Academic literature on the topic 'Pulsed Field Ablation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Pulsed Field Ablation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Pulsed Field Ablation"
Guttipatti, Pavithran, Najla Saadallah, and Elaine Y. Wan. "Pulsed Field Ablation for the Treatment of Atrial Fibrillation: A Review and a Look into its Future." Heart Surgery Forum 27, no. 2 (February 22, 2024): E169—E179. http://dx.doi.org/10.59958/hsf.7141.
Full textReinsch, Nico, Anna Füting, Dennis Höwel, and Kars Neven. "„Pulsed field ablation“." Herzschrittmachertherapie + Elektrophysiologie 33, no. 1 (January 7, 2022): 12–18. http://dx.doi.org/10.1007/s00399-021-00833-9.
Full textBourier, Felix. "Pulsed-Field-Ablation." CardioVasc 23, no. 2 (March 31, 2023): 30–32. http://dx.doi.org/10.1007/s15027-023-2967-z.
Full textFerencz, Arnold Béla, Zoltán Salló, László Gellér, and Nándor Szegedi. "Pulsed field ablation – Elektroporáció." Cardiologia Hungarica 54, no. 2 (2024): 104–9. http://dx.doi.org/10.26430/chungarica.2024.54.2.104.
Full textZhao, Zhihong, Yonggang Chen, Bin Wu, Gaodong Qiu, Liangjie Hong, Xinhua Chen, and Xingwei Zhang. "Pulsed-Field Ablation Using a Novel Ablation-Mapping Integrated System for Pulmonary Vein Isolation—A Preliminary Animal Study." Journal of Cardiovascular Development and Disease 9, no. 12 (November 29, 2022): 425. http://dx.doi.org/10.3390/jcdd9120425.
Full textFried, Daniel, Toshimoto Kushida, Gene P. Reck, and Erhard W. Rothe. "YO A2II1/2,3/2 Vibrational State Distributions Measured after the Excimer Laser Ablation of Y2O3 Using a Laser-Initiated Pulsed Discharge as a Probe." Applied Spectroscopy 48, no. 2 (February 1994): 248–51. http://dx.doi.org/10.1366/0003702944028380.
Full textDefaye, Pascal, and Sandrine Venier. "Hemolysis During Pulsed-Field Ablation." JACC: Clinical Electrophysiology 10, no. 7 (July 2024): 1672–74. http://dx.doi.org/10.1016/j.jacep.2024.06.007.
Full textStephen J, Beebe. "Considerations for Exploring Nanosecond Pulsed Electric Fields (nsPEFs) for Treatments of Cancer, Benign Skin Diseases, Atrial Fibrillation, and for New Mechanistic Understandings." Records of Cell & Bioscience 1, no. 1 (September 27, 2024): 001–7. http://dx.doi.org/10.17352/rcb.000001.
Full textQiu, Jie, Meiyan Dai, Yang Bai, and Guangzhi Chen. "Potential Application of Pulsed Field Ablation in Ventricular Arrhythmias." Medicina 59, no. 4 (April 7, 2023): 723. http://dx.doi.org/10.3390/medicina59040723.
Full textWojtaszczyk, Adam, Paweł Ptaszyński, and Krzysztof Kaczmarek. "Pulsed field ablation – new perspective in atrial fibrillation therapy." In a good rythm 1, no. 58 (May 31, 2021): 4–7. http://dx.doi.org/10.5604/01.3001.0015.0102.
Full textDissertations / Theses on the topic "Pulsed Field Ablation"
Nati, Poltri Simone. "Modélisation mathématique de la réponse du tissu cardiaque après ablation par champs pulsés." Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0322.
Full textCardiac arrhythmias are irregularities in the normal rhythm of the heart, caused by anomalies in the electrical activity of the myocardium. Among the many ablation strategies used to isolate these pathologies, Pulsed electric Field Ablation (PFA) has emerged as a novel non-thermal technique that takes advantage of short and high-voltage electrical pulses to kill cardiac cells, by ensuring the precise targeting of the abnormal tissue and the preservation of the tissue scaffold. The aim of this thesis is to propose a mathematical model to study the long-term effects of PFA on the cardiac tissue, in the context of two different pathologies: Atrial Fibrillation (AF) - a common atrial arrhythmia that mostly starts from pulmonary veins - and Ventricular Tachycardia (VT), a rapid and irregular heartbeat that originates from tissue heterogeneity in the ventricles. While for AF the ablated area is thin compared to the left atrium domain, for VT the ablated region is not negligible. To describe the electrical activity of the heart we start from the bidomain model - a standard parabolic degenerate semilinear model that describes the electrophysiology of the heart - and we modify it depending on the pathology of interest. In the context of AF we introduce inside the ablated area a small parameter ε - proportional to the thickness of the region - that also rescales the intra-cellular conductivity. We analyze the static version of the modified bidomain system in the semilinear context, and we perform a formal asymptotic analysis to determine the approximate transmission conditions at the interface between the ablated area and the healthy region, as ε approaches zero. The asymptotic expansion at any order is proven and numerically validated. We also propose numerical simulations (obtained using FreeFem++, a finite element library) in a dynamic context. By considering a synthetic geometry of a left atrium, we simulate the isolation of a pulmonary vein from which AF is supposed to trigger. Non-overlapping Schwarz methods are studied and adopted to numerically impose well-designed conditions at the interface. The results are compared with another technique, radio-frequency ablation (RFA), known to burn cardiac tissue through heat transfer and then to destroy the tissue scaffold. Our objective is to numerically predict the success or failure of the two ablation procedures. Then, we validate our approaches in a real heart data from sheep. Our collaborators at IHU Liryc first induced VT in different sheep by creating two cardiac scars separated by a slow conduction channel, and then performed a PFA procedure to treat the induced VT. In the context of VT, our model proposed for AF is not applicable, since the hypothesis regarding the small size of the ablated region is no longer valid. Moreover, VT is a more complex pathology to model as it is caused by tissue heterogeneity. We modify the bidomain model by introducing a parameter ε - that in this case stands for the ablation level - inside the ablated area and we use it to rescale the intra-cellular conductivity. Simulations are performed to reproduce VT in a sheep ventricle geometry thanks to a signal reentry placed nearby the channel. We also propose simulations of PFA and we compare them with RFA to numerically predict the success or failure of the two ablation procedures. The numerical results are also compared with the activation endocardium map built before the PFA intervention. To conclude, this work provides a first numerical study of the mathematical descriptions of PFA in both AF and VT context, opening perspectives towards clinical applications
Bhonsle, Suyashree P. "Non-linearity and Dispersion Effects in Tissue Impedance during Application of High Frequency Electroporation-Inducing Pulsed Electric Fields." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/91904.
Full textPh. D.
Castellví, Fernández Quim. "Non-focal non-thermal electrical methods for cancer treatment." Doctoral thesis, Universitat Pompeu Fabra, 2017. http://hdl.handle.net/10803/586217.
Full textLa majoria del mètodes físics d'ablació tumoral es basen en produir dany tèrmic de manera focalitzada. Tot i ser considerats una alternativa habitual a la resecció quirúrgica, el principi tèrmic de funcionament, comporta un risc per la preservació d'estructures vitals adjacents a la zona de tractament, tals com grans vasos o nervis. A més, el fet de ser focals, fa impracticable la seva aplicació en cas de múltiples nòduls o tumors de difícil accés. Aquesta tesi explora tractaments elèctrics no basats en temperatura, capaços de ser aplicats de manera no focal. S'han investigat dos tractaments: El primer, proposat per altres fa pocs anys, està basat en aplicar permanentment camps elèctrics alterns de baixa magnitud a través d'elèctrodes superficials. Aquí, aquest tractament s'ha estudiat in vivo tant per avaluar la seva eficàcia com per discernir si aquesta resideix en la temperatura. El segon tractament es basa en el fenomen d'electroporació i persegueix el tractament de nòduls hepàtics. En els tractaments basats en electroporació, s’apliquen breus camps elèctrics de gran magnitud per tal de permeabilitzar la membrana cel·lular. Això permet la penetració d’agents quimioterapèutics o produeix directament la mort cel·lular. En lloc d'utilitzar, com és habitual, agulles per tal d'aplicar el tractament, aquí s'explora tractar tot el fetge de forma no localitzada, fent servir grans elèctrodes plans i paral·lels. Utilitzant solucions d'alta conductivitat elèctrica, es pretén magnificar selectivament el camp elèctric sobre els tumors, sent així capaços de destruir tots els tumors i alhora preservar el teixit sà. El tractament proposat per els tumors hepàtics, requereix d'un equip generador actualment no disponible. El presentat treball inclou el disseny d'una nova topologia de generadors capaç de complir amb els requisits.
Books on the topic "Pulsed Field Ablation"
Hong, M. H. Laser applications in nanotechnology. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.013.24.
Full textBook chapters on the topic "Pulsed Field Ablation"
Caluori, Guido, Annabelle Collin, Clair Poignard, and Pierre Jais. "Pulsed Field Ablation for the Interventional Treatment of Cardiac Arrhythmias." In Innovative Treatment Strategies for Clinical Electrophysiology, 29–47. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-6649-1_2.
Full textLuján, E., H. Schinca, N. Olaiz, S. Urquiza, F. V. Molina, P. Turjanski, and G. Marshall. "Electrolytic Ablation Dose Planning Methodology." In 1st World Congress on Electroporation and Pulsed Electric Fields in Biology, Medicine and Food & Environmental Technologies, 101–4. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-287-817-5_23.
Full textUlmeanu, M., P. Petkov, F. Jipa, E. Brousseau, and M. N. R. Ashfold. "Short-Pulse Laser Near-Field Ablation of Solid Targets under Liquids." In Pulsed Laser Ablation, 193–206. Pan Stanford, 2018. http://dx.doi.org/10.1201/9781315185231-5.
Full textKawamura, Iwanari, Connor Oates, and Jacob S. Koruth. "Biophysics and Clinical Applications of Pulsed-Field Ablation." In Huang's Catheter Ablation of Cardiac Arrhythmias, 45–56. Elsevier, 2025. http://dx.doi.org/10.1016/b978-0-323-93110-6.00004-9.
Full textKoruth, Jacob S., Iwanari Kawamura, and Vivek Y. Reddy. "Pulmonary Vein Isolation Using Pulsed-Field Ablation or Laser Balloon." In Huang's Catheter Ablation of Cardiac Arrhythmias, 288–99. Elsevier, 2025. http://dx.doi.org/10.1016/b978-0-323-93110-6.00017-7.
Full textRobinson Azariah John Chelliah, Cyril, and Rajesh Swaminathan. "Binary Metal Oxides Thin Films Prepared from Pulsed Laser Deposition." In Practical Applications of Laser Ablation. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.96161.
Full textKaushik, Nayanjyoti, James Arter Chapman, Andrew Gillaspie, Stephen Ackerman, Peter Gallagher, Deobrat Mallick, and Steven J. Bailin. "Recent Advances in Catheter Ablation for Atrial Fibrillation and Non-pharmacological Stroke Prevention." In Atrial Fibrillation - Diagnosis and Management in the 21st Century [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.106319.
Full textJames Zhang, Jian. "Advanced Laser Mode for Ureteroscopic Lithotripsy Applications." In Lithotripsy - Novel Technologies, Innovations and Contemporary Applications [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.1002881.
Full textJ., Stephen, Wentia E., Wei Ren, and Xinhua Che. "Pulse Power Ablation of Melanoma with Nanosecond Pulsed Electric Fields." In Treatment of Metastatic Melanoma. InTech, 2011. http://dx.doi.org/10.5772/22850.
Full textLiu, Hong, and Chunlan Ma. "Laser-Matter Interaction in the Bulk of Semiconductor and Dielectric." In Laser Ablation - Applications and Modeling [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.112052.
Full textConference papers on the topic "Pulsed Field Ablation"
Wang, Zhen, Ming Liang, Jingyang Sun, Jie Zhang, Yunhao Li, Lisheng Xu, and Yaling Han. "Effect of fat layer thickness on the ablation area in pulsed electric field ablation." In 2024 International Conference on Future of Medicine and Biological Information Engineering (MBIE 2024), edited by Yudong Yao, Xiaoou Li, and Xia Yu, 46. SPIE, 2024. http://dx.doi.org/10.1117/12.3047868.
Full textLaurita, Daniel J., Celeen Khrestian, Dragan Juzbasich, and Seungyup Lee. "Voltage Independent Depth Control and Acute Lesion Formation Findings in Epicardial Pulsed Field Ablation System for Surgical Ablations." In 2024 46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 1–4. IEEE, 2024. https://doi.org/10.1109/embc53108.2024.10781848.
Full textYang, Manchen, and Ping Ye. "Finite Element-Based Analysis of Cryoablation and Pulsed Electric Field Ablation Combined: Physical Fields and Tumor Damage." In 2024 9th International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), 759–62. IEEE, 2024. https://doi.org/10.1109/iciibms62405.2024.10792727.
Full textWang, You Wei, Zihao Yang, Kosaku Kato, Verdad C. Agulto, Kotaro Makino, Junjii Tominaga, Goro Isoyama, and Makoto Nakajima. "Low and High Spatial Frequency Periodic Surface Structure Formation under Terahertz Free Electron Laser Irradiation." In JSAP-Optica Joint Symposia, 18p_B2_8. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/jsapo.2024.18p_b2_8.
Full textLemoine, Marc, and Robert van den Heuvel. "Pulsed-field ablation reduces neurocardiac damage versus cryoballoon ablation." In The Annual Congress of the European Heart Rhythm Association 2022, edited by Michiel Rienstra. Baarn, the Netherlands: Medicom Medical Publishers, 2022. http://dx.doi.org/10.55788/ae6d06cb.
Full textSaleh, Keenan, Zaki Akhtar, Yaseen Mukadam, Ahmed Abdi, Rui Shi, James Bilham, Wajid Hussain, et al. "101 Is pulsed field ablation better tolerated? - A comparative study of patient experience after af ablation using pulsed field, radiofrequency and cryoballoon ablation." In British Cardiovascular Society Annual Conference, ‘Back to the patient’, 3–5 June 2024. BMJ Publishing Group Ltd and British Cardiovascular Society, 2024. http://dx.doi.org/10.1136/heartjnl-2024-bcs.100.
Full textBeebe, S. J., Xinhua Chen, J. A. Liu, and K. H. Schoenbach. "Nanosecond pulsed electric field ablation of hepatocellular carcinoma." In 2011 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2011. http://dx.doi.org/10.1109/iembs.2011.6091692.
Full textTent, Michiel. "Pulsed-field ablation appears safe and effective for atrial fibrillation." In ACC 2023 Scientific Session, edited by Marc Bonaca. Baarn, the Netherlands: Medicom Medical Publishers, 2023. http://dx.doi.org/10.55788/97116710.
Full textKueffer, Thomas, and Robert van den Heuvel. "Low AF recurrence rates after PVI using pulsed-field ablation." In The Annual Congress of the European Heart Rhythm Association 2022, edited by Michiel Rienstra. Baarn, the Netherlands: Medicom Medical Publishers, 2022. http://dx.doi.org/10.55788/e4f726b6.
Full textReddy, Vivek, and Robert van den Heuvel. "Real-world safety results on pulsed-field ablation with pentaspline catheter." In The Annual Congress of the European Heart Rhythm Association 2022, edited by Michiel Rienstra. Baarn, the Netherlands: Medicom Medical Publishers, 2022. http://dx.doi.org/10.55788/2bfa9dbd.
Full text