart informasjonsverktøyet til Hafslund Nett. Masteroppgaven bygger videre på spesialiseringsprosjektet som ble utført av samme forfatter høsten 2013, der mulighetene for fotovoltaisk produksjon på Ostlandet ble studert. Radialen der det ene huset som ble undersøkt i spesialiseringsprosjektet ligger, er den samme radialen som er studert i denne masteroppgaven. Hovedfokus i oppgaven har vært å studere spenningsvariasjoner ved produksjon, tap av aktiv effekt, kompensering med reaktiv effekt i vekselretteren samt ubalansert produksjon.Resultatene viser at spenningsvariasjonene er relativt store, spesielt der kortslutningsimpedansen er høy. Ved produksjon i alle tilknytningspunktene i radialen, var gjennomsnittlig spenningsøkning i alle målepunktene på omtrent 5,5 V. Den største spenningsøkningen i et tilknytningspunkt var på i overkant av 13 V. Distribuert produksjon fører også generelt til at aktive effekttap minker. Likevel kan det i tilfeller der produksjonen i radialen er høy og lasten lav føre til en økning i tapet.Regulering med reaktiv effekt viste seg å være ganske nyttig for å holde spenningen i radialen nede. Med effektproduksjon i alle tilknytningspunktene med cos φ = 0,9, ble spenningen i snitt redusert med omlag 2,4 V. Den store andelen IT-nett i Norge gjør at ubalansert produksjon er et viktig tema og dersom produksjonen ikke fordeles jevnt mellom fasene kan det oppstå usymmetriske spenninger. Med produksjon i alle tilknytningspunktene mellom de to samme fasene blir spenningsusymmetrien over 2 % i alle tilknytningspunktene; dette er over maksimalgrensen definert i «Forskrift om leveringskvalitet i kraftsystemet» (FoL).De ledende vekselretterprodusentene i verden ser ut til jevnt over å produsere gode, kvalifiserte vekselrettere som ikke vil skape unødvendige forstyrrelser i leveringskvaliteten i nettet. Nettselskapet bør likevel sette noen egne krav til blant annet regulering av cos φ og maksimal tillatt effektproduksjon per fase.
APA, Harvard, Vancouver, ISO, and other styles
4

Froese, Nathan. "PV data logger report." Thesis, Froese, Nathan (2013) PV data logger report. Other thesis, Murdoch University, 2013. https://researchrepository.murdoch.edu.au/id/eprint/21666/.

Full text
Abstract:
Photovoltaic monitoring is a vital part for the implementation and optimization of solar energy as an electricity source. Today’s PV monitoring systems are constructed from costly tools and complex designs. This thesis project discusses the design of a basic and cost efficient PV weather monitoring system. The design consists of hardware processed via a microcontroller, a low powered computer and a software designed database program, Microsoft SQL Server Management Studio Express. The stored measurements can be viewed on LabVIEW, MS Access and MS Excel.
APA, Harvard, Vancouver, ISO, and other styles
5

Kichou, Sofiane. "Automatic supervision of Pv systems and degradation analysis of thin film PV modules." Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/461180.

Full text
Abstract:
Monitoring and regular performance analysis of Grid-Connected Photovoltaic (GCPV) systems are of primal importance in order to ensure an optimal energy harvesting and reliable power production at competitive costs. Main faults in GCPV systems are caused by short-circuits or open-circuits in PV modules, inverter disconnections, PV module degradation and the presence of shadows on the PV array plane. Detecting these faults can minimize generated losses by reducing the time in which the PV system is working below its optimum point of power generation. In addition, the degradation of Tin Film PV (TFPV) modules under outdoor exposure is still not fully understood and is currently object of research. A better understanding on this topic would be important for selecting the best PV technology for the appropriate climatic condition and for improving the reliability and performance of PV systems. Simulations play a crucial role in both outdoor behaviour forecasting and automatic fault detection of GCPV systems. Two PV module/array models have been used in the present thesis in order to simulate the outputs of GCPV systems of different topologies and solar cell technologies, as well as in the fault detection procedure. Moreover, five different algorithms were used for estimating the unknown parameters of both PV models in order to see how these estimated parameters affect their accuracy in reproducing the outdoor behaviour of three GCPV systems. The obtained results show that the metaheuristic algorithms are more efficient than the Levenberg-Marquardt algorithm (LMA) especially in bad weather conditions and both PV models perform well when used in the automatic fault detection procedure. A new approach for automatic supervision and remote fault detection of GCPV systems by means of OPC technology-based monitoring is presented in this thesis. The fault detection procedure used for the diagnosis of GCPV systems is based on the analysis of the current and voltage indicators evaluated also from monitored data and expected values of current and voltage obtained from the model of the PV generator. Three GCPV systems having different sizes, topologies and cell technologies have been used for the experimental validation of the proposed fault detection method. The analysis of current and voltage indicators has demonstrated effectiveness in the detection of most probable faults occurred in the PV arrays in real time. Furthermore, obtained results show that the combination of OPC monitoring along with the proposed fault detection procedure is a robust tool which can be very useful in the field of remote supervision and diagnosis of GCPV systems. Finally, the study of degradation issues of TFPV modules corresponding to four technologies: a-Si:H, a-Si:H/µc-Si:H, CIS and CdTe, deployed under outdoor conditions for long term exposure is also addressed in the present thesis. The impact of the degradation on the output power of the PV modules is analysed, in order to determine their annual degradation rate and their stabilization period. The degradation rate is obtained through a procedure based on the evolution of the module effective peak power over time. The stabilization period is evaluated by means of two methods: the evolution of DC-output power of the PV module, and the power-irradiance technique. The obtained results show that the CIS PV module is the most stable compared to the other technologies, when deployed under Continental-Mediterranean Climate. The a-Si:H and a-Si:H/µc-Si:H PV modules also perform quite well, showing degradation rates and stabilization periods similar to the expectations. The CdTe module shows poor performances, with the highest degradation rate, and long stabilization period of 32 months. Lastly, the parameter extraction technique has been also applied to analyse the evolution of model parameters for a-Si:H and a-Si:H/µc-Si:H arrays working in outdoor conditions for long term exposure.
Los fallos principales en los SFCR son causados por cortocircuitos o circuitos abiertos en módulos fotovoltaicos, desconexiones de inversores, degradación de módulos fotovoltaicos y presencia de sombras en el plano del generador fotovoltaico. La detección de estos fallos puede minimizar las pérdidas generadas al reducir el tiempo en que el sistema fotovoltaico está funcionando por debajo de su punto óptimo de generación de energía. Por otro lado, la degradación de los módulos fotovoltaicos de capa delgada (TFPV) en condiciones reales de trabajo sigue siendo actualmente objeto de investigación. Una mejor comprensión de este tema es importante para seleccionar la tecnología fotovoltaica más adecuada para cada condición climática específica y mejorar así tanto la fiabilidad como el rendimiento de los sistemas fotovoltaicos. Las simulaciones desempeñan un papel crucial tanto en el pronóstico del comportamiento real como en la detección automática de fallos en los SFCR. En la presente tesis se han utilizado dos modelos de módulos fotovoltaicos para simular las salidas de los sistemas de diferentes topologías y tecnologías de células solares, así como en el procedimiento de detección de fallos. Se han utilizado cinco algoritmos diferentes para estimar los parámetros de ambos modelos con el fin de ver cómo estos parámetros afectan a su precisión en la reproducción del comportamiento real de tres SFCR. Los resultados obtenidos muestran que los algoritmos meta-heurísticos son más eficientes que el algoritmo de Levenberg-Marquardt (LMA) especialmente en malas condiciones climáticas, aunque ambos modelos pueden ser utilizados para la supervisión y la detección automática de fallos. En esta tesis se presenta un nuevo enfoque para la supervisión automática y la detección remota de fallos en SFCR mediante la monitorización basada en la tecnología OPC. El procedimiento de detección de fallos utilizado para el diagnóstico de SFCR se basa en el análisis de los indicadores de corriente y tensión evaluados también a partir de datos monitorizados y valores esperados de corriente y tensión obtenidos a partir del modelo del generador fotovoltaico. Se han utilizado tres SFCR de diferentes tamaños, topologías y tecnologías fotovoltaicas para la validación experimental del método de detección de fallos propuesto. El análisis de los indicadores de corriente y tensión ha demostrado efectividad en la detección de los fallos más probables en generadores fotovoltaicos en tiempo real. Además, los resultados obtenidos muestran que la combinación de monitorización OPC junto con el procedimiento de detección de fallos propuesto es una herramienta robusta que puede ser muy útil en el campo de la supervisión remota y el diagnóstico de SFCR. Finalmente, en la presente tesis se aborda el estudio de los problemas de degradación de módulos fotovoltaicos de capa delgada correspondientes a cuatro tecnologías: a-Si:H, a-Si:H/µc-Si:H, CIS y CdTe, en condiciones de trabajo a la intemperie durante periodos prolongados de exposición. Se analiza el impacto de la degradación en la potencia de salida de los módulos fotovoltaicos para determinar su tasa de degradación anual y su período de estabilización. Los resultados obtenidos muestran que el módulo fotovoltaico CIS es el más estable comparado con las otras tecnologías, cuando trabajan en condiciones de clima continental mediterráneo. Los módulos fotovoltaicos a-Si:H y a-Si:H/µc-Si:H también presentan un buen comportamiento, mostrando tasas de degradación y períodos de estabilización similares a los esperados. El módulo de CdTe muestra las peores prestaciones, con una mayor tasa de degradación y un largo período de estabilización de 32 meses. Por último, se ha aplicado también la técnica de extracción de parámetros para analizar la evolución de los parámetros del modelo para generadores fotovoltaicos de módulos de a-Si: H y a-Si:H/µc-Si:H en condiciones reales de trabajo durante largos periodos de tiempo.
APA, Harvard, Vancouver, ISO, and other styles
6

Zhou, Hang. "Modelling and experimental study of PV cells in lens-walled CPC PV system." Thesis, University of Nottingham, 2016. http://eprints.nottingham.ac.uk/35904/.

Full text
Abstract:
The concentration photovoltaics (CPV) application promises to produce lower price electricity with less semiconductor usage in comparison with the common flat plate PV module. The compound parabolic concentrator (CPC) shows great potential in both economics and efficiency in low the concentration photovoltaics (LCPV) system because it does not require a tracking system and is able to concentrate light with a large incident angle range. A detailed investigation has previously been carried out regarding the novel CPC module purposed (Su et al., 2012a). The validation of the experiment shows the Lens-Walled CPC gives a superior optical and electrical performance compared with other CPCs. Non-uniform light distribution is a common issue with all CPC designs as it has a major influence on the concentration of solar cell performance. In order to study the effects of non-uniform distributed light on solar cell behavior in-depth, two simulation approaching methods including array modelling and finite element modelling (FEM) were carried out. Both simulation approaches observed a reduction in the solar cell fill factor (FF) under non-uniform distributed light. The high resistive losses in the cell are the main cause of this phenomenon. Three simulation models with different cell grid designs were studied to further study the influence of non-uniform distributed light. The light profiles from three different CPCs were implemented with the FEM model. The result shows although solid CPC has the highest current output in a certain condition, the Lens-Walled CPC has the most uniform light distribution, which reduces the influence from non-uniform light distribution to solar cell performance.
APA, Harvard, Vancouver, ISO, and other styles
7

Langels, Hanna, and Fredrik Gannedahl. "BiFacial PV Systems : A technological and financial comparison between BiFacial and standard PV panels." Thesis, Uppsala universitet, Institutionen för teknikvetenskaper, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-353708.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cortes, Sebastian. "Profilerad PV-modul AvSammansatta Kiselceller." Thesis, Karlstads universitet, Institutionen för ingenjörsvetenskap och fysik (from 2013), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-84809.

Full text
Abstract:
I denna rapport presenteras en analys av en profilerad solmodul av sammansatta kiselceller. Syftet med detta är att undersöka effektkurvan och I-V diagram på en denna solmodul vid olika infallsvinklar från ljuskällan för att få en förståelse på förluster gentemot en plan-modell. Genom att konstruera en modell med skurna kiselsolceller utgörs mätningar för att få en representation av effektkurvan. Resultatet skall sedan jämföras med en plan-modell, därefter diskuteras resultaten från bägge modellerna.
APA, Harvard, Vancouver, ISO, and other styles
9

Franklin, Ed. "Solar Photovoltaic (PV) Site Assessment." College of Agriculture, University of Arizona (Tucson, AZ), 2017. http://hdl.handle.net/10150/625447.

Full text
Abstract:
5 p.
An important consideration when installing a solar photovoltaic (PV) array for residential, commercial, or agricultural operations is determining the suitability of the site. A roof-top location for a residential application may have fewer options due to limited space (roof size), type of roofing material (such as a sloped shingle, or a flat roof), the orientation (south, east, or west), and roof-mounted structures such as vent pipe, chimney, heating & cooling units. A location with open space may utilize a ground-mount system or pole-mount system.
APA, Harvard, Vancouver, ISO, and other styles
10

Chan, Joshua. "PV array simulator performance evaluation." Thesis, Chan, Joshua (2011) PV array simulator performance evaluation. Other thesis, Murdoch University, 2011. https://researchrepository.murdoch.edu.au/id/eprint/6843/.

Full text
Abstract:
This dissertation evaluates the performance of a 25kW PV Array Simulator based on a design from Prof. Heinrich Haberlin and his staff from the PV laboratory of the Berne University of Applied Sciences, in Burgdorf, Switzerland. The simulator was set up and is operated by ResLab, based at Murdoch University. The device has a power rating of 25kW, an open circuit voltage of up to 750V, and a short circuit current of up to 40A. The design and concept of the simulator replicates the operations of an actual PV array. Incorporated in its controls are eight IV curves of different fill factors that were configured to portray different cell technologies. The development of such a test device was initiated when PV applications such as inverters required a device that could repeatedly produce consistent testing conditions, as well as a platform that could perform precise MPPT measurements. First the study goes into understanding the control options of the simulator in terms of its IV curve production abilities. The initial familiarization stage was conducted with technical manuals and a brief session with Andrew Ruscoe who was involved in the development of the simulator. Through that and further research, it was comprehended that the Main Control, which is the control responsible for all IV curve generations, is designed electronically to follow the single diode model circuit of the PV array. A mathematical aspect has been included in the thesis to confirm the operation of Main Control. Designers of the simulator expanded on this theory by utilising individual sets of diode strings with different configurations, which developed certain fill factors when a voltage is applied. Operation of the PV Array Simulator commenced after the understanding of the controls was established. The eight IV curves of varying fill factors were captured and observed. As part of the study, the curves were classified against the three most common cell technologies. The performance of the simulator was evaluated using different test conditions to observe its stability. It was proven through these tests, as well as documentations from past tests that the simulator was very stable even when it was made to operate at its threshold limit. As the varying fill factors were obtained by the different configuration of diode strings, a study was focused on developing a basis or pattern associated with the formation of different classifications of diodes in series. The diode strings found in the simulator were replicated and reverse engineered.
APA, Harvard, Vancouver, ISO, and other styles
11

Ding, Zihang. "PV module troubleshooting and measurement." Thesis, Ding, Zihang (2012) PV module troubleshooting and measurement. Masters by Coursework thesis, Murdoch University, 2012. https://researchrepository.murdoch.edu.au/id/eprint/13303/.

Full text
Abstract:
Over the past few years, the solar photovoltaic (PV) industry has taken the lead in the market growth of the Australian renewable energy industry. Due to the steady manufacturing cost reduction and Australian government support, a great number of PV modules have been installed for domestic and commercial use. It is well known that the performance of PV modules is greatly influenced by many factors, such as solar irradiance, ambient temperature and the angle of incidence. In addition, the output of PV systems gradually degrades over time under exposure to the sun and other environmental conditions, such as a high temperature and moisture. Normally, the limited warranty period of PV modules ranges from 20 to 25 years, which means the rate of degradation should be less than 1% per year. However, we found that some PV modules performed much worse than the normal ones and their outputs dropped much faster than the expected. Therefore, in any PV module troubleshooting, it is important to figure out the causes that result in dramatic power losses and measure the output of the proper PV modules under operating conditions over a long term. A rated PV module refers to Standard Test Conditions (STC) of 1000 W/m2 solar irradiance, Air Mass AM1.5, and a cell or module temperature of 25 0C measured prior to outdoor exposure. However, module performance in real conditions is variable. Therefore, it is necessary to provide more information on a module in actual operating conditions over a long term. This study is divided into two parts. The first part is a theoretical analysis of module degradation and troubleshooting techniques. The second part is mainly practical measurements for module degradation estimation. PV module performance measurements are used to obtain highly accurate output data from four different PV modules representing three different technologies: monocrystalline silicon (mc-Si), polycrystalline silicon (p-Si) and laser grooved buried contact crystalline silicon (LGBC, c-Si). Degradation rate estimation is based on comparisons of three groups of previous test results obtained in three different periods (2002, 2003 and 2007) by three PhD Murdoch University students. Finally, a verification process by a simulator is briefly introduced.
APA, Harvard, Vancouver, ISO, and other styles
12

Noor, Hisham Nur Ain. "Self-cleaning Photovoltaic (PV) Modules." Thesis, Noor Hisham, Nur Ain (2017) Self-cleaning Photovoltaic (PV) Modules. Honours thesis, Murdoch University, 2017. https://researchrepository.murdoch.edu.au/id/eprint/41910/.

Full text
Abstract:
The effect of soiling accumulation towards photovoltaic (PV) could cause a reduction in the PV system performance. The decrease in PV system output due to soiling has been proven crucial(Jiang, Lu, and Sun 2011). Thus signifies the significance of further research on the effect of soiling on a PV system. This project is a research based on the climate in Murdoch, Western Australia. This project consists of three parts; Photovoltaic (PV) performance testing, Air quality testing, Light transmittance testing. The PV performances were analysed based on three different dust mitigation conditions. The first module labelled as A is washed regularly as part of the dust mitigation strategies applied. The second module, labelled as B has a hydrophobic coating which functions when rainwater fall on the panel, the water would roll off the module at the same time rolling dust off the module. The third module, labelled as C is kept without any dust mitigation method. All three modules were tested out and washing performs the best giving a reduction in performance of 30.8% after 18 days, while B reduces in 47.4% performance and C has a 31.4% reduction in performance. Test 2 involves correlating the air quality with the dust accumulation on the PV modules. An optical dust sensor is used for this test. Test 3 has the same concept as Test 2 but is more closely related to the dust adhering to the PV modules. A glass panel is used to simulate the dust accumulation with a Light Emitting Diode (LED) and an Light Dependent Resistor (LDR) in between. A ratio-based calculation is made for test 3 to correlate the transmittance with voltage output and comparing the value when the glass is clean compared to dirty. The washed module performs the best with an average air quality of 0.025mg/m3. The worst module was the one without dust mitigation strategies, where the light transmittance reduced in 22% after two weeks of dust accumulation. Consequently, to improve the performance of the PV in the industry, soiling should not be ignored as it should be a big issue in the PV industry.
APA, Harvard, Vancouver, ISO, and other styles
13

Vrzal, Martin. "Optimalizace návrhu velikosti PV systémů." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2016. http://www.nusl.cz/ntk/nusl-254209.

Full text
Abstract:
The master thesis deals with proposal of size optimization of PV systems. According to results of optimization, alternative solutions of photovoltaic system were proposed for family house. From the perspective of costs efficiency were compared investment costs and savings of implementation of electricity supply directly to private consumption. Particularly for each of the proposed solution, profitability assessment of comparing purchasing costs and returns on investment was performed. Theoretical part of the master thesis consists of introduction into solar radiation principles, structure and functionality of photovoltaic systems, electronics inverters and accumulation of electric energy. The practical part is focused on measuring of electricity consumption in particular family house, calculation of sunlight intensity hitting tested house, making various solutions of photovoltaic power plants placed on the family house in order to evaluate returns on investments. In conclusion are summarized all results of investigated solutions according to economics aspects.
APA, Harvard, Vancouver, ISO, and other styles
14

Fjällström, Viktor. "Vidareutveckling av PV/T-receiver för koncentrerat solljus." Thesis, Uppsala universitet, Institutionen för teknikvetenskaper, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-135463.

Full text
Abstract:
The rising demand for electricity and heat raises a big challange for the society and engineers. Many products have been introduced to the market to supply more energy to the energy systems. Absolicon AB is a Swedish company that develops and markets a combined heat and power generating product. The product, Absolicon X10, uses a parabolic trough to concentrate the radiation of the sun onto a receiver. The receiveris equipped with mono crystalline solar cells and is cooled by a circulating liquid media. The electricity is supplied to the local grid and the heat is supplied to a local heating system. In this master thesis, the author has developed a number of tests for the Absolicon X10 with the superior goal to enhance the quality and electrical performance. The main areas of interest were: The ribbon connecting the solar cells The correlation between indoor and outdoor performance How the position of the receiver in the trough affects the electrical output A test method for evaluation of ribbons was developed and was applied to a new type of ribbon. The method showed that this new type of ribbon was not good enough for implementation in the production chain. Two types of indoor testing methods were developed, with the aim of determine the electrical performance of receivers. Both methods were unable to do so, but one of them might be good enough with some improvements. A position of the receiver which gives higher electrical output and higher tolerance for the tilt angle of the through was found.
APA, Harvard, Vancouver, ISO, and other styles
15

Umana, Aniemi. "Module-level autonomous settingless protection and monitoring for standalone and grid-connected photovoltaic array systems using quadratic integration modeling." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/54441.

Full text
Abstract:
This research applies a recently developed dynamic state-estimation based protection scheme, the settingless protection, to the photovoltaic (PV) industry for the first time. At this time, the proposed protection algorithm has been implemented on traditional protection zones for individual power system devices, but this research extends this protection to a microgrid, specifically, a system of PV network composed of several PV modules. Several illustrative examples on various anomalies such as high impedance faults and shorted-out PV modules have been provided to demonstrate the effectiveness of this protection scheme. The detection of these anomalies has been demonstrated in the presence of changing atmospheric conditions, and with the operation of maximum power point tracking (MPPT) equipped dc-dc converters. This protection scheme requires an accurate model of the PV module, therefore, a two-diode PV model has been developed using quadratic integration modeling. In this PV model development, a scaling factor is applied to the Taylor series expansion of the exponential terms of the model of the PV module. Then the higher order terms of the Taylor series expansion are reduced to at most second order terms using the quadratization technique. Furthermore, a novel approach for extracting the PV parameters, namely, the ideality constants, leakage currents, PV module internal current, shunt and series resistances, has been presented. A comparison was performed between numerically generated data using the determined PV module parameters and data measurements from a physical PV module. It was shown that the maximum error from this comparison was below 0.12A, and less than 0.05A around the maximum power point region of the PV modules used for this research. The residual data from the PV array protection scheme has been used to develop a method for identifying the location of faulted PV modules. Also, condition-based monitoring of the PV array system has also been presented with examples. From the PV array system monitoring, the shading and underperformance of a PV module have been identified. From the contributions of this research, an accurate module of the PV array has been developed in a form that can be integrated with other power system devices. This accurate module can be used for state estimation of the PV array, load flow analysis, short circuit analysis, and other power system analytical studies. Also, by determining the location of the faulted PV module, the time to identify this faulted PV module in a large PV installation is drastically reduced. Lastly, by identifying shading conditions and underperforming PV modules, the PV system operator can quickly bring the underperforming module or modules to optimal performance, thereby, maximizing the power yield of the PV array, and maximizing the revenue of the PV system owner.
APA, Harvard, Vancouver, ISO, and other styles
16

Hathout, Ahmed. "A Comprehensive PV Systems Installation Guide and Designing a Roof-Based PV System as a Demonstration System for Troubleshooting Errors in PV systems Installations." Thesis, Högskolan Dalarna, Energiteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:du-28188.

Full text
Abstract:
The purpose of the thesis was to make a comprehensive guide for PV systems installers and engineers, using the best practices and following the applicable regulations and standards for the mechanical and electrical installations of PV systems. The guide includes all the different aspects of a PV system installation including different types of roofs and mounting structures, fire safety, height safety and fall protection, installation precautions, electrical and mechanical installations, safety gears and finally system commissioning. The guide was developed by reviewing the various standards and best practices deployed in various countries that are pioneers in PV installations as Germany, UK and the US in the period from 2006-2018.   A troubleshooting errors scheme was conducted to help installers track down operational faults in a PV system. Installers will be able to identify problems of old or newly installed PV systems according to few procedures to resolve operational problems.   In addition, a PV system was designed on the rooftop of Högskolan Dalarna in Sweden. The system will be used as a learning platform for installers in a course that will be introduced on the University’s campus, aimed at educating installers on PV systems installations. The designed system mainly focuses on flat and pitched roofs installations. The system was designed with the main priority to benefit installers working on and installing the system. Performance ratio and energy yield of the system were not emphasized when designing the system. It was specifically designed to match the objectives of the university’s installer’s course to be conducted on the campus. The designed system consists of two sub-arrays with two different mounting structures. The first one was a pitched roof mounting structure installed on a small hut on the university’s rooftop, and the second sub-array was a ballast mounting system directly situated on the roof surface with no penetrations to its surface. The system was designed on Sketchup software as a 3D model, simulated in PVsyst for energy yield forecast and losses evaluations, drawn as a single line electrical diagram on AutoCAD and lastly, a bill of materials was conducted with all the necessary components and parts to install the system on the rooftop.   Results from the simulated system shows a steep drop in energy yield during the winter months, energy losses due to shading effects of approximately 5 % and minimal other system and cables losses were recorded.   A study visit for a pitched roof PV system installation to be carried out by a group of six Swedish students was conducted. A discussion about the installation procedure, major mistakes and lack of practical knowledge by the engineering students were analyzed. Possessing knowledge of PV systems installations is of great importance not only to installers, but to solar design engineers. It is a necessity that engineers poses the fundamentals of installing a PV system and follow the applicable standards and best practices during systems design and execution.
APA, Harvard, Vancouver, ISO, and other styles
17

Eriksson, Olof. "Techno Economic Analysis of Reverse Osmosis Combined with CSP + PV in Kuwait." Thesis, Högskolan Dalarna, Energiteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:du-34521.

Full text
Abstract:
Seawater desalination plays an important role when fighting the freshwater scarcity that many places around the world are currently facing. The increasing need for desalinated water is followed by a high energy demand. It is therefore essential that an expansion of desalination capacity is accompanied by a parallel use of renewable energy sources in this process. This thesis presents a techno-economic study on a reverse osmosis (RO) desalination plant, with a nominal power consumption of 15 MW, that is powered by a concentrated solar power (CSP) plant combined with a photovoltaic (PV) power plant, in Kuwait. The main aim of this thesis was to find which system designs would give the lowest global warming potential and levelized cost of the desalinated water. In addition, it has been investigated how electricity price and emission allowance cost could make a solar power plant competitive to the grid. For this purpose, some components in the whole system were simulated using System Advisor Model and Engineering Equation Solver. With the results obtained from the simulations, a dynamic model of the whole system was developed in MATLAB, Simulink where simulations were done for a typical meteorological year in Shagaya, Kuwait. Both on-grid and off-grid systems were considered.   In the on-grid case, the lowest cost of water was obtained with only PV (ca 0.65 USD/m3) and this could reduce carbon emissions by 30 % compared to only using the grid. Combining CSP and PV could reduce the carbon emissions by 85 % but with a 35 % increase in water cost. It was found that an electricity price of 0.1 USD/kWh or an emission allowance cost of 70 USD/tCO2-eq would make a CSP + PV plant competitive to the grid. These results indicate that the choice of which system is best for powering an on-grid RO plant depends on how the environmental and economic factors are prioritised. In the case of the off-grid system, both the lowest cost of water (ca 0.9 USD/m3) and the highest capacity factor were obtained with a CSP + PV plant with 16 h of storage, a solar multiple of 3 and a PV capacity of 28 MW.
APA, Harvard, Vancouver, ISO, and other styles
18

Pande, Sohum, and Raj Bhaladhare. "Different Photovoltaic Penetration Rates for the Planned Area of Jakobsgardarna in Borlange, Sweden." Thesis, Högskolan Dalarna, Energiteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:du-28185.

Full text
Abstract:
The municipality of Borlange is planning to build a new modern, social and an ecologically sustainable district due to an increase in the city’s population. Over 1200 homes shall be built for people from all sections of the society. Due to such high levels of migration into the city, it is of utmost importance for the society to ensure that all the new constructions would be energy efficient and focused towards the goal of creating a sustainable society. The main objective of this study is to understand the importance of planning for Photovoltaics (PV) in new areas and performing a series of simulations for different scenarios with varying degrees of PV penetration for the planned residential area of Jakobsgardarna in Borlänge, Sweden.   This was achieved by determining the load profiles for all buildings by thorough investigation over the previous works in the analysis of household demand loads and calculating the available roof area in several orientations with the help of model maps drawn to scale. Due to varied types of roofs and their structures, it was assumed that all buildings have a similar roof structure i.e. tilted roofs having a tilt of 30°. Batch simulation was performed in PVSyst for a base case scenario which provides the reference point for determining the total PV power and the total PV output in all orientations.   The PV penetration is measured in terms of energy by dividing the total PV output with the annual demand load. Various scenarios of PV penetration are created based on the available roof areas at particular roof orientations. It can be observed that the level of PV penetration is highly dependent on the orientation of roofs. A 17% of PV penetration is observed when PV is installed only on South-facing roofs while the PV penetration reduces drastically to 9% when PV is installed only on East-West facing roofs even though there isn’t a linear reduction in the available roof area.
APA, Harvard, Vancouver, ISO, and other styles
19

Trapani, Kim. "FLEXIBLE FLOATING THIN FILM PHOTOVOLTAIC (PV) ARRAY CONCEPT FOR MARINE AND LACUSTRINE ENVIRONMENTS." Thesis, Laurentian University of Sudbury, 2014. https://zone.biblio.laurentian.ca/dspace/handle/10219/2199.

Full text
Abstract:
The focus of the research is on the development of the concept of floating flexible thin film arrays for renewable electricity generation, in marine and lacustrine application areas. This research was motivated by reliability issues from wave energy converters which are prone to large loads due to the environment which they are exposed in; a flexible system would not need to withstand these loads but simply yield to them. The solid state power take off is an advantage of photovoltaic (PV) technology which removes failure risks associated with mechanical machinery, and also potential environmental hazards such as hydraulic oil spillage. The novelty of this technology requires some development before it could even be considered feasible for large scale installation. Techno-economics are a big issue in electricity developments and need to be scoped in order to ensure that they would be cost-competitive in the market and with other technologies. Other more technical issues relate to the change in expected electrical yield due to the modulation of the PV array according to the waves and the electrical performance of the PVs when in wet conditions. Results from numerical modelling of the modulating arrays show that there is not expected variation in electrical yield at central latitudes (slightly positive), although at higher latitudes there could be considerable depreciation. With regards to the electrical performance a notable improvement was measured due to the cooling effect, slight decrease in performance was also estimated due to water absorption (of ~ 1.4%) within the panels. Overall results from both economic and technical analysis show the feasibility of the concept and that it is a possibility for future commercialisation.
APA, Harvard, Vancouver, ISO, and other styles
20

KARLSSON, REBECCA, and EVA NILSENG. "The potential for centralized photovoltaicsystems in Sweden." Thesis, KTH, Hållbarhet och industriell dynamik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-189586.

Full text
Abstract:
Considering the long term target set by the Swedish government of having an energy system basedexclusively on renewable sources, the potential for different renewable sources need to beinvestigated. When analyzing the sources used for electricity production in Sweden today, solarPV represents a very small share. This relatively small share also mainly consists of grid-connecteddistributed PV systems, and to analyze the possibilities of making solar energy a larger share inthe electricity production in Sweden this study will focus on grid-connected centralized PV farms.The main purpose of the study is to identify the potential for grid-connected centralized PVsystems for large scale production in Sweden. This will include an identification of the mostimportant key factors influencing the profitability, an investment calculation to be aware of theprofitability, a prediction of the future development of the PV industry in Sweden and lastly themain challenges that the PV industry is facing.To conduct this study a collaboration with Vattenfall Vind AB has been made, where a case studybased on three specific locations has been implemented when analyzing both the profitability andthe key factors. These three cases are based on places where Vattenfall has existing wind farms orhas assigned for upcoming ones. These areas could be seen as a potential benefit since the companyalready has started to inspect the land area, and that wind and PV farms might be able to sharenecessities such as infrastructure.The results of the study mainly indicate that the PV industry most likely will continue develop andgrow, but the profitability of investing in grid-connected centralized PV farms does not lookpromising today or in the next coming years. This mainly due to low prices for electricity anduncertainties in the future development of the financial support policy. The location is also veryimportant for this type of installation. There are places in southern Sweden with enough insolation,but these areas can be seen as limited. To make solar energy a larger share of the electricityproduction in Sweden in a profitable way today, more investments should be made in gridconnecteddistributed PV systems rather than grid-connected centralized PV farms. PV farms forlarge scale production might though be more profitable in the future when the prices for modulesand inverters will decrease further and when the spot price increases.
APA, Harvard, Vancouver, ISO, and other styles
21

Nylund, Sophie, and Zahra Barbari. "Study of defects in PV modules : UV fluorescence and Thermographic photography for Photovoltaics (PV) Field Application." Thesis, Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-44120.

Full text
Abstract:
For a PV plant it is of fundamental importance that the operation of the PV modules is free from faults or at least that the faults can be detected early, to ensure efficient electricity production. Some defects such as cracks can be seen in visible light while microcracks and damage to the silicon material can only be seen through special lighting. This study focuses on the most common defects in photovoltaic (PV) systems. Compare the infrared (IR) technology with the new ultraviolet (UV) fluorescence image technique for PV characterization, based on their accuracy and uncertainty factors under an experimental field investigation. In this study, first a literature study was conducted to the most common defects in PV system and their impact on electricity generation. Then a simulation model of a PV system was created in PVsyst and exported to Microsoft Excel which was used to evaluate how different defects at different stages of the PV cell's life cycle impact electricity generation, performance parameters and economic exchange. Furthermore, experiments with UV and IR was implemented at a PV system located in Dalarna and some PV modules at MDH. It was conducted that occurrence of snail tracks, delamination and hot spots in combination with bypass failures and non-functioning cell will affect the economic profitability in the long run and the payback time will increase since their impacts on electricity generation and performance parameters are huge. The worst case is when PV modules are affected by the fault in bypass diode and non-functioning cell which result to a payback time longer than the module's lifetime and huge amount electricity losses in different bypass diodes configurations. Since UV and IR are two different methods that are performed in two different ways, different errors occurred during the measurements. The biggest external factor was the weather that determined if the experiment could be implemented. The IR method gave decent results and was quicker to use, but the UV method highlighted some defect which could not be seen with the IR technology.
APA, Harvard, Vancouver, ISO, and other styles
22

Anderson, David James. "Energy rating of photovoltaic modules." Thesis, University of Strathclyde, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.248767.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Oller, Westerberg Amelia. "Revising installed photovoltaic capacities on emerging markets by analysing customs data." Thesis, Uppsala universitet, Byggteknik och byggd miljö, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-438780.

Full text
Abstract:
The global solar PV market is growing fast, and so is the production and trade with photovoltaic products and peripherals. Until now, the largest development has taken place in highly developed and electrified countries with good administrative control over their electricity system. Recently, however, new markets in developing countries have become increasingly relevant in terms of market share, system sizes and installed capacities. Statistics from these types of countries are often weak or non-existent, leading to problems for global organizations such as the International Energy Agency (IEA) or the International Renewable Energy Agency (IRENA), whose task is to follow, analyze and document named development.  In this report, a method is presented in which customs data monitored by the ‘Market Analysis and Research’ section of the International Trade Centre, an agency of UN’s World Trade Organization, is analyzed and converted into annual installed PV capacity volumes. By complementing the basic data from the customs database with price statistics from IEA PVPS task 1 along with national module production data from IEA PVPS task 1 and the RTS cooperation a data conversion is executed.  The method has been improved incrementally, where different assumptions have been modified or added, so that the data conversion of exported and imported PV products, expressed in dollar per yearly quarter, match the official statistics of annual installed capacity for a number of reference countries with comprehensive PV capacity statistics. The sensitivity analysis shows that the method is sensitive to the accuracy of the annual domestic national PV module production data and to price changes of Chinese PV modules. For countries with accurate PV module production data, or countries with no module production, the method seems to be able to estimate the annual installed capacity in 2018 with an average difference of 21% and a maximum difference of ±38% and a total average difference of 12%, 17% and 11% for 2016, 2017 and 2018 respectively.  By implementing this method, an estimate on yearly installed capacities can be generated in all countries connected to the UN customs database and where the domestic module production is known. This gives the opportunity to at least get an assessment of how much PV that has been installed in developing countries that lack official statistics about their domestic PV market. The regions with the lowest existing data coverage in the world have been determined to be Africa and the Middle East. When applying the method on countries in Africa and the Middle East, larger capacities than the reference data were obtained.
APA, Harvard, Vancouver, ISO, and other styles
24

Franklin, Edward A. "Mounting Your Solar Photovoltaic (PV) System." College of Agriculture, University of Arizona (Tucson, AZ), 2017. http://hdl.handle.net/10150/625443.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Fux, Volker. "Thermal simulation of ventilated PV-facades." Thesis, Loughborough University, 2006. https://dspace.lboro.ac.uk/2134/7852.

Full text
Abstract:
The application of double glazed facades, especially in administration buildings is becoming more and more popular. Aside from the architectural aspects, the energetic consequences with respect to the building into which it is integrated have been discussed much over the past few years. In order to quantify the energy balance of such facades, the heat transfer rate between the inner facade layers and the gap temperature are important factors and constitute the core of this thesis. In contrast to experimental estimations of heat transfer rates, which are measured using heat flux sensors, in this study the energy balance within the facade was determined primarily by means of computational fluid dynamics (CFD). For the purpose of verifying the CFD results, simulation results were assessed through comparison with experimental flow data obtained using particle image velocimetry (PIV). Comparison of CFD simulations and PIV measurements showed good agreement for different symmetric and asymmetric plate temperatures as well as for different forced flow rates. A new Nusselt correlation was developed, which was derived from a CFD parameter study. The suggested correlation includes plate distances which vary from 0.05 to 0.5m, surface temperatures from -10 to 60 degrees C, inlet temperatures from -10 to 30 degrees C and Reynolds numbers (Red) between 500 and 6500. In order to estimate the thermal behaviour of a ventilated facade at an early stage of building planning, a transient simulation program was developed which is able to calculate the dynamic energy balance that occurs in a double facade. To facilitate integration of the calculation method into the commercial building simulation program TRNSYS 15, a new Type (Type 111) was written. This Type 111 can be used to connect an arbitrary facade construction to the existed building model Type56. Comparisons between calculated results from the developed model and measurements on real facades(a hybrid, mechanically-ventilated PV fagade and a naturally-ventilated, double glazed facade) provided sufficiently good agreement. The total energy rate through a window (g-value), estimated by the special g-value test rig at the Stuttgart University of Applied Sciences could also be reproduced accurately using the developed program.
APA, Harvard, Vancouver, ISO, and other styles
26

Barbosa, José Nilton Tavares. "PV inverters for module level applications." Master's thesis, FCT-UNL, 2011. http://hdl.handle.net/10362/7083.

Full text
Abstract:
Dissertação para obtenção do Grau de Mestre em Energias Renováveis – Conversão Eléctrica e Utilização Sustentáveis
Nowadays, the photovoltaic (PV) energy is presented as one of the most promising source of clean energy, and so a good way for greenhouse gas emissions mitigation and reduce the fossil fuel dependence. Within it, the photovoltaic energy has caused a huge interest in the electronic converters, and the need to improve their efficiency and reducing their cost. With this work I present a solution for a module scale grid-connected single-phase inverter. The solution consists in a two-stage inverter insolated with a grid line transformer. The two-stage inverter is composed by a DC-DC converter and a DC-AC converter connected through a DC-link capacitor. The DC-DC converter in case is a boost converter used to elevate the voltage from the PV module to a higher level. For the DC-AC converter it is used a full-bridge inverter, and both the DC-DC and the DC-AC converters use the IGBTs form an integrated module with its respective drivers. To the boost control it is implemented a Maximum Power Point Tracking algorithm that can optimize the power extraction from the PV source and for the inverter it is used a sliding mode hysteretic control. Once this inverter is conceived to work connected to the grid, a single-phase PLL system is used to synchronize the injected current to grid voltage. All the control part is made digitally using an Arduino Uno board, which uses an Atmel microcontroller.
APA, Harvard, Vancouver, ISO, and other styles
27

Bedrich, Karl G. "Quantitative electroluminescence measurements of PV devices." Thesis, Loughborough University, 2017. https://dspace.lboro.ac.uk/2134/27303.

Full text
Abstract:
Electroluminescence (EL) imaging is a fast and comparatively low-cost method for spatially resolved analysis of photovoltaic (PV) devices. A Silicon CCD or InGaAs camera is used to capture the near infrared radiation, emitted from a forward biased PV device. EL images can be used to identify defects, like cracks and shunts but also to map physical parameters, like series resistance. The lack of suitable image processing routines often prevents automated and setup-independent quantitative analysis. This thesis provides a tool-set, rather than a specific solution to address this problem. Comprehensive and novel procedures to calibrate imaging systems, to evaluate image quality, to normalize images and to extract features are presented. For image quality measurement the signal-to-noise ratio (SNR) is obtained from a set of EL images. Its spatial average depends on the size of the background area within the EL image. In this work the SNR will be calculated spatially resolved and as (background independent) averaged parameter using only one EL image and no additional information of the imaging system. This thesis presents additional methods to measure image sharpness spatially resolved and introduces a new parameter to describe resolvable object size. This allows equalising images of different resolutions and of different sharpness allowing artefact-free comparison. The flat field image scales the emitted EL signal to the detected image intensity. It is often measured through imaging a homogeneous light source such as a red LCD screen in close distance to the camera lens. This measurement however only partially removes vignetting the main contributor to the flat field. This work quantifies the vignetting correction quality and introduces more sophisticated vignetting measurement methods. Especially outdoor EL imaging often includes perspective distortion of the measured PV device. This thesis presents methods to automatically detect and correct for this distortion. This also includes intensity correction due to different irradiance angles. Single-time-effects and hot pixels are image artefacts that can impair the EL image quality. They can conceivably be confused with cell defects. Their detection and removal is described in this thesis. The methods presented enable direct pixel-by-pixel comparison for EL images of the same device taken at different measurement and exposure times, even if imaged by different contractors. EL statistics correlating cell intensity to crack length and PV performance parameters are extracted from EL and dark I-V curves. This allows for spatially resolved performance measurement without the need for laborious flash tests to measure the light I-V- curve. This work aims to convince the EL community of certain calibration- and imaging routines, which will allow setup independent, automatable, standardised and therefore comparable results. Recognizing the benefits of EL imaging for quality control and failure detection, this work paves the way towards cheaper and more reliable PV generation. The code used in this work is made available to public as library and interactive graphical application for scientific image processing.
APA, Harvard, Vancouver, ISO, and other styles
28

Chen, Baifeng. "High-efficiency Transformerless PV Inverter Circuits." Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/56686.

Full text
Abstract:
With worldwide growing demand for electric energy, there has been a great interest in exploring photovoltaic (PV) sources. For the PV generation system, the power converter is the most essential part for the efficiency and function performance. In recent years, there have been quite a few new transformerless PV inverters topologies, which eliminate the traditional line frequency transformers to achieve lower cost and higher efficiency, and maintain lower leakage current as well. With an overview of the state-of-the-art transformerless PV inverters, a new inverter technology is summarized in the Chapter 2, which is named V-NPC inverter technology. Based this V-NPC technology, a family of high efficiency transformerless inverters are proposed and detailly analyzed. The experimental results demonstrate the validity of V-NPC technology and high performance of the transformerless inverters. For the lower power level transformerless inverters, most of the innovative topologies try to use super junction metal oxide semiconductor field effect transistor(MOSFET) to boost efficiency, but these MOSFET based inverter topologies suffer from one or more of these drawbacks: MOSFET failure risk from body diode reverse recovery, increased conduction losses due to more devices, or low magnetics utilization. By splitting the conventional MOSFET based phase leg with an optimized inductor, Chapter 3 proposes a novel MOSFET based phase leg configuration to minimize these drawbacks. Based on the proposed phase leg configuration, a high efficiency single-phase MOSFET transformerless inverter is presented for the PV micro-inverter applications. The PWM modulation and circuit operation principle are then described. The common mode and differential mode voltage model is then presented and analyzed for circuit design. Experimental results of a 250 W hardware prototype are shown to demonstrate the merits of the proposed MOSFET based phase-le and the proposed transformerless inverter. New codes require PV inverters to provide system regulation and service to improve the distribution system stabilization. One obvious impact on PV inverters is that they now need to have reactive power generation capability. The Chapter 4 improves the MOFET based transformerless inverter in the Chapter 3 and proposed a novel pulse width modulation (PWM) method for reactive power generation. The ground loop voltage of this inverter under the proposed PWM method is also derived with common mode and differential mode circuit analyses, which indicate that high-frequency voltage component can be minimized with symmetrical design of inductors. A 250-W inverter hardware prototype has been designed and fabricated. Steady state and transient operating conditions are tested to demonstrate the validity of improved inverter and proposed PWM method for reactive power generation, high efficiency of the inverter circuit, and the high-frequency-free ground loop voltage. Besides the high efficiency inverter circuit, the grid connection function is also the essential part of the PV system. The Chapter 5 present the overall function blocks for a grid-connected PV inverter system. The current control and voltage control loop is then analyzed, modeled, and designed. The dynamic reactive power generation is also realized in the control system. The new PLL method for the grid frequency/voltage disturbance is also realized and demonstrate the validity of the detection and protection capability for the voltage/frequency disturbance. At last, a brief conclusion is given in the Chapter 6 about each work. After that, future works on device packaging, system integration, innovation on inverter circuit, and standard compliance are discussed.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
29

Almingol, Oscar. "Construction of a C-PV prototype." Thesis, Högskolan i Gävle, Elektronik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-25083.

Full text
Abstract:
The following Master Thesis will talk about a C-PV prototype using bifacial PV technology, based on the Solarus Collector. The Solarus Collector consists in two PV cells built on a metallic receiver, where there are some water channels flowing through it, allowing to cool down the PV cells, thus increasing their efficiency. The collector also presents a reflector to provide irradiance to the back part of the receiver, where the other PV cells are located. The new prototype will present bifacial PV cells but not a metallic receiver. This construction aims to reduce the price of the receiver, but will not have a system to cool down the solar cells. This Master Thesis will be developed in the Solarus facilities, in collaboration with the Solarus members. In order to grasp an idea of this prototype, two main procedures will be done. Regarding the bifacial technology, a bifacial PV module will be measured under different conditions, depending on which sides can be illuminated or shaded. On the other hand, a thermodynamic simulation will be carried out on different geometries of the reflector and receiver, in order to figure out the evolution of the temperatures on the new prototype. This simulation will be done with a finite element method, widely known in this applications. The results will show several problems concerning this prototype. Although the measurements of the bifacial PV module will result beneficial and informative, the problem with the temperature will tend to back down this prototype. The lack of some system to cool down the bifacial cells will imply that the receiver could reach unacceptable temperatures. This hypothesis will be drawn under some specific conditions, so they will not be completely devastating to the idea of using bifacial cells, but perhaps a different approach should be used in case it is desired to continue this work.
APA, Harvard, Vancouver, ISO, and other styles
30

Mahajan, Vijyant. "PV Module and system fault analysis." Thesis, Mahajan, Vijyant (2014) PV Module and system fault analysis. Other thesis, Murdoch University, 2014. https://researchrepository.murdoch.edu.au/id/eprint/25561/.

Full text
Abstract:
In the recent years, there is a noticeable escalation in the number of Photovoltaic module systems installed on the rooftops for the residential and small level commercial purposes. Lower consumer prices, government grants and increase in the awareness of environmental issues are some of the basic causes for this increase. Increase in the renewable energy production is a long term solution to the problems faced due to the fossil fuels energy production methods including the availability and cost of the fossil fuels and environmental pollution. To keep the positive slope of the trend of accepting the Photovoltaic module systems on the residential basis by the common residential people and to encourage more general public to install the Photovoltaic module systems on their rooftops, it is very important to increase the reliability and durability of the Photovoltaic module systems. Photovoltaic module and system fault analysis is an ongoing assignment in order to increase the efficiency, safety,reliability and durability of the PV system. It is an essential requirement for the PV systems to operate continuously while providing the maximum output results. This thesis project explains the causes and results of the noticeable faults occur during the operation of the Photovoltaic module systems. These faults include the visible changes in the appearance of the Photovoltaic modules, reduction in the system performance, faults in the other main components of the Photovoltaic module system i.e. inverters, batteries, junction box, etc. For the purpose of analyzing the faults and its causes in the Photovoltaic module systems, this thesis project investigates and analyzes the survey data collected from the survey conducted by the Australian Photovoltaic Institute (APVI). This survey data provides the information about the faults experienced by the installers and the users of Photovoltaic module systems. Other surveys and reports such as Solar Business in Australia Survey, International Energy Agency Survey are also analyzed and their results have been compared in order to find any relevance of the specific faults to occur. This thesis project moreover investigates the frequency of the faults occurs during the operation of the Photovoltaic module system. Effect of different climate zones and environmental conditions on the operation, reliability and durability of the Photovoltaic module system is also analyzed from the survey’s results, reports and other thesis as a part of literature review for the research for this thesis.
APA, Harvard, Vancouver, ISO, and other styles
31

Peters, Kieran. "PV array troubleshooting and educational facility." Thesis, Peters, Kieran (2015) PV array troubleshooting and educational facility. Other thesis, Murdoch University, 2015. https://researchrepository.murdoch.edu.au/id/eprint/28264/.

Full text
Abstract:
The Photovoltaic Array Troubleshooting and Educational Facility is a specialised experimentation platform for researchers and students to develop a greater practical understanding of photovoltaic modules, arrays, shading effects and fault scenarios. The Facility was designed, constructed, tested, and delivered to Murdoch University in order to complete the requirements of an undergraduate engineering honours thesis. Proposed learning experiments involved the investigation of series, parallel, and bypass diode connections of or within photovoltaic modules, partial shading and mismatch effects, as well as the effectiveness of over-current protection under different fault conditions in an extra low voltage array. The Facility provides for the safe measurement of voltages and currents of individual module or array sections of the interconnected array using handheld multimeters and portable IV curve tracers. Research was conducted on background photovoltaic system theory, module construction and array design, followed by an in-depth examination of the relevant legal regulations applicable to this project. This research was followed by a basic feasibility analysis, used to determine the practicability of this project as a means to satisfy the client requirements, given the technical, operational, economic and scheduling opportunities available for application. Once feasibility was demonstrated the Facility could be designed in detail using software tools, with components specified, sourced, financed and ordered. Upon arrival of the build components the Facility was constructed using industry-standard tools and methods, and tested for module performance and student-level experiment suitability. The Photovoltaic Array Troubleshooting and Educational Facility project was a complete success. Many new experiments are now available to students, particularly dealing with photovoltaic fault scenarios. Almost all existing d.c. photovoltaic experiments from the Murdoch University Renewable Energy Engineering major can now be conducted in greater detail, on a full array of modules, while exposing students to industry standard components and techniques. The Facility is also available for open days and promotions, and shall be used to attract new students to the industry, the school, and generate a greater enthusiasm for solar power generation.
APA, Harvard, Vancouver, ISO, and other styles
32

Stewart, Troy. "Performance evaluation of Perth PV systems." Thesis, Stewart, Troy (2015) Performance evaluation of Perth PV systems. Other thesis, Murdoch University, 2015. https://researchrepository.murdoch.edu.au/id/eprint/28265/.

Full text
Abstract:
This paper focuses on the performance of the 56kWp PV installation of the north facing elevation of the library at the South Street campus of Murdoch University. This installation was the first step in Murdoch University’s goal to becoming the first privately owned solar power station and the largest PV installation in Perth, Western Australia [1]. In order to perform this analysis, it has been essential to gather output data for the installation from the data acquisition program, which operates around the clock recording this data from the array inverters. A crucial step was to collect weather and meteorological data from sources on the Murdoch campus, this data was used in the performance analysis in order to calculate system loss, efficiency and overall system performance. This analysis was performed in order to gain a better understanding of the subject matter of solar generation. There are still aspects of large scale solar power generation which are yet to be studied more extensively. This report is centred around the 56kWp solar generator located at Murdoch University’s South Street campus, to enable to University to gain a better understanding of the total power being produced from the system. It is also important to recognise where there is room for improvement in design and application through the study into areas such as soiling, shading and general performance characteristics. This report will allow the University to make an educated and informed decision on any future upgrades or extensions onto the existing system. Data acquired from the array was used to show how it performs in many different environmental conditions, through the use of modelling programs such as PVSyst and data graphing programs such as Microsoft Excel. By plotting output power data against temperature, rainfall, time of day and output voltage comparison graphs can be produced that allow readers to visualize and understand exactly how each characteristic affects the performance of PV systems in the Perth metropolitan region. Through this project the array performance characteristics were evaluated. It was found that the array has an average performance ratio of 0.85 for 2014, and that the array does indeed perform well in the Perth region. It was also found that shading impacts the array in a very noticeable way, this shows up as a noticeable depression on the affected inverters. Following through on a soiling study it was found that the array does indeed suffer from the soiling effect, most notably during long periods of dry weather. Degradation effects were also studied during the project but no evidence of these effects were found, these effects will be more prevalent in a longer period of study. These findings are significant because it allows for a comparison with other arrays in the Perth demographic, the typical array performance ratios in the Perth region is approximately 0.8 [2] [3], from this it can be concluded that the Murdoch array performs better than expected for the region. Shading impacts PV generation and this is evident in the array data. It can also lead to more significant issues such as hot spots and module damage and this can become a costly problem. Soiling has been proven in this scenario to reduce the overall performance of the array, this has been shown through a slow reduction in performance over a long dry period then an increase after a period of heavy rain. Degradation is the biggest issue affecting PV arrays around the world, the cells in the modules experience an aging effect and see a reduction in performance. The Murdoch array has not yet shown signs of degradation in the analysis period of this report of five years, this is indicative of the quality of the installation and the cell manufacturing quality.
APA, Harvard, Vancouver, ISO, and other styles
33

Coventry, Joseph Sydney, and Joe Coventry@anu edu au. "A solar concentrating photovoltaic/thermal collector." The Australian National University. Faculty of Engineering and Information Technology, 2004. http://thesis.anu.edu.au./public/adt-ANU20041019.152046.

Full text
Abstract:
This thesis discusses aspects of a novel solar concentrating photovoltaic / thermal (PV/T) collector that has been designed to produce both electricity and hot water. The motivation for the development of the Combined Heat and Power Solar (CHAPS) collector is twofold: in the short term, to produce photovoltaic power and solar hot water at a cost which is competitive with other renewable energy technologies, and in the longer term, at a cost which is lower than possible with current technologies. To the author’s knowledge, the CHAPS collector is the first PV/T system using a reflective linear concentrator with a concentration ratio in the range 20-40x. The work contained in this thesis is a thorough study of all facets of the CHAPS collector, through a combination of theoretical and experimental investigation. A theoretical discussion of the concept of ‘energy value’ is presented, with the aim of developing methodologies that could be used in optimisation studies to compare the value of electrical and thermal energy. Three approaches are discussed; thermodynamic methods, using second law concepts of energy usefulness; economic valuation of the hot water and electricity through levelised energy costs; and environmental valuation, based on the greenhouse gas emissions associated with the generation of hot water and electricity. It is proposed that the value of electrical energy and thermal energy is best compared using a simple ratio. Experimental measurement of the thermal and electrical efficiency of a CHAPS receiver was carried out for a range of operating temperatures and fluid flow rates. The effectiveness of internal fins incorporated to augment heat transfer was examined. The glass surface temperature was measured using an infrared camera, to assist in the calculation of thermal losses, and to help determine the extent of radiation absorbed in the cover materials. FEA analysis, using the software package Strand7, examines the conductive heat transfer within the receiver body to obtain a temperature profile under operating conditions. Electrical efficiency is not only affected by temperature, but by non-uniformities in the radiation flux profile. Highly non-uniform illumination across the cells was found to reduce the efficiency by about 10% relative. The radiation flux profile longitudinal to the receivers was measured by a custom-built flux scanning device. The results show significant fluctuations in the flux profile and, at worst, the minimum flux intensity is as much as 27% lower than the median. A single cell with low flux intensity limits the current and performance of all cells in series, causing a significant drop in overall output. Therefore, a detailed understanding of the causes of flux non-uniformities is essential for the design of a single-axis tracking PV trough concentrator. Simulation of the flux profile was carried out using the ray tracing software Opticad, and good agreement was achieved between the simulated and measured results. The ray tracing allows the effect of the receiver supports, the gap between mirrors and the mirror shape imperfections to be examined individually. A detailed analytical model simulating the CHAPS collector was developed in the TRNSYS simulation environment. The accuracy of the new component was tested against measured data, with acceptable results. A system model was created to demonstrate how sub components of the collector, such as the insulation thickness and the conductivity of the tape bonding the cells to the receiver, can be examined as part of a long term simulation.
APA, Harvard, Vancouver, ISO, and other styles
34

Goulart, Marcela Cristina 1988. "Desenvolvimento de metodologia de detecção e identificação de fitobactérias em sementes de soja [Glycine max (L.) Merril] por primers espécie-específicos." [s.n.], 2014. http://repositorio.unicamp.br/jspui/handle/REPOSIP/317295.

Full text
Abstract:
Orientador: Suzete Aparecida Lanza Destéfano
Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Biologia
Made available in DSpace on 2018-08-24T19:29:47Z (GMT). No. of bitstreams: 1 Goulart_MarcelaCristina_M.pdf: 1843141 bytes, checksum: 317126844277b642b5edc69d405b000b (MD5) Previous issue date: 2014
Resumo: A soja é considerada uma das culturas mais importantes no Brasil, em função de seu alto valor sócio-econômico, determinado pelas inúmeras aplicações de seus produtos e subprodutos e consequente expressão no mercado interno e externo. No entanto, a cultura desta oleaginosa é frequentemente ameaçada com a ocorrência de um vasto número de doenças, que podem acarretar depreciação do produto, redução no rendimento e perdas econômicas para os produtores. Dentre as principais doenças bacterianas que afetam a cultura da soja, destacam-se a pústula bacteriana, causada por Xanthomonas axonopodis pv. glycines (Xag); o crestamento bacteriano, causado por Pseudomonas savastanoi pv. glycines (Psg); e a murcha de Curtobacterium causada por Curtobacterium flaccumfaciens pv. flaccumfaciens (Cff), ocasionando perdas na produção de até 40%. A condição sanitária das sementes é extremamente importante se considerarmos que elas são veículos desses agentes fitopatogênicos que nelas podem se alojar e serem levados ao campo, provocando redução na germinação e vigor, e originando focos primários de infecção de doenças. O presente trabalho teve por objetivo desenvolver nova metodologia de diagnóstico com o uso das técnicas moleculares que permitissem detectar e identificar a presença de Psg, Xag e Cff em sementes de soja por meio do desenvolvimento de primers espécie específicos. Os primers desenhados a partir de sequências da região espaçadora 16S-23S RNAr, mostraram-se altamente específicos e sensíveis. O par de primers Curto2f/p322anti gerou um fragmento de 675 pb e capacidade de detecção a partir de 0,01 ng de DNA genômico e aproximadamente 5x103 UFC/PCR; o par de primers Psgl/p322anti gerou um fragmento de 500 pb e o grau mínimo de sensibilidade foi de 1 pg de DNA genômico e cerca de 80 UFC/PCR; o par de primers Xanth2f/p322anti gerou um fragmento de 545 pb e capacidade de detecção a partir de 1 ng de DNA genômico e cerca de 700 UFC/PCR. Posteriormente, as sementes de soja foram infectadas artificialmente nas condições de 1; 0,5 e 0,1% de infecção. Nas amplificações com os primers espécie-específicos desenvolvidos, foi possível detectar as fitobactérias em todos os níveis de infecção testados diretamente do extrato bruto, e nas amplificações após o enriquecimento do extrato (BIO-PCR) o sinal positivo foi potencializado
Abstract: Soybean is considered one of the most important crops in Brazil, due to its high socio-economic value, determined by its several products and sub products and its significant expression on the internal and external market. However, this oleaginous plant is often affected by the occurrence of different diseases, which cause depreciation of the product, reduction in yield and substantial economic losses. Among the main bacterial diseases, the bacterial pustule, caused by Xanthomonas axonopodis pv. glycines (Xag), the bacterial blight caused by Pseudomonas savastanoi pv. glycines (Psg), and bacterial tan spot caused by Curtobacterium flaccumfaciens pv. flaccumfaciens (Cff), producing yield losses of up to 40%. The seed health is extremely important since they are considered vehicles of pathogenic agents which can be led to the field, causing germination reduction and vigor; and yielding primary infection of the diseases. This study aimed to develop a new method of diagnosis using molecular tools to detect and identify Psg, Xag or Cff in soybean seeds, through species-specific primers. The primers were designed from sequences of the 16S-23S rRNA and they were highly specific and sensitive. The pair of primers Curto2f/p322anti generated a fragment of 675 bp and was able of detecting down to 0.01 ng of genomic DNA and about 5x103 CFU/PCR; the primer set Psgl/p322anti produced a fragment of 500 bp and reached a detection limit of 1 pg of genomic DNA and about 80 CFU/PCR; and Xanth2f/p322anti yielded a fragment of 545 bp and could detect up to 1 ng of genomic DNA and about 700 CFU/PCR. Subsequently, soybean seeds were artificially infected in the following conditions: 1, 0,5% and 0,1% infection. In the amplifications using the species-specific primers, it was possible to detect the three different phytobacteria at all tested levels of infection directly of the crude extract and in the amplifications after enrichment of the extract (BIO-PCR), the positive signal was enhanced
Mestrado
Genetica de Microorganismos
Mestra em Genética e Biologia Molecular
APA, Harvard, Vancouver, ISO, and other styles
35

Manhal, Ali, and Ali Tammam M. "Solar Tent : A Photovoltaic Generator Model for a Flexible Fabric with Inbuilt Cells." Thesis, Högskolan Dalarna, Energiteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:du-30552.

Full text
Abstract:
Natural disasters and conflicts in many different parts of the world force thousands of people to get displaced from their homes and live in refugee camps temporarily or permanently. For refugee families, lack of energy access has great impact on their lives. Tarpon Solar Company has developed a solar tent which is a combination of laminated cloth and flexible solar cells. In addition to producing renewable electricity, it can create a comfortable outdoor shelter from sun, rain and wind.   The aims of this study were to define and size the solar system of the tent in both AC and DC systems and optimize the tent to work in different locations around the world. Besides designing a monitoring system for the solar tent to evaluate the performance. In addition, defining the social aspect and the consumer behavior for a better solar tent future design. As a case study, Tarpon AC solar tent in Glava, Sweden has been installed to cover the basic needs of the tent users. To understand the solar tent performance in different weather zones, 4 different locations were suggested. A monitor system was designed to monitor the tent solar system performance. The simulation software PVsyst was used to size the PV system in the different locations with different solar data.   The PVsyst simulation results showed that the current Tarpon solar tent with 32 photovoltaic modules is extremely oversized to cover the basic needs loads (Lighting, mobile charging and ventilation) in the emergency cases.   The current Tarpon solar tent has a standard number of photovoltaic modules integrated in the tent fabric while the photovoltaic modules number should vary from one location to another according to the weather data and solar irradiation. In this case the current Tarpon solar system used in Glava, Sweden can be optimized by decreasing the number of photovoltaic modules to only 6 photovoltaic modules instead of 32 modules.   The study also shows that the features of the off-grid system components (battery and charge controller) are different from one location to another according to the criteria of selection.   This study concludes that for the temporary short-term emergency use of the tent where only basic needs loads are needed, DC system is better than AC system in terms of energy efficiency, system size and cost in the different proposed locations. While AC system is better when using the tent for prolonged time in terms of user flexibility and ability to extend the system. Understanding the consumer behavior and the goal of the tent whether to be used for an emergency short term shelter or a permanent shelter for a prolonged time are important factors for a better solar tent design.
APA, Harvard, Vancouver, ISO, and other styles
36

au, A. carr@aip org, and Anna Judith Carr. "A Detailed Performance Comparison of PV Modules of Different Technologies and the Implications for PV System Design Methods." Murdoch University, 2005. http://wwwlib.murdoch.edu.au/adt/browse/view/adt-MU20050830.94641.

Full text
Abstract:
In designing any power generation system that incorporates photovoltaics (PV) there is a basic requirement to accurately estimate the output from the proposed PV array under operating conditions. PV modules are given a power rating at standard test conditions(STC) of 1000Wm-2, AM1.5 and a module temperature of 25 °C, but these conditions do not represent what is typically experienced under outdoor operation. It is well known that different PV technologies have different seasonal patterns of behaviour. These differences are due to the variations in spectral response, the different temperature coefficients of voltage and current and, in the case of amorphous silicon (a-Si) modules, the extra effect of photo-degradation and thermal annealing. In this study a novel method has been used to obtain highly accurate energy output data from six different PV modules representing five different technologies: Single crystal silicon (c-Si). Poly-crystalline silicon (p-Si) (2 modules). Triple junction amorphous silicon (3j, a-Si). Copper indium diselenide (CIS). Laser grooved buried contact (LGBC, c-Si) crystalline silicon. This data set includes all the associated meteorological parameters and back-of-module temperatures. The monitoring system allows the simultaneous measurement of six different modules under long-term outdoor operation, which in turn allows a direct comparison of the performance of the modules. Each of the modules has been deployed for at least one year, which provides useful information about the seasonal behaviour of each technology. This data set ultimately provides system designers and consumers with valuable information on the expected output of these different module types in climates like that of Perth, Western Australia. The second part of the study uses the output data collected to assess and compare output predictions made by some currently available photovoltaic performance prediction tools or methods. These range from a generalised approach, as used in the Australian Standards, to the commercially available software packages that employ radiation, thermal and PV models of varying complexities. The results of these evaluations provide very valuable information, to PV consumers, about how complex PV output prediction tools need to be to give acceptable results.
APA, Harvard, Vancouver, ISO, and other styles
37

Carr, Anna J. "A detailed performance comparison of PV modules of different technologies and the implications for PV system design methods /." Access via Murdoch University Digital Theses Project, 2005. http://wwwlib.murdoch.edu.au/adt/browse/view/adt-MU20050830.94641.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Lopez, Ramirez Izar. "Operating correction factor of PV system : Effects of temperature, angle of incidence and invertor in PV system performance." Thesis, Högskolan i Gävle, Energisystem, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-23671.

Full text
Abstract:
In this project, the correction factor of different solar panels of the laboratory of the University of Gävle, located in Sweden, is going to evaluated. The solar modules’working conditions are different from the ones used to test them in the laboratory. In the laboratory. the output energy of the modules is less than in working conditions,and therefore a correction factor is going to be calculated from the data collected, inorder to describe the factors that affect the performance of the solar modules.Also, the obtained correction factor validity for different PV systems it is going to be examined, determining which system has a better correction factor and the energy losses due to temperature, angle of incidence and micro invertor.
APA, Harvard, Vancouver, ISO, and other styles
39

Carr, Anna Judith. "A detailed performance comparison of PV modules of different technologies and the implications for PV system design methods." Thesis, Carr, Anna Judith (2005) A detailed performance comparison of PV modules of different technologies and the implications for PV system design methods. PhD thesis, Murdoch University, 2005. https://researchrepository.murdoch.edu.au/id/eprint/501/.

Full text
Abstract:
In designing any power generation system that incorporates photovoltaics (PV) there is a basic requirement to accurately estimate the output from the proposed PV array under operating conditions. PV modules are given a power rating at standard test conditions(STC) of 1000Wm-2, AM1.5 and a module temperature of 25 degrees C, but these conditions do not represent what is typically experienced under outdoor operation. It is well known that different PV technologies have different seasonal patterns of behaviour. These differences are due to the variations in spectral response, the different temperature coefficients of voltage and current and, in the case of amorphous silicon (a-Si) modules, the extra effect of photo-degradation and thermal annealing. In this study a novel method has been used to obtain highly accurate energy output data from six different PV modules representing five different technologies: Single crystal silicon (c-Si). Poly-crystalline silicon (p-Si) (2 modules). Triple junction amorphous silicon (3j, a-Si). Copper indium diselenide (CIS). Laser grooved buried contact (LGBC, c-Si) crystalline silicon. This data set includes all the associated meteorological parameters and back-of-module temperatures. The monitoring system allows the simultaneous measurement of six different modules under long-term outdoor operation, which in turn allows a direct comparison of the performance of the modules. Each of the modules has been deployed for at least one year, which provides useful information about the seasonal behaviour of each technology. This data set ultimately provides system designers and consumers with valuable information on the expected output of these different module types in climates like that of Perth, Western Australia. The second part of the study uses the output data collected to assess and compare output predictions made by some currently available photovoltaic performance prediction tools or methods. These range from a generalised approach, as used in the Australian Standards, to the commercially available software packages that employ radiation, thermal and PV models of varying complexities. The results of these evaluations provide very valuable information, to PV consumers, about how complex PV output prediction tools need to be to give acceptable results.
APA, Harvard, Vancouver, ISO, and other styles
40

Carr, Anna Judith. "A detailed performance comparison of PV modules of different technologies and the implications for PV system design methods." Carr, Anna Judith (2005) A detailed performance comparison of PV modules of different technologies and the implications for PV system design methods. PhD thesis, Murdoch University, 2005. http://researchrepository.murdoch.edu.au/501/.

Full text
Abstract:
In designing any power generation system that incorporates photovoltaics (PV) there is a basic requirement to accurately estimate the output from the proposed PV array under operating conditions. PV modules are given a power rating at standard test conditions(STC) of 1000Wm-2, AM1.5 and a module temperature of 25 degrees C, but these conditions do not represent what is typically experienced under outdoor operation. It is well known that different PV technologies have different seasonal patterns of behaviour. These differences are due to the variations in spectral response, the different temperature coefficients of voltage and current and, in the case of amorphous silicon (a-Si) modules, the extra effect of photo-degradation and thermal annealing. In this study a novel method has been used to obtain highly accurate energy output data from six different PV modules representing five different technologies: Single crystal silicon (c-Si). Poly-crystalline silicon (p-Si) (2 modules). Triple junction amorphous silicon (3j, a-Si). Copper indium diselenide (CIS). Laser grooved buried contact (LGBC, c-Si) crystalline silicon. This data set includes all the associated meteorological parameters and back-of-module temperatures. The monitoring system allows the simultaneous measurement of six different modules under long-term outdoor operation, which in turn allows a direct comparison of the performance of the modules. Each of the modules has been deployed for at least one year, which provides useful information about the seasonal behaviour of each technology. This data set ultimately provides system designers and consumers with valuable information on the expected output of these different module types in climates like that of Perth, Western Australia. The second part of the study uses the output data collected to assess and compare output predictions made by some currently available photovoltaic performance prediction tools or methods. These range from a generalised approach, as used in the Australian Standards, to the commercially available software packages that employ radiation, thermal and PV models of varying complexities. The results of these evaluations provide very valuable information, to PV consumers, about how complex PV output prediction tools need to be to give acceptable results.
APA, Harvard, Vancouver, ISO, and other styles
41

Svanbring, Alexander. "Grid connected PV for buildings - Potential yield, feasibility and key enablers to make PV viable in Bergen, Norway." Thesis, Svanbring, Alexander (2013) Grid connected PV for buildings - Potential yield, feasibility and key enablers to make PV viable in Bergen, Norway. Masters by Coursework thesis, Murdoch University, 2013. https://researchrepository.murdoch.edu.au/id/eprint/23114/.

Full text
Abstract:
In this dissertation the key enablers, feasibility and potential yield for a photovoltaic system installed on an office building situated in Bergen is reviewed. The dissertation covers a broad area and seeks to discover potential benefits of such an initiative to a building owner. The paper focuses on the available incentives for the installation of a photovoltaic system on a commercial building. The motivation has been to discover if the use of solar energy could be an attractive alternative to building owners seeking to reduce their energy usage. It is found that a photovoltaic system installed on the roof could result in a better Energy Label and BREEAM NOR grade in the Norwegian context. The cost of such a system is competitive with conventional building methods. Such as extra insulation in the walls, three layer glasses with low U-values, lower Specific Fan Power (SFP) in air handling units and a more sealed building frame. There are however no governmental subsidies for the installation of photovoltaic systems in Norway. PVsyst, software to calculate and design complete photovoltaic systems, was used to reveal the potential contribution of the proposed system. The available weather data and the results from PVsyst were considered as conservative. The cost of electricity from such a system was found to be almost twice as high as the retail price for electricity in Norway. When seen together with the alternative cost and the added revenue from rent increase, combined with a better Energy Label and BREEAM NOR grade, the use of photovoltaics is shown to be cost competitive.
APA, Harvard, Vancouver, ISO, and other styles
42

Nordahl, Siv Helene. "Design of Roof PV Installation in Oslo." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for elkraftteknikk, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-19038.

Full text
Abstract:
This thesis is centered around the design of a grid-connected photovoltaic (PV) roof installation at a specific location in Oslo, Norway. The motivating factor in this study has been the growth of the solar industry globally, while there has been little to none larger PV investments in Norway. The objective is to investigate how much renewable PV energy that can be produced from the designed system, with an electrical focus. Factors such as the suns position during each day of the year, the shadings on modules, the electrical effect of shading and bypass diodes, and other factors influence the production of a PV installation. Due to the complexity of power production in a PV system, the simulation software PVsyst was used as support. A 3D representation of the building and shading elements was constructed in the simulation program for shading calculation purposes. Meteorological data from local weather stations in Lier, Ås and Blindern was compared with meteorological data provided by interpolation and satellite images. The distance between modular rows was dimensioned after a shading criterion so that there would be no shading from other modular rows during spring equinox (March 21st). The modular tilt was adjusted (from the optimal tilt angle of 40 degrees) in order to reduce shading loss and improve the performance ratio of the system. The number of module and inverter types and manufacturers was limited to three different module types, and four different inverter series. The simulated production from the three best alternatives, based on performance ratio and production were compared with the energy consumption in the building. Simple economical evaluations of the three best alternatives have been performed using the simple payback method and life cycle costing. As a result of the limited area on the roof, the shading objects and the dimensioning criteria (maximize performance ratio and production of the system) it was found that the module tilt was 20 degrees. The modules in the system are directed towards geographical south, and there is a pitch distance of 2 meters between the module rows. The resulting three final alternatives were two polycrystalline alternatives and one monocrystalline alternative. The polycrystalline alternatives used the same REC modules and different inverters, one from Eltek and the other from SMA. The monocrystalline alternative was simulated with SunPower modules and SMA inverters. The installations have a simulated energy production of 22.4, 22.9 and 31.0 MWh/year, which would cover the average energy consumption of a household in Norway (20.4 MWh/year). However, the installation will only contribute to reduce the energy consumption in the six storey commercial building by approximately 1 % per year. Comparing the simulated productions and the consumption in 2011, it is found that the installation will not result in a surplus of energy which could have been injected into the grid. The installation will therefore not change the buildings customer status to a surplus customer (plusskunde). With the simplified economical evaluation it is found that the energy from the PV installation will cost more than the energy agreement of today and it is triple the yearly average market price of electricity the last three years. The polycrystalline alternative with SMA inverters was the least expensive alternative of the three and the polycrystalline alternative with highest production. The monocrystalline alternative gave best simulated production and performance ratio of the three alternatives, but was the most expensive alternative.
APA, Harvard, Vancouver, ISO, and other styles
43

Campana, Pietro Elia. "PV water pumping systems for agricultural applications." Doctoral thesis, Mälardalens högskola, Framtidens energi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-27641.

Full text
Abstract:
Grassland and farmland degradation is considered as one of the worst environmental and economic threats for China. The degradation process negatively affects food and water security, economy, society and climate changes. Photovoltaic water pumping (PVWP) technology for irrigation is an innovative and sustainable solution to curb the grassland degradation. At the same time it can promote the conservation of farmland, especially in remote areas of China. The combination of PVWP technology with water saving irrigation techniques and sustainable management of the groundwater resources can lead to several benefits. These include enhancing grassland productivity, halting wind and rainfall erosion, providing higher incomes and better living conditions for farmers.    This doctoral thesis aims to bridge the current knowledge gaps, optimize system implementation and prevent system failures. This work represents thus a step forward to solve the current and future nexus between energy, water and food security in China, using PVWP technology for irrigation. Models for the dynamic simulations of PVWP systems, irrigation water requirements (IWR) and crop response to water have been presented and integrated. Field measurements at a pilot PVWP system in Inner Mongolia have been conducted to analyse the reliability of the models adopted. A revision of the traditional design approaches and a new optimization procedure based on a genetic algorithm (GA) have been proposed to guarantee the match between IWR and water supply, to minimize the system failures and to maximize crop productivity and thus the PVWP system profitability and effectiveness. Several economic analyses have been conducted to establish the most cost effective solution for irrigation and to evaluate the project profitability. The possible benefits generated by the PVWP system implementation have been highlighted, as well as the effects of the most sensitive parameters, such as forage price and incentives. The results show that PVWP system represents the best technical and economic solution to provide water for irrigation in the remote areas compared to other traditional water pumping technologies. The environmental benefits have been also addressed, evaluating the CO2 emissions saving achievable from the PVWP system operation. The assessment of the feasible and optimal areas for implementing PVWP systems in China has been conducted using spatial analysis and an optimization tool for the entire supply chain of forage production. The results show that the potentials of PVWP systems in China are large. Nevertheless, the feasible and optimal locations are extremely sensitive to several environmental and economic para­meters such as forage IWR, groundwater depth, and CO2 credits that need to be carefully taken into account in the planning process.    Although this doctoral thesis has used China as case study, PVWP technology can be applied for irrigation purposes all over the world both for off- and on-grid applications leading to several economic and environmental benefits.
APA, Harvard, Vancouver, ISO, and other styles
44

Wu, Yuechen, Shelby Vorndran, Pelaez Silvana Ayala, and Raymond K. Kostuk. "Three junction holographic micro-scale PV system." SPIE-INT SOC OPTICAL ENGINEERING, 2016. http://hdl.handle.net/10150/622714.

Full text
Abstract:
In this work a spectrum splitting micro-scale concentrating PV system is evaluated to increase the conversion efficiency of flat panel PV systems. In this approach, the dispersed spectrum splitting concentration systems is scaled down to a small size and structured in an array. The spectrum splitting configuration allows the use of separate single bandgap PV cells that increase spectral overlap with the incident solar spectrum. This results in an overall increase in the spectral conversion efficiency of the resulting system. In addition other benefits of the micro-scale PV system are retained such reduced PV cell material requirements, more versatile interconnect configurations, and lower heat rejection requirements that can lead to a lower cost system. The system proposed in this work consists of two cascaded off-axis holograms in combination with a micro lens array, and three types of PV cells. An aspherical lens design is made to minimize the dispersion so that higher concentration ratios can be achieved for a three-junction system. An analysis methodology is also developed to determine the optical efficiency of the resulting system, the characteristics of the dispersed spectrum, and the overall system conversion efficiency for a combination of three types of PV cells.
APA, Harvard, Vancouver, ISO, and other styles
45

Cao, Zhongsheng. "Multi-Phase Smart Converter for PV System." Thesis, Virginia Tech, 2014. http://hdl.handle.net/10919/52584.

Full text
Abstract:
Recent research and industrial accomplishment has revealed the advantages of cascaded smart converter PV system over traditional centralized and string PV system. However, even by adopting the cascaded smart converter, it is not always possible to track maximum power point (MPP) for all the panels under heavy shading condition, and a central converter is still required to track the peak power point of PV array. Based on the analysis of system configurations for smart converter PV system, an alternative PV system configuration is introduced which can extract peak power from all the panels under different mismatch condition and connect PV array to 380V DC bus without central converter. Based on this alternative PV system configuration, a multi-phase smart converter with single controller is proposed as a low cost panel-level MPPT solution. This proposal can largely reduce cost by saving MPPT controllers, current and voltage sensors without sacrificing energy production. The effectiveness of the proposal has been verified by both simulation and experiment results.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
46

KHAN, MUHAMMAD AMMAR, and FATIMA NAVEEN. "Performance Evaluation of distributed Solar PV Installations." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-286331.

Full text
Abstract:
Utilization of photovoltaic (PV) cells to generate electricity from solar energy is becoming an increasingly popular source of renewable energy in this era of energy transitions. Adoption of ingenious techniques to increase PV systems’ performance and with the arrival of data analytics for efficient management of energy systems, an opportunity of using statistical models to develop mechanisms for performance evaluation of distributed Solar PV systems is present. Therefore, making use of available data and various statistical techniques, two models for performance evaluation of solar installations were developed. First model estimated PV Power outputs using neighboring PV panels whereas the second model estimated Global Horizontal Irradiance (GHI) using AC PV power outputs. The aim of these modules was to serve as the basis for fault detection and solar forecasting, respectively. With solar forecasting information available insight of future energy production and assistance in smart grid solutions could be carried out. Furthermore, with anomaly detection mechanism in place one can highlight energy reductions in the systems. Sensitivity analysis for PV nowcasting methodology was carried out to optimize characteristics of the model. Increase in the number of neighbors did not have any significant effect, whereas large radius was required for clear sky days and shorter radius were needed for cloudy conditions to cater the rapid change in weather conditions. Overall, nowcasting methodology resulted in Mean Absolute Percentage Error (MAPE) of less than 5%. GHI Estimation model was benchmarked with Nespoli, et al. (2017) method and compared with satellite data also. Results for GHI Estimation Model were comparable to Nespoli et al. (2017) method and better than satellite data. Overall, for test sites under the supervision of CheckWatt AB, MAPE of less than 10% was observed and the results were significantly better than SMHI STRANG estimates which had MAPE of 46%. Sensitivity Analysis of number days for estimation of GHI was carried out and use of 120 days for estimation of GHI was found to give the minimum MAPE. GHI Estimation Model was also used to generate solar map where variation in GHI of 5 sites within Stockholm county was portrayed. These two modules combined serve towards performance monitoring of PV installations.
Användning av solceller (PV) för att generera elektricitet från solenergi blir en alltmer populär källa för förnybar energi i denna tid av energiövergångar. Samtidigt har dataanalys och andra uppfinninsrika tekniker i allt större utsträckning utvecklats för att underhålla och optimera användningen av energisystem. I denna avhandling undersöker vi två tekniker för att - med hjälp av tillgänglig information - övervaka energiproduktionen från en stor mängd distribuerade solpaneler. Första modellen, uppskattade solpaneler med angränsande solpaneler medan den andra modellen uppskattade Global Horizontal Irradiance (GHI) med AC PV-utgångar. Dessa moduler är tänkta att användas slutligen för feldetektering respektive sol prognosticering. Sol prognosinformation kan leda till insikter om framtida energiproduktion och bidra till utvecklingen av smarta elnäts lösningar. Med en mekanism för detektering av anomalier på plats kan man dessutom identifiera reduktioner i energiproduktion i systemen. Känslighetsanalys för PV-Nowcasting-metodik utfördes för att förbättra modellen. Ökningen av antalet grannar hade ingen signifikant effekt, medan stor radie krävdes för soliga dagar och kortare radie behövdes vid växlande molnighet för att tillgodose den snabba förändringen av väderförhållandena. Sammantaget resulterade Nowcasting-metoden i ett genomsnittligt absolutprocentfel (MAPE) på mindre än 5%. GHI-uppskattningsmodellen jämfördes med metoden från Nespoli, et al. (2017) och jämfördes också med satellitdata. Resultaten för GHI-uppskattningsmodellen var jämförbara med metoden från Nespoli et al. (2017) och bättre än satellitdata. Sammantaget observerades MAPE på mindre än 10% för testplatser under övervakning av CheckWatt AB och resultaten var signifikant bättre än SMHI STRANG-uppskattningar som hade MAPE på 46%. Känslighetsanalys av antal dagar för uppskattning av GHI utfördes och användning av 120 dagar för uppskattning av GHI visade sig ge lägsta MAPE. GHI Estimation Model användes också för att generera solkarta där variation i GHI av fem platser inom Stockholms län framställdes. Dessa två moduler tillsammans kan bidra till mer effektiv övervakning av solcellsprestanda.
APA, Harvard, Vancouver, ISO, and other styles
47

Celik, Ilke. "Eco-design of Emerging Photovoltaic (PV) Cells." University of Toledo / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1533123980079904.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Donahoo, Ryan Scott. "Genetic variation in Xanthomonas axonopodis pv. dieffenbachiae." [Gainesville, Fla.] : University of Florida, 2003. http://purl.fcla.edu/fcla/etd/UFE0000676.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Zeitouny, Joya. "Advanced strategies for ultra-high PV efficiency." Thesis, Perpignan, 2018. http://www.theses.fr/2018PERP0056.

Full text
Abstract:
La limite théorique de rendement des cellules photovoltaïques simple-jonction est de l’ordre de 33% d’après le modèle de Shockley-Queisser, ce qui reste éloigné de la limite de Carnot, prédisant une limite maximale de conversion énergie solaire → électricité de 93%. L’écart important entre ces deux limites découle des pertes intrinsèques, essentiellement liées à la conversion inefficace du spectre solaire et à la disparité entre les angles solides d’absorption et d’émission. Pour surmonter ces pertes et se rapprocher de la limite de Carnot, trois stratégies sont envisagées dans cette thèse : les cellules multi-jonction àconcentration, la combinaison de la concentration et de la restriction angulaire et les systèmes hybrides PV/CSP. Chacune de ces stratégies est limitée par des mécanismes qui dégradent leur performance.L’objectif de cette thèse est donc de comprendre dans quelle mesure les différents mécanismes limitants sont susceptibles d’affecter les performances des différentes stratégies étudiées, et d’optimiser l’architecture des cellules dans le but d’accroitre leur efficacité de conversion. Dans ce but, un modèle détaillé de cellule solaire tenant compte des principaux mécanismes limitant a été développé. Un outil d’optimisation par algorithme génétique a également été mis au point, afin d’explorer l’espace des différents paramètres étudiés pour identifier les conditions d’opération optimales. Nous démontrons l’importance majeure que revêt l’adaptation des propriétés optoélectroniques des matériaux utilisés aux conditions opératoires, que ce soit dans le cas des cellules solaires à concentration endurant des pertes résistives significatives, ou encore dans le cas de cellules solaires fonctionnant à des niveaux de températures très supérieurs à l’ambiante. Enfin, nous avons déterminé l’effet des principaux facteurs limitant que constituent les pertes résistives et les recombinaisons non-radiatives sur les cellules solairessimultanément soumises au flux solaire concentré et à la restriction angulaire du rayonnement émis
The maximum efficiency limit attainable with a single-junction PV cell is ~ 33% according to the detailed balance formalism (also known as Shockley-Queisser model), which remains far from the Carnot limit, predicting a solar to electricity efficiency upper value of 93%. The large gap between both limits is due to intrinsic loss mechanisms, including the inefficient conversion of the solar spectrum and the large discrepancy between the solid angles of absorption and emission. To overcome these losses and get closer to the Carnot limit, three different strategies are considered in this thesis: concentrated multi-junction solarcells, the combination of solar concentration and angular confinement, and hybrid PV/CSP systems. Each strategy is inherently limited by several loss mechanisms that degrade their performances. The objective of this thesis is, hence, to better understand the extent to which these strategies are likely to be penalized by these losses, and to tailor the cell properties toward maximizing their efficiencies. To address these questions, a detailed-balance model of PV cell accounting for the main loss mechanisms was developed. A genetic-algorithm optimization tool was also implemented, aiming at exploring the parameter space and identifying the optimal operation conditions. We demonstrate the uttermost importance of tailoring the electronic properties of the materials used with both multi-junction solar cells undergoing significant series resistance losses, and PV cells operating at temperature levels exceeding ambient temperature. We also investigate the extent to which series resistances losses and non-radiative recombination are likely to affect the ability of PV cells simultaneously submitted to concentrated sunlight and angular restriction of the light emitted by band-to-band recombination
APA, Harvard, Vancouver, ISO, and other styles
50

Sommerfeld, Jeffrey. "Residential customers and adoption of solar PV." Thesis, Queensland University of Technology, 2016. https://eprints.qut.edu.au/98508/4/Jeffrey_Sommerfeld_Thesis.pdf.

Full text
Abstract:
Policies encouraging consumer use of solar photovoltaic (PV) are promoted to reduce the impacts of climate change. To maximise benefits, the role of the consumer is critical as their adoption and use of renewable energy technology may, or may not, align with policy objectives of the energy professionals. The contribution of this research is it provides a better understanding of consumer interaction with solar PV technology. From this understanding, policy options can be developed and/or adapted to address technical and/or human-related issues that impact on the effectiveness of solar PV policy aimed at reducing peak demand and creating low carbon communities.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography