To see the other types of publications on this topic, follow the link: Push-Pull chromophores.

Journal articles on the topic 'Push-Pull chromophores'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Push-Pull chromophores.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Kato, Shin-ichiro, and François Diederich. "Non-planar push–pull chromophores." Chemical Communications 46, no. 12 (2010): 1994. http://dx.doi.org/10.1039/b926601a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gupta, Vinod Kumar, and Ram Adhar Singh. "An investigation on single crystal growth, structural, thermal and optical properties of a series of organic D–π–A push–pull materials." RSC Advances 5, no. 48 (2015): 38591–600. http://dx.doi.org/10.1039/c5ra04907e.

Full text
Abstract:
We present the large single crystal growth of a series of donor–π–acceptor (D–π–A) push–pull chromophores (1–4). The thermal, structural and optical properties of the synthesized chromophores were explored. These studies indicate the potential opto-electronic application of these push–pull chromophores.
APA, Harvard, Vancouver, ISO, and other styles
3

Eom, Taejun, and Anzar Khan. "Push-pull azobenzene chromophores with negative halochromism." Dyes and Pigments 188 (April 2021): 109197. http://dx.doi.org/10.1016/j.dyepig.2021.109197.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Coluccini, Carmine, Pierangelo Metrangolo, Marco Parachini, Dario Pasini, Giuseppe Resnati, and Pierpaolo Righetti. "“Push-pull” supramolecular chromophores supported on cyclopolymers." Journal of Polymer Science Part A: Polymer Chemistry 46, no. 15 (August 1, 2008): 5202–13. http://dx.doi.org/10.1002/pola.22848.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kato, Shin-ichiro, and Francois Diederich. "ChemInform Abstract: Non-Planar Push-Pull Chromophores." ChemInform 41, no. 25 (June 22, 2010): no. http://dx.doi.org/10.1002/chin.201025206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yamada, Michio. "Perspectives on push–pull chromophores derived from click-type [2 + 2] cycloaddition–retroelectrocyclization reactions of electron-rich alkynes and electron-deficient alkenes." Beilstein Journal of Organic Chemistry 20 (January 22, 2024): 125–54. http://dx.doi.org/10.3762/bjoc.20.13.

Full text
Abstract:
Various push–pull chromophores can be synthesized in a single and atom-economical step through [2 + 2] cycloaddition–retroelectrocyclization (CA–RE) reactions involving diverse electron-rich alkynes and electron-deficient alkenes. In this review, a comprehensive investigation of the recent and noteworthy advancements in the research on push–pull chromophores prepared via the [2 + 2] CA–RE reaction is conducted. In particular, an overview of the physicochemical properties of the family of these compounds that have been investigated is provided to clarify their potential for future applications.
APA, Harvard, Vancouver, ISO, and other styles
7

Labrunie, Antoine, Pierre Josse, Sylvie Dabos-Seignon, Philippe Blanchard, and Clément Cabanetos. "Pentaerythritol based push–pull tetramers for organic photovoltaics." Sustainable Energy & Fuels 1, no. 9 (2017): 1921–27. http://dx.doi.org/10.1039/c7se00345e.

Full text
Abstract:
We report herein the synthesis, characterization and preliminary evaluation of two simple tetramers based on the functionalization of a central pentaerythritol σ-linker with push–pull chromophores as molecular donor for organic photovoltaics.
APA, Harvard, Vancouver, ISO, and other styles
8

Lepetit, Christine, Pascal G. Lacroix, Viviane Peyrou, Catherine Saccavini, and Remi Chauvin. "Hyperpolarizability of novel carbo-meric push-pull chromophores." Journal of Computational Methods in Sciences and Engineering 4, no. 4 (December 22, 2004): 569–88. http://dx.doi.org/10.3233/jcm-2004-4404.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Breiten, Benjamin, Ivan Biaggio, and François Diederich. "Nonplanar Push–Pull Chromophores for Opto-Electronic Applications." CHIMIA International Journal for Chemistry 64, no. 6 (June 30, 2010): 409–13. http://dx.doi.org/10.2533/chimia.2010.409.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Abbotto, A., L. Beverina, R. Bozio, S. Bradamante, C. Ferrante, G. A. Pagani, and R. Signorini. "Push-Pull Organic Chromophores for Frequency-Upconverted Lasing." Advanced Materials 12, no. 24 (December 2000): 1963–67. http://dx.doi.org/10.1002/1521-4095(200012)12:24<1963::aid-adma1963>3.0.co;2-s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Abdul Raheem, Abbasriyaludeen, Chitra Kumar, Ramasamy Shanmugam, P. Murugan, and Chandrasekar Praveen. "Molecular engineering of twisted dipolar chromophores for efficiency boosted BHJ solar cells." Journal of Materials Chemistry C 9, no. 13 (2021): 4562–75. http://dx.doi.org/10.1039/d1tc00708d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Lifshits, Liubov M., Darya S. Budkina, Varun Singh, Sergey M. Matveev, Alexander N. Tarnovsky, and Jeremy K. Klosterman. "Solution-state photophysics of N-carbazolyl benzoate esters: dual emission and order of states in twisted push–pull chromophores." Physical Chemistry Chemical Physics 18, no. 39 (2016): 27671–83. http://dx.doi.org/10.1039/c6cp04619c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Zhao, Yu, Chenhao Zhang, Kek Foo Chin, Oldřich Pytela, Guo Wei, Hongjun Liu, Filip Bureš, and Zhiyong Jiang. "Dicyanopyrazine-derived push–pull chromophores for highly efficient photoredox catalysis." RSC Adv. 4, no. 57 (2014): 30062–67. http://dx.doi.org/10.1039/c4ra05525j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Belén Marco, A., Denis Gindre, Konstantinos Iliopoulos, Santiago Franco, Raquel Andreu, David Canevet, and Marc Sallé. "(Super)gelators derived from push–pull chromophores: synthesis, gelling properties and second harmonic generation." Organic & Biomolecular Chemistry 16, no. 14 (2018): 2470–78. http://dx.doi.org/10.1039/c8ob00251g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Li, Chenge, Marie-Aude Plamont, Isabelle Aujard, Thomas Le Saux, Ludovic Jullien, and Arnaud Gautier. "Design and characterization of red fluorogenic push–pull chromophores holding great potential for bioimaging and biosensing." Organic & Biomolecular Chemistry 14, no. 39 (2016): 9253–61. http://dx.doi.org/10.1039/c6ob01612j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Danko, M., P. Hrdlovič, A. Martinická, A. Benda, and M. Cigáň. "Spectral properties of ionic benzotristhiazole based donor–acceptor NLO-phores in polymer matrices and their one- and two-photon cellular imaging ability." Photochemical & Photobiological Sciences 16, no. 12 (2017): 1832–44. http://dx.doi.org/10.1039/c7pp00239d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Kothoori, Naga Pranava Sree, Pandiyan Sivasakthi, Mallesham Baithy, Ramprasad Misra, and Pralok K. Samanta. "Rational design and investigation of nonlinear optical response properties of pyrrolopyrrole aza-BODIPY-based novel push–pull chromophores." RSC Advances 14, no. 22 (2024): 15560–70. http://dx.doi.org/10.1039/d4ra02861a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Zhang, Xuan, Ziqi Wen, Hongxing Zhang, Weihua Han, Jinyi Ma, Renbo Wei, and Xiufu Hua. "Dielectric Properties of Azo Polymers: Effect of the Push-Pull Azo Chromophores." International Journal of Polymer Science 2018 (2018): 1–10. http://dx.doi.org/10.1155/2018/4541937.

Full text
Abstract:
The relationship between the structure and the dielectric properties of the azo polymers was studied. Four azo polymers were synthesized through the azo-coupling reaction between the same precursor (PAZ) and diazonium salts of 4-aminobenzoic acid ethyl ester, 4-aminobenzonitrile, 4-nitroaniline, and 2-amino-5-nitrothiazole, respectively. The precursor and azo polymers were characterized by 1H NMR, FT-IR, UV-vis, GPC, and DSC. The dielectric constant and dielectric loss of the samples were measured in the frequency range of 100 Hz–200 kHz. Due to the existence of the azo chromophores, the dielectric constant of the azo polymers increases compared with that of the precursor. In addition, the dielectric constant of the azo polymers increases with the increase of the polarity of the azo chromophores. A random copolymer (PAZ-NT-PAZ) composed of the azo polymer PAZ-NT and the precursor PAZ was also prepared to investigate the content of the azo chromophores on the dielectric properties of the azo polymers. It showed that the dielectric constant increases with the increase of the azo chromophores. The results show that the dielectric constant of this kind of azo polymers can be controlled by changing the structures and contents of azo chromophores during the preparation process.
APA, Harvard, Vancouver, ISO, and other styles
19

Kautny, Paul, Florian Glöcklhofer, Thomas Kader, Jan-Michael Mewes, Berthold Stöger, Johannes Fröhlich, Daniel Lumpi, and Felix Plasser. "Charge-transfer states in triazole linked donor–acceptor materials: strong effects of chemical modification and solvation." Physical Chemistry Chemical Physics 19, no. 27 (2017): 18055–67. http://dx.doi.org/10.1039/c7cp01664f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Valdivia-Berroeta, Gabriel A., Karissa C. Kenney, Erika W. Jackson, Joseph C. Bloxham, Adam X. Wayment, Daniel J. Brock, Stacey J. Smith, Jeremy A. Johnson, and David J. Michaelis. "6MNEP: a molecular cation with large hyperpolarizability and promise for nonlinear optical applications." Journal of Materials Chemistry C 8, no. 32 (2020): 11079–87. http://dx.doi.org/10.1039/d0tc01829e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Achelle, Sylvain, Alberto Barsella, Bertrand Caro, and Françoise Robin-le Guen. "Donor–linker–acceptor (D–π–A) diazine chromophores with extended π-conjugated cores: synthesis, photophysical and second order nonlinear optical properties." RSC Advances 5, no. 49 (2015): 39218–27. http://dx.doi.org/10.1039/c5ra05736a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Alain, Valérie, Mireille Blanchard-Desce, Isabelle Ledoux-Rak, and Joseph Zyss. "Amphiphilic polyenic push–pull chromophores for nonlinear optical applications." Chemical Communications, no. 5 (2000): 353–54. http://dx.doi.org/10.1039/a908717f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Iftime, Gabriel, Pascal G. Lacroix, Keitaro Nakatani, and Alexandru C. Razus. "Push-pull azulene-based chromophores with nonlinear optical properties." Tetrahedron Letters 39, no. 38 (September 1998): 6853–56. http://dx.doi.org/10.1016/s0040-4039(98)01495-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Rout, Yogajivan, Vivek Chauhan, and Rajneesh Misra. "Synthesis and Characterization of Isoindigo-Based Push–Pull Chromophores." Journal of Organic Chemistry 85, no. 7 (March 4, 2020): 4611–18. http://dx.doi.org/10.1021/acs.joc.9b03267.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Niu, Songlin, Gilles Ulrich, Pascal Retailleau, and Raymond Ziessel. "BODIPY-bridged push–pull chromophores: optical and electrochemical properties." Tetrahedron Letters 52, no. 38 (September 2011): 4848–53. http://dx.doi.org/10.1016/j.tetlet.2011.07.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Podlesný, Jan, Veronika Jelínková, Oldřich Pytela, Milan Klikar, and Filip Bureš. "Acceptor-induced photoisomerization in small thienothiophene push-pull chromophores." Dyes and Pigments 179 (August 2020): 108398. http://dx.doi.org/10.1016/j.dyepig.2020.108398.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Ulrich, Gilles, Alberto Barsella, Alex Boeglin, Songlin Niu, and Raymond Ziessel. "BODIPY-Bridged Push-Pull Chromophores for Nonlinear Optical Applications." ChemPhysChem 15, no. 13 (June 20, 2014): 2693–700. http://dx.doi.org/10.1002/cphc.201402123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Klikar, Milan, Parmeshwar Solanke, Jiří Tydlitát, and Filip Bureš. "Alphabet-Inspired Design of (Hetero)Aromatic Push-Pull Chromophores." Chemical Record 16, no. 4 (June 7, 2016): 1886–905. http://dx.doi.org/10.1002/tcr.201600032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Zou, Jie, Di Zhang, Weilong Chen, and Jingdong Luo. "Optimizing the vectorial component of first hyperpolarizabilities of push–pull chromophores to boost the electro-optic activities of poled polymers over broad telecom wavelength bands." Materials Advances 2, no. 7 (2021): 2318–27. http://dx.doi.org/10.1039/d1ma00086a.

Full text
Abstract:
Alternating the sequence of thiophene-based π-conjugation bridge of push–pull chromophores significantly improves the vectorial component of first hyperpolarizabilities and polar order of molecules for large electro-optic activities of poled films.
APA, Harvard, Vancouver, ISO, and other styles
30

Burganov, T. I., S. A. Katsyuba, S. M. Sharipova, A. A. Kalinin, A. Monari, and X. Assfeld. "Novel quinoxalinone-based push–pull chromophores with highly sensitive emission and absorption properties towards small structural modifications." Physical Chemistry Chemical Physics 20, no. 33 (2018): 21515–27. http://dx.doi.org/10.1039/c8cp03780a.

Full text
Abstract:
The photophysical properties of a series of novel push–pull quinoxalinone-based chromophores that strongly absorb and emit light in the broad visible spectrum were comprehensively studied both experimentally and through quantum chemical methods.
APA, Harvard, Vancouver, ISO, and other styles
31

Balaji, N., M. R. Kannan, Y. Sheeba Sherlin, and T. Vijayakumar. "Quantum Chemical Computations of an Efficient Push-Pull NLO Chromophore 3-[4-Nitrophenyl Azo]- 9H- Carbazole-9-Ethanol." IOP Conference Series: Materials Science and Engineering 1219, no. 1 (January 1, 2022): 012023. http://dx.doi.org/10.1088/1757-899x/1219/1/012023.

Full text
Abstract:
Abstract Electric-optic (EO) materials are being explored for applications ranging from fiber and satellite telecommunications, optical gyroscopes, to photonic detection of radar etc. Dipolar push-pull Organic chromophores that exhibit extended π-conjugation, in particular, show enhanced second order NLO properties. The present investigation reports the quantum chemical computations of the high efficiency push-pull NLO molecule 3-[(4-Nitrophenyl Azo)] - 9H-Carbazole-9-Ethanol (NPACE). The organic push-pull molecule is optimized in gaseous and in various solvent condition using Exchange correlation function (B3LYP/MP2). Molecular electrostatic potential, thermal properties and NBO analysis have also been performed in detail. The effective electron cloud moment in the molecule is mainly governed by the physical process termed intramolecular Charge Transfer (ICT).
APA, Harvard, Vancouver, ISO, and other styles
32

Bureš, Filip, Daniel Cvejn, Klára Melánová, Ludvík Beneš, Jan Svoboda, Vítězslav Zima, Oldřich Pytela, et al. "Effect of intercalation and chromophore arrangement on the linear and nonlinear optical properties of model aminopyridine push–pull molecules." Journal of Materials Chemistry C 4, no. 3 (2016): 468–78. http://dx.doi.org/10.1039/c5tc03499j.

Full text
Abstract:
Three push–pull aminopyridine derivatives having D–π–A, D–(π–A)2, and D–(π–A)3 arrangements were examined as model organic chromophores capable of intercalation into inorganic layered materials.
APA, Harvard, Vancouver, ISO, and other styles
33

Swager, Timothy, and Cagatay Dengiz. "Homoconjugated and Spiro Push–Pull Systems: Cycloadditions of Naphtho- and Anthradiquinones with Electron-Rich Alkynes." Synlett 28, no. 12 (April 11, 2017): 1427–31. http://dx.doi.org/10.1055/s-0036-1588771.

Full text
Abstract:
We report the synthesis and characterization of three new classes of push–pull chromophores using [2+2]-cycloaddition reactions of electron-rich alkynes and electron-poor alkenes. Previous investigations have focused on the reactions of cyano-substituted electron acceptors. This study demonstrates that cyano-free electron acceptors, naphtho- and anthradiquinones, can also be used to access extended push–pull systems. The effects of the structural changes on the spectroscopic and electronic properties were investigated by UV/vis spectroscopy. Structures were confirmed by X-ray and NMR analysis in solution.
APA, Harvard, Vancouver, ISO, and other styles
34

Podlesný, Jan, Oldřich Pytela, Milan Klikar, Veronika Jelínková, Iwan V. Kityk, Katarzyna Ozga, Jaroslaw Jedryka, Myron Rudysh, and Filip Bureš. "Small isomeric push–pull chromophores based on thienothiophenes with tunable optical (non)linearities." Organic & Biomolecular Chemistry 17, no. 14 (2019): 3623–34. http://dx.doi.org/10.1039/c9ob00487d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Brusatin, Giovanna, Plinio Innocenzi, Alessandro Abbotto, Luca Beverina, Giorgio A. Pagani, Mauro Casalboni, Felice Sarcinelli, and Roberto Pizzoferrato. "Hybrid organic–inorganic materials containing poled zwitterionic push–pull chromophores." Journal of the European Ceramic Society 24, no. 6 (January 2004): 1853–56. http://dx.doi.org/10.1016/s0955-2219(03)00601-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Moran, Andrew M., Anne Myers Kelley, and Sergei Tretiak. "Excited state molecular dynamics simulations of nonlinear push–pull chromophores." Chemical Physics Letters 367, no. 3-4 (January 2003): 293–307. http://dx.doi.org/10.1016/s0009-2614(02)01583-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Centore, Roberto, Alain Fort, Barbara Panunzi, Antonio Roviello, and Angela Tuzi. "Second order molecular nonlinearities in new orthopalladated push–pull chromophores." Inorganica Chimica Acta 357, no. 4 (March 2004): 913–18. http://dx.doi.org/10.1016/j.ica.2003.06.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Tonga, Murat. "Tunable optical properties of push-pull chromophores: End group effect." Tetrahedron Letters 61, no. 32 (August 2020): 152205. http://dx.doi.org/10.1016/j.tetlet.2020.152205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Painelli, A., L. Del Freo, and F. Terenziani. "Understanding non–linearity: a simple model for push–pull chromophores." Synthetic Metals 121, no. 1-3 (March 2001): 1465–66. http://dx.doi.org/10.1016/s0379-6779(00)00823-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Gunaratne, Tissa, J. Reddy Challa, and M. Cather Simpson. "Energy Flow in Push-Pull Chromophores: Vibrational Dynamics inpara-Nitroaniline." ChemPhysChem 6, no. 6 (June 13, 2005): 1157–63. http://dx.doi.org/10.1002/cphc.200400288.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Chen, Ying, Ran Lu, WenYan Wang, Quan Wang, Xiao‐Chun Chi, and Han‐Zhuang Zhang. "Solvent‐dependent ultrafast optical response of conjugated push–pull chromophores." Luminescence 35, no. 4 (January 7, 2020): 572–79. http://dx.doi.org/10.1002/bio.3758.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Ortíz, Alejandro, Braulio Insuasty, M. Rosario Torres, M. Ángeles Herranz, Nazario Martín, Rafael Viruela, and Enrique Ortí. "Aminopyrimidine-Based Donor–Acceptor Chromophores: Push–Pull versus Aromatic Behaviour." European Journal of Organic Chemistry 2008, no. 1 (January 2008): 99–108. http://dx.doi.org/10.1002/ejoc.200700718.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Turan, Haydar Taylan, Oğuzhan Kucur, Birce Kahraman, Seyhan Salman, and Viktorya Aviyente. "Design of donor–acceptor copolymers for organic photovoltaic materials: a computational study." Physical Chemistry Chemical Physics 20, no. 5 (2018): 3581–91. http://dx.doi.org/10.1039/c7cp08176f.

Full text
Abstract:
80 different push–pull type organic chromophores which possess Donor–Acceptor (D–A) and Donor–Thiophene–Donor–Thiophene (D–T–A–T) structures have been systematically investigated by means of density functional theory (DFT) and time-dependent DFT (TD-DFT) at the B3LYP/6-311G* level.
APA, Harvard, Vancouver, ISO, and other styles
44

Painelli, Anna, and Francesca Terenziani. "Optical Spectra of Push−Pull Chromophores in Solution: A Simple Model." Journal of Physical Chemistry A 104, no. 47 (November 2000): 11041–48. http://dx.doi.org/10.1021/jp0016075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Barsu, Cyril, Rouba Cheaib, Stéphane Chambert, Yves Queneau, Olivier Maury, Davy Cottet, Hartmut Wege, Julien Douady, Yann Bretonnière, and Chantal Andraud. "Neutral push-pull chromophores for nonlinear optical imaging of cell membranes." Org. Biomol. Chem. 8, no. 1 (2010): 142–50. http://dx.doi.org/10.1039/b915654b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Lehmann, C. W., and T. Dols. "Dipole moment determination in push-pull chromophores from charge density data." Acta Crystallographica Section A Foundations of Crystallography 67, a1 (August 22, 2011): C514—C515. http://dx.doi.org/10.1107/s0108767311086971.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Innocenzi, Plinio, Enrico Miorin, Giovanna Brusatin, Alessandro Abbotto, Luca Beverina, Giorgio A. Pagani, Mauro Casalboni, Felice Sarcinelli, and Roberto Pizzoferrato. "Incorporation of Zwitterionic Push−Pull Chromophores into Hybrid Organic−Inorganic Matrixes." Chemistry of Materials 14, no. 9 (September 2002): 3758–66. http://dx.doi.org/10.1021/cm011231n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Painelli, Anna, and Francesca Terenziani. "A non-perturbative approach to solvatochromic shifts of push–pull chromophores." Chemical Physics Letters 312, no. 2-4 (October 1999): 211–20. http://dx.doi.org/10.1016/s0009-2614(99)00960-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Inoue, Shinobu, Yoshio Aso, and Tetsuo Otsubo. "Push-pull type of diphenoquinoid chromophores as novel near-infrared dyes." Chemical Communications, no. 12 (1997): 1105–6. http://dx.doi.org/10.1039/a701626c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

IFTIME, G., P. G. LACROIX, K. NAKATANI, and A. C. RAZUS. "ChemInform Abstract: Push-Pull Azulene-Based Chromophores with Nonlinear Optical Properties." ChemInform 29, no. 49 (June 18, 2010): no. http://dx.doi.org/10.1002/chin.199849100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography