Academic literature on the topic 'Pulverized'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Pulverized.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Pulverized"

1

Gu, Yang Mo, Sunghyun Kim, Daekyung Sung, Byoung-In Sang, and Jin Hyung Lee. "Feasibility of Continuous Pretreatment of Corn Stover: A Comparison of Three Commercially Available Continuous Pulverizing Devices." Energies 12, no. 8 (April 13, 2019): 1422. http://dx.doi.org/10.3390/en12081422.

Full text
Abstract:
We determined the potential of three mechanical pulverizers—a continuous ball mill (CBM), an air classifier mill (ACM), and a high-speed mill (HSM)—in the continuous pretreatment of corn stover. The mean diameters of the pulverized biomasses were not significantly different in the three cases, and the glucose yields from the CBM-, ACM-, and HSM-pulverized samples were 29%, 49%, and 44%, respectively. The energy requirements and process capacities for the ACM and HSM were similar. We conclude that the ACM and HSM could be used in the continuous pretreatment of corn stover and would be useful in biofuel production.
APA, Harvard, Vancouver, ISO, and other styles
2

Song, Chun Yan, Yong Liang Gui, and Bin Sheng Hu. "Conveying Property of Injection Pulverized Coal into Blast Furnace." Applied Mechanics and Materials 303-306 (February 2013): 2577–80. http://dx.doi.org/10.4028/www.scientific.net/amm.303-306.2577.

Full text
Abstract:
The dynamic characteristic parameter of conveying property of pulverized coal is described with the conveying mass of pulverized coal in unit time. The conveying process of pulverized coal is studied by means of the pulverized coal’s conveying property testing equipment developed by ourselves. Results show that the conveying property of bituminous coal is better than anthracitic coal. If the improvement of conveying property of pulverized coal is considered purely, the size of pulverized coal can properly be reduced and the proportion of anthracitic coal can properly be decreased. The water content of pulverized coal can be controlled from 1% to 2%.
APA, Harvard, Vancouver, ISO, and other styles
3

Zhu, Xun Guo, and Kai Cao. "The Inhibition Studying of Many-Doped Mineral Admixture for Concrete Alkali Silicate Reaction." Advanced Materials Research 690-693 (May 2013): 771–75. http://dx.doi.org/10.4028/www.scientific.net/amr.690-693.771.

Full text
Abstract:
In the theoretical basic of only mixing the pulverized fuel ash, the slag or the silicon ash experiments, carrying on concrete alkali-aggregate reaction experiment separately that double-doped the pulverized fuel ash and the silicon ash, double-doped the pulverized fuel ash and the slag, double-doped the slag and the silicon ash, three-mixed the pulverized fuel ash, the slag and the silicon ash. The result indicated the effect of mixing pulverized fuel ash and the silicon ash is better than the mixing silicon ash and slag or pulverized fuel ash and slag. Besides three-mixed the pulverized fuel ash, the slag and the silicon ash can effectively suppress the reaction of concrete alkali-silica acid response(ASR)
APA, Harvard, Vancouver, ISO, and other styles
4

Song, Chun Yan, Yong Liang Gui, Yan Shi, and Bin Sheng Hu. "Fluiding Characteristics of Pulverized Coal in Fluidization & Injection Jar." Advanced Materials Research 418-420 (December 2011): 2130–33. http://dx.doi.org/10.4028/www.scientific.net/amr.418-420.2130.

Full text
Abstract:
The fluiding characteristics of pulverized coal in fluidization & injection jar were studied systematically with the conveying property testing equipment of pulverized coal designed by ourselves. Results show that the fluidization process of pulverized coal in fluidization & injection jar is a progressive process. The necessary condition of fluidization for pulverized coal in fluidization & injection jar is that the actual fluiding velocity exceeds the theoretical fluiding velocity. According to the moving state of pulverized coal particles in fluidized and injection jar, the fluidization process of pulverized coal consists of three stages of static bed, fluidization bed and gas flow bed.
APA, Harvard, Vancouver, ISO, and other styles
5

Li, Yun Gang, Yong Zheng Wang, Wen Bin Zhu, and Yu Sun. "Study on the Effect of Si-Al Components in Pulverized Coal Ash on Corrosion in Heating Surface of Biomass Boiler." Key Engineering Materials 837 (April 2020): 89–94. http://dx.doi.org/10.4028/www.scientific.net/kem.837.89.

Full text
Abstract:
Pulverized coal ash can be used as an additive to reduce corrosion on heating surface of biomass boiler. Biomass ash and pulverized coal ash were mixed and coated on the metal surface for experiment; the results showed that the corrosion rate of the metal decreases by adding pulverized coal ash. With the increase of additive content, the corrosion gradually reduces. The effect of different pulverized coal ash on corrosion is different, but as the proportion of pulverized coal ash increases, the effect tends to be close. When the molar content of (Si+Al)/(Na+K) is about 2 and the ratio of Si/Al is about 1, the pulverized coal ash additive works best.
APA, Harvard, Vancouver, ISO, and other styles
6

Sun, Yan Ping, Ning Zhao, and Wen Tao Qu. "The Analysis of the Pulverized Coal Deposition in the Pump Cylinder in Drainage and Mining of the Coal Bed Methane (CBM)." Advanced Materials Research 712-715 (June 2013): 1359–62. http://dx.doi.org/10.4028/www.scientific.net/amr.712-715.1359.

Full text
Abstract:
In drainage and mining of the coal bed methane(CBM),pump valve jams caused by the settlement of pulverized coal particles directly affect the normal production of the coal bed methane(CBM).From the study of the pulverized coal particle size,this paper summarizes the law of the pulverized coal particle size change in various stages of the coal bed methane(CBM) production well drainage and ming.By analyzing the pulverized coal particle velocity distribution along the pump cylinder,the viewpoint that the pulverized coal particle has a higher axial velocity in the central part of the settlement and has a lower velocity near the wall surface is put forward to.Based on the theory,the motion track equation of the pulverized coal particle can be got by calculation.Under the condition of considering buoyancy,fluid resistance and pressure drag,instant drop speed of the pulverized coal in water is calculated.
APA, Harvard, Vancouver, ISO, and other styles
7

Jiang, Juanjuan, Rong Zhu, and Shengtao Qiu. "Effect of CO2 injection into blast furnace tuyeres on the pulverized coal combustion." High Temperature Materials and Processes 40, no. 1 (January 1, 2021): 131–40. http://dx.doi.org/10.1515/htmp-2021-0018.

Full text
Abstract:
Abstract CO2 injection into blast furnace tuyeres is a new technology to utilize CO2, aiming at expanding the way of CO2 self-absorption in the metallurgical industry. The decisive factor of whether CO2 can be mixed into a blast-furnace hot blast and the proper mixing ratio is the effect of CO2 injection on pulverized coal burnout. To investigate the effect of CO2 injection into tuyeres on pulverized coal burnout, a three-dimensional mathematical model of pulverized coal flow and combustion in the lower part of the pulverized coal injection lance-blowpipe-tuyere-raceway was established, and the effect of CO2 injection into tuyeres on pulverized coal combustion rate and outlet temperature is analyzed. The numerical simulation results show that the delay of pulverized coal combustion in the early stage is caused by the endothermic effect of the reaction of CO2 with carbon, and the burnout of pulverized coal is increased in the later stage due to the oxidation of CO2.
APA, Harvard, Vancouver, ISO, and other styles
8

Chai, Yi-fan, Guo-ping Luo, Sheng-li An, Jun Peng, and Yi-ci Wang. "Influence of unburned pulverized coal on gasification reaction of coke in blast furnace." High Temperature Materials and Processes 38, no. 2019 (February 25, 2019): 733–38. http://dx.doi.org/10.1515/htmp-2019-0016.

Full text
Abstract:
AbstractIn order to explore the influence of unburned pulverized coal on gasification reaction of coke in blast furnace, kinetic rules of gasification reaction between CO2 and coke powder adding pulverized coals with different volatiles were studied by thermogravimetric analysis. The results showed that weight-loss ratio of samples reacted with CO2 increased after adding pulverized coal, and the weight-loss ratio rose with the increase of coal’s addition. When the content of pulverized coal was up to 50%, the weight-loss ratio of the sample which adding pulverized coal with high volatile was higher under the same temperature. The activation energy about C-CO2 gasification reaction of samples reduced observably after adding pulverized coal. The activation energy of samples had a largest decrease with 83.408 kJ mol−1 at the range of 1223 K~1373 K and it was 28.97 kJ mol−1 at the range of 1373 K~1523 K. The addition of pulverized coal with high volatile can reduce the reaction activation energy of samples more effectively. In the soft melting zone, the gasification reaction model of coke blocks attached the unburned pulverized coal was up to unreacted core model and porous volume-reacted model jointly.
APA, Harvard, Vancouver, ISO, and other styles
9

Sitanggang, Ruly. "ANALISA UKURAN DAN LAJU ALIR BATUBARA PADA BOILER PULVERIZER PLTU 660 MW." Jurnal Technopreneur (JTech) 9, no. 2 (November 26, 2021): 90–97. http://dx.doi.org/10.30869/jtech.v9i2.769.

Full text
Abstract:
Pulverizer adalah salah satu peralatan penting di pembangkit listrik tenaga uap. Partikel batubara yang masih terbakar di area backpass boiler akan mengakibatkan penurunan efisiensi sehingga laju aliran campuran udara dan batubara di saluran pipa bahan bakar perlu diseimbangkan. Penelitian ini dilakukan pada PLTU Batubara tipe pulverized coal dengan kapasitas 660 Mega Watt yang menggunakan enam pulverizer. Aliran keseimbangan bahan bakar diperiksa menggunakan uji dirty air dan pengambilan sampel ukuran batubara dilakukan dengan metode isokinetik. Dalam pengujian dirty air tiga pulverizer masih mengalami turbulensi, menyebabkan pengukuran kecepatan udara menjadi kurang akurat dan hasil pengujian dirty air pada tiga pulverizer lainnya menunjukkan hasil baik dengan kecepatan antar pipa batubara seragam. Lokasi tap test pada pulverizer D, C, dan A disarankan dipindahkan ke jarak sekitar lima kali diameter pipa dari hambatan. Temperatur keluaran seluruh pulverizer pada masih lebih rendah dari nilai standard. Karena tidak ada orifice di dalam pipa batubara, menaikkan suhu keluaran pulverizer ke 65 oC dapat dilakukan untuk meningkatkan keseimbangan kecepatan batubara. Secara keseluruhan, pengujian kehalusan sampel batubara menunjukkan hasil sesuai rekomendasi, dengan nilai kehalusan rata-rata lolos saringan 200 mesh pulverizer A, B, C, D, E, dan F masing-masing adalah 82,12, 83,24, 73,96, 79,13, 68,14, dan 78,43% berat.
APA, Harvard, Vancouver, ISO, and other styles
10

Wei, Li Hong, Na Zhang, and Tian Hua Yang. "Effects of Alkaline Earth Metal on Combustion of Pulverized Coal." Advanced Materials Research 516-517 (May 2012): 271–75. http://dx.doi.org/10.4028/www.scientific.net/amr.516-517.271.

Full text
Abstract:
The influences of alkaline earth metal salts (CaO, MgO) on the combustion property of pulverized coal have been studied by thermogravimetric analysis (TGA). It was indicated that CaO and MgO could improve combustion characteristics of pulverized coal. It was demonstrated that the catalysis of CaO and MgO to the pulverized coal combustion was embodied in the enhancement of the emission of volatile matters (VM) from pulverized coal, which reduced the ignition temperature. MgO exhibited remarkably higher catalytic activity than that of CaO for the combustion of fixed carbon. MgO catalytic combustion mechanism for pulverized coal was different from that of CaO.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Pulverized"

1

Tinkham, Kevin Michael. "Surface studies of pulverized fuel ash." Thesis, University of Southampton, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.278875.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Messig, Danny. "Numerical simulation of pulverized coal combustion." Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2017. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-228707.

Full text
Abstract:
Die Arbeit befasst sich mit der Flamelet Modellierung für die Verbrennung von Kohlenstaub. Dabei liegt der Fokus sowohl auf der detaillierten Betrachtung der Gasphasenchemie als auch auf der Interaktion der Kohle mit der Gasphase. Ziel der Arbeit ist die Entwicklung einer Methode für die Simulation großtechnischer Kohlestaubfeuerungen. Die energetische Umsetzung von Kohle läuft in drei wesentlichen Schritten ab: Verdampfung der Feuchtigkeit, Ausgasung der Kohle (Pyrolyse) und schließlich der Koksabbrand. Da die Struktur der Kohle als fossiler Brennstoff hoch komplex ist, existieren viele prädiktive, rechenaufwändige Modelle zur Beschreibung dieser Prozesse [1–4]. Diese Modelle können nicht direkt in numerischen Strömungssimulationen genutzt werden, dienen aber zur Kalibrierung einfacherer kinetischer Modelle. Diese in der Arbeit angewendete Prozedur wird in [5] beschrieben. Zur detaillierten Beschreibung des Abbaus der entstehenden höheren Kohlenwasserstoffe werden in der Simulation große Reaktionsmechanismen benötigt. Die Benutzung solcher Mechanismen ist mit großen Rechenzeiten verbunden und daher bleibt deren Anwendbarkeit auf einfache Anwendungsfälle beschränkt. Der Vorteil der Flamelet Modellierung besteht darin, dass unter bestimmten Voraussetzungen der komplette thermo-chemische Zustand, bestehend aus Temperatur, Druck und Zusammensetzung, mit nur wenigen charakterisierenden Kontrollvariablen abgebildet werden kann. Durch Vorgabe und Variation der Kontrollvariablen können diese Zustände mittels kanonischer Flammenkonfigurationen vorberechnet und in sogenannten Flamelettabellen abgespeichert werden. Für das klassische Flamelet / Fortschrittsvariablen Modell [6] wird der thermo-chemische Zustand über Mischungsbruch und Fortschrittsvariablen parametriert, dabei bestimmt der Mischungsbruch den Anteil an Brenn- stoff im Gemisch und die Fortschrittsvariable den Fortschritt der chemischen Reaktion. Die Kontrollvariablen werden in der numerischen Simulation transportiert, an Stelle der Energie- und Speziesgleichungen. Dies stellt für große Mechanismen eine dramatische Reduktion der zu lösenden Gleichungen dar. Der thermo-chemische Zustand ergibt sich per Look-up aus den Flamelettabellen. Im Zuge der Verbrennung trockener Kohle werden zwei Brennstoffe durch Pyrolyse und Koksabbrand freigesetzt. Für die Flamelet Modellierung bedeutet dies entsprechend je einen Mischungsbruch für Pyrolysegas und Produkte aus dem Koksabbrand. Neben der Fortschrittsvariablen wird ebenfalls die Enthalpie der Gasphase als Kontrollvariable benötigt aufgrund des intensiven Wärmeaustauschs zwischen Kohle und Gasphase. In der Arbeit erfolgt die Vorstellung der benötigten Transportgleichungen sowie die Beschreibung verschiedener Methoden zur Integration nicht-adiabater Zustände in Flamelettabellen. Dabei unterscheiden sich die vorgestellten Tabellierungstrategien hauptsächlich in der betrachteten Verbrennungsart. IV Erfolgt die Mischung von Brennstoff und Oxidationsmittel erst in der untersuchten Flammenkonfiguration, spricht man von Diffusionsflammenstrukturen; sind beide schon gemischt, so entstehen Vormischflammenstrukturen. Die Detektion solcher Strukturen erfolgt in der Arbeit anhand einer Flammenstrukturanalyse mittels Flammenmarker. Die prinzipielle Übertragbarkeit des Flamelet / Fortschrittsvariablen Modells auf turbulente Kohlestaubfeuerung wurde von Watanabe [7] gezeigt, jedoch ist die Bewertung der eingesetzten Flamelet Modellierung in Grobstruktursimulationen nicht ohne weiteres möglich. Deshalb werden zur Verifizierung der entwickelten Tabellierungstrategie in der Arbeit einfache Flammenkonfigurationen betrachtet, die es erlauben, direkte Chemielösungen mit den Lösungen der tabellierten Chemie zu vergleichen. Für den entsprechenden Vergleich erfolgt die Vorstellung zweier Analysen. Bei der a priori Analyse wird der thermo-chemische Zustand der detaillierten Lösung mit dem tabellierten Zustand verglichen. Für den Look-up werden dabei die Kontrollvariablen der direkten Chemiesimulation benutzt. Die a posteriori Analyse ist der Vergleich einer voll gekoppelten Rechnung unter Benutzung der Tabellierungstrategie mit der zugehörigen detaillierten Rechnung. Die erste untersuchte Konfiguration stellt eine Gegenstromanordnung mit vorgewärmter Luft und Kohlebeladung dar. Die Hauptergebnisse dieser rein numerischen Studie wurden bereits veröffentlicht [8] und es konnte die erfolgreiche Applikation der vorgestellten Tabellierungstrategie in dieser Anordnung für Tabellen basierend auf Diffusionflammenstrukturen gezeigt werden. Für die Validierung der detaillierten Rechnungen erfolgt die Nutzung experimenteller Daten [9, 10] für magere Methan-Sauerstoff-Stickstoff Mischungen in Staupunktströmungen. Es zeigt sich, dass diese Konfigurationen stark von den vorgemischten Gasflammen dominiert werden und somit Tabellen basierend auf Vormischflammenstrukturen einzusetzen sind. Die entwickelte Tabellierungsmethode ist in der Lage, auch diese Flammenstrukturen abzubilden. Abschließend wird numerisch eine Parametervariation hinsichtlich Einlassgeschwindigkeit und Kohlebeladung vorgestellt, um die Robustheit und breite Anwendbarkeit der entwickelten Tabellierungstrategie aufzuzeigen. Zusammenfassend konnte mittels Flammenstrukturanalyse für jede vorgestellte Konfiguration der zu verwendende Typ der Tabelle bestimmt werden. In den untersuchten Konfigurationen führte deren Anwendung zu einer guten Übereinstimmung mit den detaillierten Rechnungen. Damit legt diese Arbeit den Grundstein für weiterführende Betrachtung zur Simulation großtechnischer Kohlestaubfeuerungen.
APA, Harvard, Vancouver, ISO, and other styles
3

Mescher, Ann M. "Flame structures in a pulverized coal combustor /." The Ohio State University, 1995. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487862399449444.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Karlsen, Torill Marie. "The erosive characteristics of South African pulverized coals." Master's thesis, University of Cape Town, 1985. http://hdl.handle.net/11427/22642.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Misra, Mahendra Kumar. "Modeling of pulverized-coal flames in plug flow furnaces /." The Ohio State University, 1990. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487685204970189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gallagher, Neal Benjamin. "Alkali metal partitioning in a pulverized coal combustion environment." Diss., The University of Arizona, 1992. http://hdl.handle.net/10150/185896.

Full text
Abstract:
Fouling, slagging, corrosion, and emission of submicron particulate from pulverized coal combustors have been linked to vapor alkali. Size segregated fly ash samples extracted from a 17 kW down-fired pulverized coal combustor showed strong evidence of alkali vaporization. The fraction of sodium in sizes smaller than 0.65 μm (f(8A)) showed a correlation with acid soluble sodium divided by total silicates in the parent coal. Addition of silicates to coal reduced f(8A) for sodium. Potassium existing primarily in the mineral matter, did not show a similar correlation, but f(8A) for potassium did correlate with f(8A) for sodium. Bench scale experiments indicated potassium does not vaporize in the presence of Na or Cl alone, but requires both, and was only released when sodium was captured. Additional of sodium acetate to coal increased f(8A) for potassium. Equilibrium calculations, experiment, and modelling of sodium capture by silicates during pulverized coal combustion identified several important mechanisms governing alkali behavior. The mode of occurrence of alkali in the parent coal dictates its ability to vaporize, its release kinetics, and its sate as it diffuses to the char surface. Other species such as chlorine, sulfur, moisture, and other metals influence alkali stability in the vapor, its reactivity, and its condensation characteristics. Char oxidation can influence alkali vaporization, and capture by affecting included silicate surface area. Sodium reaction with silicates captures from 70 to over 95% of total sodium for typical coals. Silicate additive appears to be a viable technique for reducing the fraction of alkali in the vapor during combustion.
APA, Harvard, Vancouver, ISO, and other styles
7

Seames, Wayne Stewart. "The partitioning of trace elements during pulverized coal combustion." Diss., The University of Arizona, 2000. http://hdl.handle.net/10150/284196.

Full text
Abstract:
The environmental impact resulting from the release of trace elements during coal combustion is an important issue for the coal-fired electric utility industry. Trace elements exit the combustor by partitioning between the flue gas and the fly ash particles. A comprehensive study has been conducted to investigate the mechanisms governing the partitioning of trace elements during pulverized coal combustion. The behavior of seven trace elements (arsenic, selenium, antimony, cobalt, cesium, thorium, and cerium) in six pulverized coals were studied under commercially relevant conditions in a well-described laboratory combustion environment. The partitioning of trace elements is governed by the extent of volatilization during combustion, the form of occurrence in the flue gas, and the mechanisms controlling vapor-to-solid phase transformation to fly ash particle surfaces. The most common vapor-to-solid phase partitioning mechanism for semi-volatile trace elements is reaction with active fly ash surfaces. Trace elements that form oxy-anions upon volatilization (e.g. arsenic, selenium, antimony) will react with active calcium and iron cation fly ash surface sites. Trace elements that form simple oxides upon volatilization (e.g. cobalt, cesium) will react with active aluminum oxy-anion fly ash surface sites. The maximum combustion temperature affects the availability of active calcium and iron surface sites but not aluminum sites. Sulfur inhibits the reactivity of oxy-anions with iron surface sites. For coals with high sulfur contents (>1 wt % as SO₂), volatilized trace elements that form oxy-anions will partition by reaction with calcium surface sites if sufficient sites are available. For coals with low sulfur contents, volatilized trace elements that form oxy-anions, will partition by reaction with iron surface sites. Volatilized trace elements that form oxy-anions will not partition by reaction if the coal sulfur content is high and the calcium content is low (<3 wt% as CaO). Transition metals (e.g. cobalt) may form simple oxides, oxy-anions or both upon volatilization. An appreciable fraction of trace elements with limited volatility (e.g. cobalt, thorium, cerium, cesium) will volatilize. These will partition back to the solid phase by homogeneous nucleation or surface reaction depending upon the post-combustion conditions present.
APA, Harvard, Vancouver, ISO, and other styles
8

Ogden, Gregory E. "Pulverized coal combustion: Flame attachment and nitrogen oxide emissions." Diss., The University of Arizona, 2002. http://hdl.handle.net/10150/289822.

Full text
Abstract:
To fully utilize coal as a long-term energy source, pollution prevention technologies must be developed to mitigate the negative environmental and health impacts of coal combustion. NOₓ emissions are of particular concern due to their role in forming ground-level ozone, photochemical smog, fine particulates and acid rain. A systematic evaluation of near-flame aerodynamics was conducted to determine how burner operating parameters and oxygen partial pressure influence flame attachment and coal ignition, two properties essential for proper low NOₓ burner operation. A laboratory scale (17kW) 2m tall, 0.5m diameter electrically heated furnace and axial burner with adjustable secondary combustion air annuli and primary fuel jets were used in the study. Transport air oxygen partial pressure (PO₂), coal particle size distribution, primary and secondary jet velocity, and wall temperature were varied independently to determine the effect of each variable on flame attachment and NOₓ. NOₓ emissions from the furnace were similar to those from full-scale tangentially-fired boilers. The tendency for flame attachment increased with velocity ratio (Θ), wall temperature, PO₂, and coal fines. Θ's greater than 1 were required for stable combustion. Increasing Θ reduced flame standoff distances and NOₓ for always-detached flames. NOₓ increased with Θ for always-attached flames. Increasing PO₂ reduced NOₓ by up to 50% by promoting flame attachment. However both oxygen enrichment and increasing fines had little impact on NOₓ for always-attached and always-detached flames. Wall temperature and excess air in leakage were the dominant variables affecting NOₓ. Furnace exhaust oxygen levels increased when operating under a slight vacuum with corresponding increases in NOₓ. Emissions for detached flames increased with wall temperature 3 times faster than attached flames. Emissions data obtained from the furnace under slight positive furnace pressure increased linearly with wall temperature. A novel dual flame was produced at high Θ and reduced PO₂ consisting of one flame attached to the burner and one stabilized 18" below the burner. This configuration is similar to staged combustion but without separate over-fire air. Emissions from the dual flame were significantly below those observed from conventional Type-O attached and detached flames.
APA, Harvard, Vancouver, ISO, and other styles
9

Bool, Lawrence E. III. "The partitioning of iron during the combustion of pulverized coal." Diss., The University of Arizona, 1993. http://hdl.handle.net/10150/186374.

Full text
Abstract:
The presence of pyrite in coal has long been known to affect the slagging propensity of the coal when burned in industrial boilers. In particular it has been found that molten pyrite bonds very well to steel furnace tubes. In addition, it has been found that the amount of chemically bound iron greatly influences the slag contact angle and stickiness on steel heat transfer tubes. The goal of this research, which is part of a larger project headed by the PSI Technology Company to study mineral matter transformations during combustion, is to explore and model the mechanisms dominating the fate of iron during combustion. To achieve this goal a well characterized suite of coals was burned in a 17kW downfired laboratory combustor. Fly ash was extracted from the flue gas and size classified. These ash samples were then subjected to a number of analytical techniques including Atomic Absorption Spectroscopy (AA), Energy Dispersive X-Ray (EDX), Computer Controlled Scanning Electron Microscopy (CCSEM), Transmission Electron Microscopy (TEM), and Mossbauer Spectroscopy to determine the ash bulk composition and morphology. Of these techniques, Transmission Electron Microscopy and Mossbauer, were instrumental in determining the iron-silicate interactions during combustion. Utilizing the information gleaned from the fly ash analysis, and work in the literature, it was possible to propose a pathway for iron interactions during combustion. A mechanistic model was then proposed to quantify the competition between processes governing iron oxidation/crystallization and those promoting iron-silicate mixing/reaction. This model described the partitioning of iron between chemically bound and physically bound phases. By utilizing kinetic parameters from the literature and fundamental transport phenomena, this model was able to successfully correlate data from several coals burned under a range of combustion conditions. The model can also be used to quantify the effect of combustion modifications and fuel property changes on iron partitioning.
APA, Harvard, Vancouver, ISO, and other styles
10

Xia, Yunkai. "Dynamic property evaluation of frother." Morgantown, W. Va. : [West Virginia University Libraries], 2000. http://etd.wvu.edu/templates/showETD.cfm?recnum=1743.

Full text
Abstract:
Thesis (M.S.)--West Virginia University, 2000.
Title from document title page. Document formatted into pages; contains x, 89 p. : ill. Vita. Includes abstract. Includes bibliographical references (p. 62-64).
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Pulverized"

1

Lemieux, Paul M. Pulverized coal combustion: Pollutant formation and control, 1970-1980. Research Triangle Park, NC: U.S. Environmental Protection Agency, Air and Energy Engineering Research Laboratory, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Morrison, G. F. Understanding pulverised coal combustion. London: IEA Coal Research, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Babiĭ, V. I. Gorenie ugolʹnoĭ pyli i raschet pyleugolʹnogo fakela. Moskva: Ėnergoatomizdat, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dunxi, Yu, and Liu Xiaowei, eds. Ran mei ke xi ru ke li wu de xing cheng yu pai fang. Beijing: Ke xue chu ban she, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lahaye, J. Fundamentals of the Physical-Chemistry of Pulverized Coal Combustion. Dordrecht: Springer Netherlands, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lahaye, J., and G. Prado, eds. Fundamentals of the Physical-Chemistry of Pulverized Coal Combustion. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3661-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

1937-, Lahaye J., Prado G, and North Atlantic Treaty Organization. Scientific Affairs Division., eds. Fundamentals of the physical-chemistry of pulverized coal combustion. Dordrecht: M. Nijhoff, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

I͡Aroshevskiĭ, S. L. Vyplavka chuguna s primeneniem pyleugolʹnogo topliva. Moskva: "Metallurgii͡a", 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Shalimov, Al G. Intensifikatsiya protsessov spetsial'noi elektrometallurgii. Moskva: Metallurgiya, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Oleschko, Holger. Freisetzung von Alkalien und Halogeniden bei der Kohleverbrennung. Jülich: Forschungszentrum Jülich, Zentralbibliothek, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Pulverized"

1

Moyeda, David K. "Pulverized Coal-Fired Boilers pulverized coal coal-fired boilers and Pollution Control." In Encyclopedia of Sustainability Science and Technology, 8347–72. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0851-3_101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kremer, H., R. Mechenbier, and W. Schulz. "Staged Combustion of Pulverized Coal." In Fundamentals of the Physical-Chemistry of Pulverized Coal Combustion, 304–18. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3661-4_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Jialin, Jun Zhao, Ruiping Zhang, and Shougen Hu. "A study on measuring methods about pulverized coal concentrations in conveying pulverized coal pipelines." In Advances in Energy Science and Equipment Engineering II, 387–91. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.1201/9781315116167-77.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Farias, Edson, and Bruno Couto. "From planned city to pulverized metropolis." In Urban Latin America, 142–55. New York: Routledge, 2018. | Series: The architext series: Routledge, 2018. http://dx.doi.org/10.4324/9781315620961-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jackson, P. J. "Mineral Matter in Pulverized Coal Combustion." In Fundamentals of the Physical-Chemistry of Pulverized Coal Combustion, 269–87. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3661-4_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Moyeda, David K. "Pulverized Coal-Fired Boilers and Pollution Control." In Fossil Energy, 439–66. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4939-9763-3_101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ezzahra, Lakhal Fatma, Agrebi Senda, and Mouldi Chrigui. "CFD Study of a Pulverized Coal Boiler." In Advances in Mechanical Engineering and Mechanics, 257–64. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19781-0_31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gisselquist, Rachel M. "Benin: A Pulverized Party System in Transition." In Party Systems and Democracy in Africa, 129–47. London: Palgrave Macmillan UK, 2014. http://dx.doi.org/10.1057/9781137011718_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Moyeda, David K. "Pulverized Coal-Fired Boilers and Pollution Control." In Fossil Energy, 489–526. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-5722-0_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pang, Qinghai. "Influence of Volatile Functionality on Pulverized Coal Explosivity." In Energy Technology 2014, 233–39. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118888735.ch29.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Pulverized"

1

Bhattacharya, Chittatosh. "Capacity Mapping for Optimum Utilization of Pulverizers for Coal Fired Boilers." In ASME 2006 Power Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/power2006-88005.

Full text
Abstract:
The pulverizer plays a pivotal role in coal based thermal power generation. The improper coal fineness or drying reflects a quality-wise deterioration. This results in flame instability, unburnt combustible loss, and a propensity to slagging or clinker formation. Simultaneously, an improper air-coal ratio may result in either the coal pipe choke or the flame impingement, an unbalanced heat release, an excessive FEGT, overheating of the tube metal, etc, resulting on the reduced output and excessive pulverizer rejects. In general, the base capacity of the pulverizer is a function of coal and air quality, conditions of grinding elements, classifier and other internals. The capacity mapping is a process of comparison of standard inputs with actual fired inputs to assess the available standard output capacity of the pulverizer. In fact, this will provide a standard guideline over operational adjustment and maintenance requirement of the pulverizer. The base capacity is a function of grindability; fineness requirement may vary depending upon the volatile matter content of the coal and the input coal size. The quantity and inlet temperature of primary air limits the drying capacity. The base airflow requirement will change depending upon the quality of raw coal and output requirement. It should be sufficient to dry pulverized coal. Drying capacity is also limited by utmost P.A. fan power to supply air. The P.A. temperature is limited by APH inlet flue gas temperature — an increase of this will result in efficiency loss of the boiler. Besides, the higher P.A. inlet temperature can be attained through economizer gas by-pass, the SCAPH, partial flue gas recirculation. The primary air/coal ratio, a variable quantity within the pulverizer operating range, increases with decrease in grindability or pulverizer output and decreases with decrease in volatile matter. Again, the flammability of mixture has to be monitored on explosion limit. Through calibration, the P.A. flow and efficiency of conveyance can be verified. The velocities of coal/air mixture to prevent fallout or to avoid erosion in the coal carrier pipe are dependent on the pulverized coal particle size distribution. Metal loss of grinding elements inversely depends on the YGP index of coal. Besides, variations of dynamic load on grinding elements, wearing of pulverizer internal components affect the available pulverizing capacity and percentage rejects. Therefore, the capacity mapping is necessary to ensure the available pulverizer capacity to avoid overcapacity or under capacity running of pulverizing system, optimizing auxiliary power consumption, This will provide a guideline on the distribution of raw coal feeding in different pulverizers of a boiler to maximize operating system efficiency and control resulting a more cost effective heat rate.
APA, Harvard, Vancouver, ISO, and other styles
2

Wojcik, Waldemar, Tomasz Golec, Andrzej Kotyra, Andrzej Smolarz, Pawel Komada, and Mariusz Kalita. "Controller for pulverized coal burner." In SPIE Proceedings, edited by Jan Wojcik and Waldemar Wojcik. SPIE, 2004. http://dx.doi.org/10.1117/12.581851.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bhattacharya, Chittatosh, and Nilotpal Banerjee. "Integrated Drying and Partial Coal Gasification for Low NOX Pulverized Coal Fired Boiler." In ASME 2011 Power Conference collocated with JSME ICOPE 2011. ASMEDC, 2011. http://dx.doi.org/10.1115/power2011-55108.

Full text
Abstract:
Coal bound moisture is a key issue in pulverized coal fired power generation. Coal being hygroscopic, accumulates considerable surface moisture with seasonal variations. A few varieties of coals are having unusually high inherent as well as surface moisture that affects the pulverizer performance and results lower thermal efficiency of the plant. A proper coal drying is essential for effective pulverization and pneumatic conveyance of coal to furnace. But, the drying capacity is limited by available hot airflow and temperature of hot primary air. Even, use of high-grade coal for blending would not provide the entire useful heat value due to moisture, when used for matching power plant design coal parameters. Besides, the inefficient mining, transportation, stacking and associated coal fleet management deteriorates the “as fired” coal quality affecting cost while purchased on “total moisture and gross heat value” basis. Partial devolatilisation of coal in a controlled heating process, prior combustion in fuel-rich environment ensures better in-furnace flame stability and less residual carbon in product of combustion. It improves the opportunity of a lower flame zone temperature, delivering better control over thermal NOx formation from fuel bound nitrogen. The pulverized coal fired power plants use coal feeders in either gravimetric or volumetric mode of feeding that needs correction for moisture in coal which changes the coal throughput requirement. In this paper an integrated coal drying and partial coal gasification system model is discussed to improve the useful heat value for pulverized coal combustion of high moisture typical power coals so that related improvement in coal throughput can be carried out by application of suitable coal drying mechanism like Partial Flue Gas Recirculation through Pulverizer (PFGR©) for mitigating the coal throughput demand with optimizing available pulverizing capacity along NOx control opportunity without derating steam generation capacity of the boiler.
APA, Harvard, Vancouver, ISO, and other styles
4

Hao, Xiaohong, and Jing Jin. "The Influence of Pulverized Coal Size on Nitrogen Oxides Emission Performance from Pulverized Coal Combustion." In 2010 Asia-Pacific Power and Energy Engineering Conference. IEEE, 2010. http://dx.doi.org/10.1109/appeec.2010.5448342.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sonar, Arun D., Prashant B. Patel, Ankit V. Bhandari, and Dinesh S. Bawge. "Control for pulverized fuel coal mill." In 2015 International Conference on Energy Systems and Applications. IEEE, 2015. http://dx.doi.org/10.1109/icesa.2015.7503379.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yamamoto, Kenji, Daisuke Kina, Teruyuki Okazaki, Masayuki Taniguchi, Hirofumi Okazaki, and Kenichi Ochi. "LES of Pulverized Coal Combustion Furnaces." In ASME 2011 Power Conference collocated with JSME ICOPE 2011. ASMEDC, 2011. http://dx.doi.org/10.1115/power2011-55367.

Full text
Abstract:
LES (large eddy simulation) is applied to combustion simulations of two large scale pulverized coal-fired furnaces. One application is a boiler furnace with the coal feed rate of 3,000 kg/h. The results of LES show good agreement in not only distributions of temperature, NO concentration, and CO concentration on the vertical center line but also NO and CO emissions and UBC (unburned carbon in ash). The calculation error of NO emission is 10%. The other application is a horizontal furnace with a low NOx burner with the coal feed rate of 560 kg/h. LES predicts temperatures and oxygen concentrations accurately; but the standard k-ε model does not. The flame width calculated by the standard k-ε model is narrower than that by LES. These calculated results indicate that the drawback of the standard k-ε model is its low calculation accuracy for the coal jet flame decay and lift-off height.
APA, Harvard, Vancouver, ISO, and other styles
7

Oliveira, André, Pierre Mahowald, Ben Muller, Klaus-Peter Kinzel, and Victor Oliveira. "PULVERIZED COAL INJECTION FOR HIGH INJECTION RATES." In 46º Seminário de Redução/ 17º Minério de Ferro/ 4º Aglomeração. São Paulo: Editora Blucher, 2016. http://dx.doi.org/10.5151/2594-357x-28098.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hoggenmueller, Marius, Luke Hespanhol, Alexander Wiethoff, and Martin Tomitsch. "Self-moving robots and pulverized urban displays." In PerDis '19: The 8th ACM International Symposium on Pervasive Displays. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3321335.3324950.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bösenhofer, I., M. Paiva, C. Feilmayr, M. Tjaden, F. Hauzenberger, C. Jordan, J. Harasek, and S. Rieger. "Pulverized Coal Feeding Vessels – Characterization and Optimization." In AISTech2019. AIST, 2019. http://dx.doi.org/10.33313/377/042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ng, L., X. Todoschuk, K. Giroux, and T. Huang. "Carbonaceous Materials Transformation in Pulverized Coal Injection." In AISTech2019. AIST, 2019. http://dx.doi.org/10.33313/377/044.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Pulverized"

1

Zhou, Z. Q., and K. V. Thambimuthu. Modeling pulverized coal-water slurry combustion. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1988. http://dx.doi.org/10.4095/304376.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kuehn, Norma. Pulverized Coal Carbon Capture Retrofit Database. Office of Scientific and Technical Information (OSTI), April 2019. http://dx.doi.org/10.2172/1580721.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hurt, R. H., M. M. Lunden, E. G. Brehob, and D. J. Maloney. Statistical kinetics for pulverized coal combustion. Office of Scientific and Technical Information (OSTI), June 1996. http://dx.doi.org/10.2172/251286.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ray Chamberland, Aku Raino, and David Towle. Enhanced Combustion Low NOx Pulverized Coal Burner. Office of Scientific and Technical Information (OSTI), September 2006. http://dx.doi.org/10.2172/908316.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Skone, Timothy J. Coal Biomass Cofiring Pulverized Coal Boiler Facility. Office of Scientific and Technical Information (OSTI), July 2011. http://dx.doi.org/10.2172/1509347.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Skone, Timothy J. Operation of Existing Pulverized Coal Power Plant. Office of Scientific and Technical Information (OSTI), September 2012. http://dx.doi.org/10.2172/1509432.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Baxter, L. L. Coal char fragmentation during pulverized coal combustion. Office of Scientific and Technical Information (OSTI), July 1995. http://dx.doi.org/10.2172/86903.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

David Towle, Richard Donais, Todd Hellewell, Robert Lewis, and Robert Schrecengost. Enhanced Combustion Low NOx Pulverized Coal Burner. Office of Scientific and Technical Information (OSTI), June 2007. http://dx.doi.org/10.2172/936317.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Owusu-Ofori, Samuel, and John C. Chen. EXPERIMENTS AND COMPUTATIONAL MODELING OF PULVERIZED-COAL IGNITION. Office of Scientific and Technical Information (OSTI), December 1999. http://dx.doi.org/10.2172/787566.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chen, J. C. Experiments and Computational Modeling of Pulverized Coal Ignition. Office of Scientific and Technical Information (OSTI), May 1997. http://dx.doi.org/10.2172/643525.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography