Academic literature on the topic 'Pulsed Field Ablation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Pulsed Field Ablation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Pulsed Field Ablation"

1

Guttipatti, Pavithran, Najla Saadallah, and Elaine Y. Wan. "Pulsed Field Ablation for the Treatment of Atrial Fibrillation: A Review and a Look into its Future." Heart Surgery Forum 27, no. 2 (February 22, 2024): E169—E179. http://dx.doi.org/10.59958/hsf.7141.

Full text
Abstract:
Pulsed field ablation (PFA) is a novel technology to treat atrial fibrillation (AF) utilizing electric fields to induce nonthermal irreversible electroporation of electrically active cardiac tissue to induce cardiac cell death. PFA offers improved safety benefits compared to traditional radiofrequency ablation (RFA) and cryoablation by specifically ablating only cardiac tissue. However, there are avenues for further optimization including neurological risk associated with microbubble formation and left atrial function post ablation. Various PFA devices with different electric pulse waveforms have been studied and tested in human trials, with the majority utilizing microsecond duration pulses. Shorter nanosecond duration pulses, or nanosecond PFA, is beginning to be studied for AF ablation. In this review we will delve into current waveforms used for PFA, areas for improvement, mechanisms behind nanosecond PFA, and its clinical impact for cardiac ablation.
APA, Harvard, Vancouver, ISO, and other styles
2

Reinsch, Nico, Anna Füting, Dennis Höwel, and Kars Neven. "„Pulsed field ablation“." Herzschrittmachertherapie + Elektrophysiologie 33, no. 1 (January 7, 2022): 12–18. http://dx.doi.org/10.1007/s00399-021-00833-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bourier, Felix. "Pulsed-Field-Ablation." CardioVasc 23, no. 2 (March 31, 2023): 30–32. http://dx.doi.org/10.1007/s15027-023-2967-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ferencz, Arnold Béla, Zoltán Salló, László Gellér, and Nándor Szegedi. "Pulsed field ablation – Elektroporáció." Cardiologia Hungarica 54, no. 2 (2024): 104–9. http://dx.doi.org/10.26430/chungarica.2024.54.2.104.

Full text
Abstract:
A pitvarfibrilláció (AF) a leggyakoribb szívritmuszavar, amelynek kezelésében elsődleges szerepet a tüdővéna-izoláció (pulmonálisvéna-izoláció, PVI) játszik. A PVI ma már biztonságos és hatékony beavatkozásként tartható számon. Rendszerint eddig a PVI-t a termikus energia segítségével végeztük (krio-, illetve rádiófrekvenciás abláció). A pulsed field abláció (PFA), azaz elektroporáció egy új, nem termikus energiát használó abláció, amely során kialakuló elektromos mező a szívizomsejtek szelektív károsításához vezet. A preklinikai vizsgálatok kitérnek a PFA-lézió létrehozásának biztonságosságára, szövettani képek által is bizonyítva a szívizom szelektív ablációját a környező szövetek ép struktúrájának megtartása mellett. A klinikai vizsgálatok során vizsgálták a különböző rendszerek, illetve az ezekhez tartozó katétereket, segítségével elvégzett PVI-k hosszú távú hatásosságát. A klinikai vizsgálatok során alkalmazott utánkövetési módszerek nem voltak egységesek, némely klinikai vizsgálatban akár invazív bal pitvari újratérképezést végeztek. Másokban csak a klinikai, vagyis tünet-, illetve panaszorientált utánkövetést választották, kiegészítve noninvazív vizsgálatokkal (EKG meghatározott időben, illetve Holter-EKG), így megkapva a ritmuszavarmentesség arányát.
APA, Harvard, Vancouver, ISO, and other styles
5

Zhao, Zhihong, Yonggang Chen, Bin Wu, Gaodong Qiu, Liangjie Hong, Xinhua Chen, and Xingwei Zhang. "Pulsed-Field Ablation Using a Novel Ablation-Mapping Integrated System for Pulmonary Vein Isolation—A Preliminary Animal Study." Journal of Cardiovascular Development and Disease 9, no. 12 (November 29, 2022): 425. http://dx.doi.org/10.3390/jcdd9120425.

Full text
Abstract:
Objective: The purpose of this study is to evaluate the preliminary safety and effect of a pulsed electric field (PEF) ablation system. Methods: The pulmonary veins (PVs) and superior vena cava (SVC) were isolated with the pulsed field ablation (PFA) system, which included a PEF generator and an electrode. The effects of PFA were investigated in six porcines using a novel circular catheter with combined functions (mapping/ablation) designed to work with a cardiac mapping system. The PEF generator delivered a train of biphasic pulsed electric pulses with a high amplitude (800–2000 V) and short pulse duration. The voltage mapping, PVs and SVC potentials, ostial diameters, and phrenic nerve and esophagus viability data were collected 4 weeks later, after which the animals were subsequently euthanized for gross histopathology analysis. Results: PFA 100% isolated the PVs and SVC with four applications with a mean pulse number of 100–150 pulses, causing no muscle convulsion. PFA does not cause PV stenosis or phrenic nerve dysfunction. Histological analysis confirmed 100% transmurally without any venous stenoses or phrenic injuries. Pathology follow-up showed that PFA had selectively ablated cardiomyocytes but spared blood vessels, the esophagus, and phrenic nerves; after ablation, the myocardial tissue showed homogeneous fibrosis. Conclusion: The PFA system is safe and feasible in the preliminary porcine model, which can effectively isolate PVs and SVCs. Transmural tissue damage can be achieved without phrenic palsy or stenosis.
APA, Harvard, Vancouver, ISO, and other styles
6

Fried, Daniel, Toshimoto Kushida, Gene P. Reck, and Erhard W. Rothe. "YO A2II1/2,3/2 Vibrational State Distributions Measured after the Excimer Laser Ablation of Y2O3 Using a Laser-Initiated Pulsed Discharge as a Probe." Applied Spectroscopy 48, no. 2 (February 1994): 248–51. http://dx.doi.org/10.1366/0003702944028380.

Full text
Abstract:
The vibrational populations of the YO A2II- X2Σ system of YO were measured in the plasmas generated after the excimer laser ablation of Y2O3 in oxygen when both continuous and pulsed electric fields were applied. When an electric field is applied antiparallel to the direction of propagation of the ejected electrons, two luminous plumes appear, separated by several microseconds. The measured vibrational populations of the YO A2II- X2Σ system are different for each plume. The YO A2II populations were nonthermal in the first plume, representing emission from chemiluminescent reactive collisions in the plume after ablation. The second emission pulse, initiated by the discharge of a high-voltage capacitor, probes the ground-state YO in the plume via electron collisions. This pulsed electric field holds promise as a diagnostic probe of the ground-state species emitted in laser ablative processes.
APA, Harvard, Vancouver, ISO, and other styles
7

Defaye, Pascal, and Sandrine Venier. "Hemolysis During Pulsed-Field Ablation." JACC: Clinical Electrophysiology 10, no. 7 (July 2024): 1672–74. http://dx.doi.org/10.1016/j.jacep.2024.06.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Stephen J, Beebe. "Considerations for Exploring Nanosecond Pulsed Electric Fields (nsPEFs) for Treatments of Cancer, Benign Skin Diseases, Atrial Fibrillation, and for New Mechanistic Understandings." Records of Cell & Bioscience 1, no. 1 (September 27, 2024): 001–7. http://dx.doi.org/10.17352/rcb.000001.

Full text
Abstract:
Pulsed power includes acquiring electrical energy, compressing it, and releasing it in instantaneous bursts that are low in energy but very high in power. When the pulse duration is near the plasma membrane charging time constant, which is the time during which the cell interior is exposed to the applied pulsed electric field, it affects intracellular structures and functions. The technology is called nanosecond Pulsed Electric Fields (nsPEFs), nanosecond electric pulses (nsEP), or Nanopulse Stimulation (NPSTM) according to Pulse Biosciences, Inc., a company taking the technology to the market. Initial studies showed the elimination of tumor cells in vitro by apoptosis, and other regulated cell death mechanisms, elimination of rodent and canine osteosarcoma, and a basal cell carcinoma clinical trial. In the rat liver and mouse breast cancers, tumor-free animals were in situ vaccinated (ISV), preventing the recurrence of the treated cancers. The technology has also focused on treating benign skin diseases, with some advantages over cryoablation. More recently, the same technology called nanosecond pulsed-field ablation (nsPFA) has been used to treat cardiac arrhythmias like Atrial Fabulation (AFib) with catheters in humans. In pre-clinical studies and now in humans, this technology is showing advantages over radiofrequency ablation and cryoablation. On a new mechanistic landscape, nonlethal nsPEFs modulation of electron transport in the plasma membrane and the mitochondria show potential for controlling redox homeostasis and metabolism. Furthermore, different nsPEF waveforms have different effects on cells; waveforms can differ by pulse duration, rise time, electric field, and/or post-pulse features. So, for nsPEFs, there is a lethal side used for ablation as with NPS and nsPFA and a more recently recognized nonlethal side indicating new possibilities to differentially modify cell physiology depending on the different nsPEF waveforms.
APA, Harvard, Vancouver, ISO, and other styles
9

Qiu, Jie, Meiyan Dai, Yang Bai, and Guangzhi Chen. "Potential Application of Pulsed Field Ablation in Ventricular Arrhythmias." Medicina 59, no. 4 (April 7, 2023): 723. http://dx.doi.org/10.3390/medicina59040723.

Full text
Abstract:
Pulsed field ablation (PFA) is a new ablative method for the therapy of arrhythmia. Recent preclinical and clinical studies have already demonstrated the feasibility and safety of PFA for the treatment of atrial fibrillation (AF). However, the application of PFA may not be limited to the above fields. There are some data on the application of PFA on ventricular arrhythmias (VAs), such as ventricular fibrillation (VF) and ventricular tachycardia (VT). Further, a case report about PFA has been published recently, in which PFA was successfully applied to the ablation of premature ventricular contractions (PVCs) from the right ventricular outflow tract. Thus, we aimed to review recent research findings of PFA in ventricular ablation and evaluate the possibility of its application in VAs.
APA, Harvard, Vancouver, ISO, and other styles
10

Wojtaszczyk, Adam, Paweł Ptaszyński, and Krzysztof Kaczmarek. "Pulsed field ablation – new perspective in atrial fibrillation therapy." In a good rythm 1, no. 58 (May 31, 2021): 4–7. http://dx.doi.org/10.5604/01.3001.0015.0102.

Full text
Abstract:
Atrial fibrillation (AF) is one of the most important problems in cardiology. Thermal ablation therapies are “gold standard” to treat symptomatic patients. Despite the improvements, both success rate and safety are limited by their thermal nature. Pulsed filed ablation is a new non-thermal ablation method. It is based on the phenomenon of unrecoverable permeabilization of cell membranes caused by pulses of high voltage (irreversible electroporation). Several preclinical studies suggest its safety. Clinical trials published so far have showed high efficacy. Further studies especially with longer follow-up period are needed.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Pulsed Field Ablation"

1

Nati, Poltri Simone. "Modélisation mathématique de la réponse du tissu cardiaque après ablation par champs pulsés." Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0322.

Full text
Abstract:
Les arythmies cardiaques sont des irrégularités du rythme cardiaque, causées par des anomalies dans l’activité électrique du myocarde. Parmi les nombreuses stratégies d’ablation utilisées pour isoler ces pathologies, l’ablation par champ électrique pulsé (PFA) s’est imposée comme une nouvelle technique non thermique basée sur des impulsions électriques courtes et de haute tension permettant de tuer les cellules cardiaques de manière précise tout en préservant la structure tissulaire. L’objectif de cette thèse est de proposer un modèle mathématique pour étudier les effets à long terme de la PFA sur le tissu cardiaque pour deux pathologies : la fibrillation auriculaire (AF) - une arythmie des oreillettes commune déclenchée principalement via les veines pulmonaires - et la tachycardie ventriculaire (VT), un rythme rapide et irrégulier provoqué par une forte hétérogénéité tissulaire dans les ventricules. Alors que pour l’AF, la zone ablatée est mince par rapport au domaine de l’oreillette, pour la VT, la région ablatée n’est pas négligeable. Pour décrire l’activité électrique du cœur, nous partons du modèle bidomaine - un modèle parabolique dégénéré semi-linéaire standard qui décrit l’électrophysiologie du cœur - et nous le modifions en fonction de la pathologie concernée. Dans le contexte de l’AF, nous introduisons à l’intérieur de la zone ablatée un petit paramètre ε - proportionnel à l’épaisseur de la région - utilisé aussi pour redimensionner la conductivité intracellulaire. Nous analysons la version statique du système bidomaine modifié dans le contexte semi-linéaire, et nous effectuons une analyse asymptotique formelle pour déterminer les conditions de transmission approximatives à l’interface entre la zone ablatée et la région saine, lorsque ε s’approche de zéro. L’expansion asymptotique à tout ordre est prouvée et validée numériquement. Nous proposons également des simulations numériques (obtenues en utilisant FreeFem++, une bibliothèque d’éléments finis) dans un contexte dynamique. En considérant une géométrie synthétique de l’oreillette gauche, nous simulons l’isolation d’une veine pulmonaire à partir de laquelle l’AF est supposée se déclencher. Des méthodes de Schwarz sans recouvrement sont étudiées et adoptées pour imposer numériquement les conditions de transmission à l’interface. Les résultats sont comparés à une autre technique d’ablation : l’ablation par radiofréquence (RFA), connue pour brûler le tissu cardiaque par transfert de chaleur tout en détruisant la structure tissulaire. Notre objectif est de prédire numériquement le succès ou l’échec de ces deux procédures d’ablation. Nous validons ensuite nos approches sur des données cardiaques réelles obtenues chez des moutons. Nos collaborateurs de l’IHU Liryc ont d’abord induit une VT chez différents moutons en créant deux cicatrices cardiaques séparées par un canal de conduction lente, puis ont effectué une PFA pour traiter la VT induite. Dans le contexte de la VT, notre modèle proposé pour l’AF n’est pas applicable, puisque l’hypothèse concernant la petite taille de la région ablatée n’est plus valable. De plus, la VT est une pathologie plus complexe à modéliser car elle est causée par l’hétérogénéité des tissus. Nous modifions le modèle bidomaine en introduisant un paramètre ε - qui dans ce cas représente le niveau d’ablation - à l’intérieur de la zone ablatée et nous l’utilisons pour redimensionner la conductivité intracellulaire. Des simulations sont effectuées pour reproduire une VT dans une géométrie de ventricule de mouton grâce à un signal de réentrée placé à proximité du canal. Nous proposons également des simulations après PFA ou RFA que nous comparons pour prédire numériquement le succès ou l’échec des deux procédures d’ablation. Les résultats numériques sont également comparés à la carte d’activation de l’endocarde construite avant la PFA.[...]
Cardiac arrhythmias are irregularities in the normal rhythm of the heart, caused by anomalies in the electrical activity of the myocardium. Among the many ablation strategies used to isolate these pathologies, Pulsed electric Field Ablation (PFA) has emerged as a novel non-thermal technique that takes advantage of short and high-voltage electrical pulses to kill cardiac cells, by ensuring the precise targeting of the abnormal tissue and the preservation of the tissue scaffold. The aim of this thesis is to propose a mathematical model to study the long-term effects of PFA on the cardiac tissue, in the context of two different pathologies: Atrial Fibrillation (AF) - a common atrial arrhythmia that mostly starts from pulmonary veins - and Ventricular Tachycardia (VT), a rapid and irregular heartbeat that originates from tissue heterogeneity in the ventricles. While for AF the ablated area is thin compared to the left atrium domain, for VT the ablated region is not negligible. To describe the electrical activity of the heart we start from the bidomain model - a standard parabolic degenerate semilinear model that describes the electrophysiology of the heart - and we modify it depending on the pathology of interest. In the context of AF we introduce inside the ablated area a small parameter ε - proportional to the thickness of the region - that also rescales the intra-cellular conductivity. We analyze the static version of the modified bidomain system in the semilinear context, and we perform a formal asymptotic analysis to determine the approximate transmission conditions at the interface between the ablated area and the healthy region, as ε approaches zero. The asymptotic expansion at any order is proven and numerically validated. We also propose numerical simulations (obtained using FreeFem++, a finite element library) in a dynamic context. By considering a synthetic geometry of a left atrium, we simulate the isolation of a pulmonary vein from which AF is supposed to trigger. Non-overlapping Schwarz methods are studied and adopted to numerically impose well-designed conditions at the interface. The results are compared with another technique, radio-frequency ablation (RFA), known to burn cardiac tissue through heat transfer and then to destroy the tissue scaffold. Our objective is to numerically predict the success or failure of the two ablation procedures. Then, we validate our approaches in a real heart data from sheep. Our collaborators at IHU Liryc first induced VT in different sheep by creating two cardiac scars separated by a slow conduction channel, and then performed a PFA procedure to treat the induced VT. In the context of VT, our model proposed for AF is not applicable, since the hypothesis regarding the small size of the ablated region is no longer valid. Moreover, VT is a more complex pathology to model as it is caused by tissue heterogeneity. We modify the bidomain model by introducing a parameter ε - that in this case stands for the ablation level - inside the ablated area and we use it to rescale the intra-cellular conductivity. Simulations are performed to reproduce VT in a sheep ventricle geometry thanks to a signal reentry placed nearby the channel. We also propose simulations of PFA and we compare them with RFA to numerically predict the success or failure of the two ablation procedures. The numerical results are also compared with the activation endocardium map built before the PFA intervention. To conclude, this work provides a first numerical study of the mathematical descriptions of PFA in both AF and VT context, opening perspectives towards clinical applications
APA, Harvard, Vancouver, ISO, and other styles
2

Bhonsle, Suyashree P. "Non-linearity and Dispersion Effects in Tissue Impedance during Application of High Frequency Electroporation-Inducing Pulsed Electric Fields." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/91904.

Full text
Abstract:
Since its conception in 2005, irreversible electroporation (IRE), a non-thermal tumor ablation modality, was investigated for safety and efficacy in clinical applications concerning different organs. IRE utilizes high voltage (~3kV), short duration (~100us) pulses to create transient nanoscale defects in the plasma membrane to cause cell death due to irreversible defects, osmotic imbalances and ATP loss. More recently, high-frequency irreversible electroporation (H-FIRE), which employs narrow bipolar pulses (~0.5-10us) delivered in bursts (on time ~100us), was invented to provide benefits such as the mitigation of intense muscle contractions associated with IRE-based treatments. Furthermore, H-FIRE exhibits the potential to improve lesion predictability in homogeneous and heterogeneous tissue masses. Therapeutic IRE and H-FIRE utilize source and sink electrodes inserted into or around the tumor to deliver the treatment. Prediction of the ablation size, for a set of parameters, can be achieved by the use of pre-treatment planning algorithms that calculate the induced electric field distribution in the target tissue. An electric field above a certain threshold induces cell death and parameters are tuned to ensure complete tumor coverage while sparing the nearby healthy tissue. IRE studies have shown that the underlying field is influenced by the increase in tissue conductivity due to enhanced membrane permeability, and treatment outcome can be improved when this nonlinearity is accounted for in numerical models. Since IRE pulses far exceed the time constant of the cell (~1us), the tissue response can be treated as essentially DC a static approximation can be used to predict the field distribution. Alternately, as H-FIRE pulses are on the order of the time constant of the membrane, the tissue response can no longer be treated as DC. The complexity of the H-FIRE-induced field distribution is further enhanced due to the dispersion and non-linearity in biological tissue impedance during treatment. In this dissertation, we have studied the electromagnetic fields induced in tissue during H-FIRE using several experimental and modeling techniques. In addition, we have characterized the nonlinearity and dispersion in tissue impedance during H-FIRE treatments and proposed simpler methods to predict the field distribution to enable easier translation to the clinic.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
3

Castellví, Fernández Quim. "Non-focal non-thermal electrical methods for cancer treatment." Doctoral thesis, Universitat Pompeu Fabra, 2017. http://hdl.handle.net/10803/586217.

Full text
Abstract:
Most physical ablation modalities for cancer treatment are focal and are based on thermal damage. Despite their regular clinical use as an alternative to surgical resection, their thermal principle of operation entails risks regarding the preservation of neighboring vital structures, such as large vessels, critical ducts or nerves. In addition, being focal, their use is unpractical in cases where multiple nodules are present or tumors are difficult to reach with the applicators. This thesis explores non-thermal electrical treatments which can be applied in a non-focal manner. Two treatments have been investigated: the first treatment, proposed by others a few years ago, is based on the permanent application of low magnitude alternating electric fields through surface electrodes. Here, this treatment has been in vivo studied to evaluate its efficacy as well as to discern whether it is non-thermally mediated. The second electrical treatment is based on the electroporation phenomenon and targets liver tumor nodules. Electroporation-based therapies employ brief high magnitude electric fields. These pulsed fields, alone or in combination with chemotherapeutic drugs, are able to kill cells by increasing their membrane permeability. Current electroporation-based therapies for internal tumors are local and are delivered through needle-shaped electrodes. Rather than using needle electrodes to treat liver tumors, here it is explored a novel treatment in which large plate electrodes are used to deliver the field across the whole liver in a non local fashion. The treatment aims at simultaneously destroying all tumors while preserving healthy tissue. Its efficacy is based on selectively enhancing the electric field over the tumors by infusing a solution with high electrical conductivity. The proposed treatment for liver tumors requires a high performance generator which is not currently available. The work presented here includes the design of a new generator topology able to fulfill the requirements.
La majoria del mètodes físics d'ablació tumoral es basen en produir dany tèrmic de manera focalitzada. Tot i ser considerats una alternativa habitual a la resecció quirúrgica, el principi tèrmic de funcionament, comporta un risc per la preservació d'estructures vitals adjacents a la zona de tractament, tals com grans vasos o nervis. A més, el fet de ser focals, fa impracticable la seva aplicació en cas de múltiples nòduls o tumors de difícil accés. Aquesta tesi explora tractaments elèctrics no basats en temperatura, capaços de ser aplicats de manera no focal. S'han investigat dos tractaments: El primer, proposat per altres fa pocs anys, està basat en aplicar permanentment camps elèctrics alterns de baixa magnitud a través d'elèctrodes superficials. Aquí, aquest tractament s'ha estudiat in vivo tant per avaluar la seva eficàcia com per discernir si aquesta resideix en la temperatura. El segon tractament es basa en el fenomen d'electroporació i persegueix el tractament de nòduls hepàtics. En els tractaments basats en electroporació, s’apliquen breus camps elèctrics de gran magnitud per tal de permeabilitzar la membrana cel·lular. Això permet la penetració d’agents quimioterapèutics o produeix directament la mort cel·lular. En lloc d'utilitzar, com és habitual, agulles per tal d'aplicar el tractament, aquí s'explora tractar tot el fetge de forma no localitzada, fent servir grans elèctrodes plans i paral·lels. Utilitzant solucions d'alta conductivitat elèctrica, es pretén magnificar selectivament el camp elèctric sobre els tumors, sent així capaços de destruir tots els tumors i alhora preservar el teixit sà. El tractament proposat per els tumors hepàtics, requereix d'un equip generador actualment no disponible. El presentat treball inclou el disseny d'una nova topologia de generadors capaç de complir amb els requisits.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Pulsed Field Ablation"

1

Hong, M. H. Laser applications in nanotechnology. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.013.24.

Full text
Abstract:
This article discusses a variety of laser applications in nanotechnology. The laser has proven to be one of many mature and reliable manufacturing tools, with applications in modern industries, from surface cleaning to thin-film deposition. Laser nanoengineering has several advantages over electron-beam and focused ion beam processing. For example, it is a low-cost, high-speed process in air, vacuum or chemical environments and also has the capability to fulfill flexible integration control. This article considers laser nanotechnology in the following areas: pulsed laser ablation for nanomaterials synthesis; laser nanoprocessing to make nanobumps for disk media nanotribology and anneal ultrashort PN junctions; surface nanopatterning with near-field, and light-enhancement effects; and large-area parallel laser nanopatterning by laser interference lithography and laser irradiation through a microlens array. Based on these applications, the article argues that the laser will continue to be one of the highly potential nanoengineering means in next-generation manufacturing.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Pulsed Field Ablation"

1

Caluori, Guido, Annabelle Collin, Clair Poignard, and Pierre Jais. "Pulsed Field Ablation for the Interventional Treatment of Cardiac Arrhythmias." In Innovative Treatment Strategies for Clinical Electrophysiology, 29–47. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-6649-1_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Luján, E., H. Schinca, N. Olaiz, S. Urquiza, F. V. Molina, P. Turjanski, and G. Marshall. "Electrolytic Ablation Dose Planning Methodology." In 1st World Congress on Electroporation and Pulsed Electric Fields in Biology, Medicine and Food & Environmental Technologies, 101–4. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-287-817-5_23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ulmeanu, M., P. Petkov, F. Jipa, E. Brousseau, and M. N. R. Ashfold. "Short-Pulse Laser Near-Field Ablation of Solid Targets under Liquids." In Pulsed Laser Ablation, 193–206. Pan Stanford, 2018. http://dx.doi.org/10.1201/9781315185231-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kawamura, Iwanari, Connor Oates, and Jacob S. Koruth. "Biophysics and Clinical Applications of Pulsed-Field Ablation." In Huang's Catheter Ablation of Cardiac Arrhythmias, 45–56. Elsevier, 2025. http://dx.doi.org/10.1016/b978-0-323-93110-6.00004-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Koruth, Jacob S., Iwanari Kawamura, and Vivek Y. Reddy. "Pulmonary Vein Isolation Using Pulsed-Field Ablation or Laser Balloon." In Huang's Catheter Ablation of Cardiac Arrhythmias, 288–99. Elsevier, 2025. http://dx.doi.org/10.1016/b978-0-323-93110-6.00017-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Robinson Azariah John Chelliah, Cyril, and Rajesh Swaminathan. "Binary Metal Oxides Thin Films Prepared from Pulsed Laser Deposition." In Practical Applications of Laser Ablation. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.96161.

Full text
Abstract:
The semiconductor industry flourished from a simple Si-based metal oxide semiconductor field effect transistor to an era of MOSFET-based smart materials. In recent decades, researchers have been replacing all the materials required for the MOSFET device. They replaced the substrate with durable materials, lightweight materials, translucent materials and so on. They have came up with the possibility of replacing dielectric silicon dioxide material with high-grade dielectric materials. Even then the channel shift in the MOSFET was the new trend in MOSFET science. From the bulk to the atomic level, transistors have been curiously researched across the globe for the use of electronic devices. This research was also inspired by the different semiconductor materials relevant to the replacement of the dielectric channel/gate. Study focuses on diverse materials such as zinc oxides (ZnO), electrochromic oxides such as molybdenum oxides (including MoO3 and MoO2) and other binary oxides using ZnO and MoO3. The primary objective of this research is to study pulsed laser deposited thin films such as ZnO, MoO3, binary oxides such as binary ZnO /MoO3, ZnO /TiO2 and ZnO/V2O5 and to analyse their IV properties for FET applications. To achieve the goal, the following working elements have been set: investigation of pulsed laser deposited thin film of metal oxides and thin film of binary metal oxide nanostructures with effects of laser repetition and deposition temperatures.
APA, Harvard, Vancouver, ISO, and other styles
7

Kaushik, Nayanjyoti, James Arter Chapman, Andrew Gillaspie, Stephen Ackerman, Peter Gallagher, Deobrat Mallick, and Steven J. Bailin. "Recent Advances in Catheter Ablation for Atrial Fibrillation and Non-pharmacological Stroke Prevention." In Atrial Fibrillation - Diagnosis and Management in the 21st Century [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.106319.

Full text
Abstract:
Atrial Fibrillation is a common arrhythmia affecting 6 million people in the United States and 33 million people worldwide, associated with significant morbidity. Whereas restoration and maintenance of sinus rhythm can translate into clinical benefit, early intervention in course of the disease can influence success and efficacy of intervention has been speculative and uncertain over past decade despite several literature and scientific studies. During past three decades catheter and surgical ablation of AF have evolved from an investigational status to a widely offerred definitive treatment now. With recent advances in mapping technology, ablation energy delivery, better understanding of pathogenesis and mechanism of AF there has been a paradigm shift in clinical decision making, patient selection, patient-physician discussion about various rhythm control strategy due to an ever improving safety and efficacy of the procedure. In this chapter we will briefly review the landmark clinical trials that has changed the outlook towards rhythm control strategy beginning from early trials such as AFFIRM, telling us rhythm control was no better than rate control to recent studies and EAST AFNET, which showed benefits of rhythm control. We will discuss differences in ablation strategy, safety and efficacy between paroxysmal AF vs. Persistent/Longstanding Persistent AF from a trigger and substrate view and pulmonary vein and non pulmonary vein targets for ablation. We will also elaborate on different energy sources for ablation such as Radiofrequency (RF), Cryoablation, newer ablation techniques such as Vein of Marshall alcohol ablation, High Power short duration ablation, Pulsed Field Ablation, Surgical ablation and Hybrid Convergent Ablation etc. Since this chapter is mostly intended towards diagnosis and management of AF in twenty-first century, authors have restricted mainly to recent developments only and purposefully have not expanded on already established preexisting knowledge about topics such as pharmacological rhythm control, rate control, Atrio-Ventricular node ablation with pacemaker implantation, direct current cardio version etc. In conclusion, with recent emerging evidence, importance of rhythm control is being increasingly recognized. Catheter ablation is more commonly performed with improving safety and efficacy. There are newer technology and ablation strategy available and should be offered to patient while discussing a comprehensive management of AF with careful review of risk benefit analysis.
APA, Harvard, Vancouver, ISO, and other styles
8

James Zhang, Jian. "Advanced Laser Mode for Ureteroscopic Lithotripsy Applications." In Lithotripsy - Novel Technologies, Innovations and Contemporary Applications [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.1002881.

Full text
Abstract:
The higher annual growth rate of kidney stone disease occurrence and the lower annual growth rate of practicing urologists require more efficient treatment tools. This chapter’s research explores ways to increase laser lithotripsy stone ablation efficiency while reducing the stone retropulsion so that the stone procedure time can be effectively shortened. It covers the investigation of laser stone ablation threshold, ablation efficiency, retropulsion control, and the optimal dusting mode of a concept Holmium-doped yttrium aluminum garnet (Ho:YAG) laser with advanced tailored pulse technology to produce a high ablation rate and low retropulsion. Ho:YAG laser stone damage and recoil movement were investigated in vitro utilizing a tabletop model in a highly reproducible manner while evaluating the effects of several laser mode pulses. A thorough evaluation of the pseudo-optimal dusting mode’s behavior (dusting rate and recoil movement) against a standard laser dusting mode was performed. The optimal dusting mode in this benchtop test model maintained a modest level of retropulsion while having a somewhat quick ablation rate. The transient pressure field measurement results of the standard and custom laser modes of a concept Ho: YAG laser are also included.
APA, Harvard, Vancouver, ISO, and other styles
9

J., Stephen, Wentia E., Wei Ren, and Xinhua Che. "Pulse Power Ablation of Melanoma with Nanosecond Pulsed Electric Fields." In Treatment of Metastatic Melanoma. InTech, 2011. http://dx.doi.org/10.5772/22850.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Liu, Hong, and Chunlan Ma. "Laser-Matter Interaction in the Bulk of Semiconductor and Dielectric." In Laser Ablation - Applications and Modeling [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.112052.

Full text
Abstract:
The research in the field of laser-induced materials processing is evolving continuously with new inventions in laser technology. This chapter mainly discusses the relevant physical mechanisms of laser ablation based on laser-matter interaction. Femtosecond laser excitation provides suitable conditions for studying the basic processes in irradiated materials, as compared to the duration of these processes, femtosecond laser pulses are sufficiently short. In the process of laser action on the matter, the thermal mechanism, charge carrier removal, thermal and structural effects, and other processes are extremely complex. The ultrashort laser pulse instantly puts the material in a strong nonequilibrium state characterized by hot electrons and cold ions. After the pulse ends, the electron transfers its energy to the ion through electron phonon coupling in sub-picoseconds. This heats up the phonon bath before the slow thermal effect can reconstruct the material. The electron effect plays an important and possibly dominant role in the laser ablation of nonmetallic solid surfaces. This review first describes the mechanism of laser-matter interaction from the perspective of energy, summarizes the electronic excitation and energy relaxation paths of light on semiconductors and dielectric materials, focuses on the electronic excitation and relaxation mechanisms in laser-induced ionization, desorption, and ablation, and finally analyzes the above-mentioned related processes from the perspective of material structure relaxation.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Pulsed Field Ablation"

1

Wang, Zhen, Ming Liang, Jingyang Sun, Jie Zhang, Yunhao Li, Lisheng Xu, and Yaling Han. "Effect of fat layer thickness on the ablation area in pulsed electric field ablation." In 2024 International Conference on Future of Medicine and Biological Information Engineering (MBIE 2024), edited by Yudong Yao, Xiaoou Li, and Xia Yu, 46. SPIE, 2024. http://dx.doi.org/10.1117/12.3047868.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Laurita, Daniel J., Celeen Khrestian, Dragan Juzbasich, and Seungyup Lee. "Voltage Independent Depth Control and Acute Lesion Formation Findings in Epicardial Pulsed Field Ablation System for Surgical Ablations." In 2024 46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 1–4. IEEE, 2024. https://doi.org/10.1109/embc53108.2024.10781848.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yang, Manchen, and Ping Ye. "Finite Element-Based Analysis of Cryoablation and Pulsed Electric Field Ablation Combined: Physical Fields and Tumor Damage." In 2024 9th International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), 759–62. IEEE, 2024. https://doi.org/10.1109/iciibms62405.2024.10792727.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, You Wei, Zihao Yang, Kosaku Kato, Verdad C. Agulto, Kotaro Makino, Junjii Tominaga, Goro Isoyama, and Makoto Nakajima. "Low and High Spatial Frequency Periodic Surface Structure Formation under Terahertz Free Electron Laser Irradiation." In JSAP-Optica Joint Symposia, 18p_B2_8. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/jsapo.2024.18p_b2_8.

Full text
Abstract:
Terahertz (THz) technology has recently seen significant advancements and applications in several fields, including ultrafast electric field measurement[1], semiconductor diagnostics[2], and magnetic material control[3]. Ablation phenomena in the terahertz range have been relatively underexplored due to the limited availability of powerful THz sources. However, recent progress in laser technology has opened up opportunities for the development of high-intensity THz sources, thereby facilitating investigations into ablation processes [4] and nonlinear effects [5]. These advancements have also made it possible to generate high-intensity pulses capable of inducing laser induced periodic surface structures (LIPSS) on materials, offering a promising avenue for surface nanostructuring. In this study, we investigated LIPPS formation on Ge2Sb2Te5 (GST), a material renowned for its phase-change recording properties [6], by the irradiation of a high-intensity THz free electron laser (FEL). We observed the emergence of two types of LIPSS through laser ablation. These LIPSS can be categorized as either low spatial frequency LIPSS (LSFL) or high spatial frequency LIPSS (HSFL) depending on their periodicity.
APA, Harvard, Vancouver, ISO, and other styles
5

Lemoine, Marc, and Robert van den Heuvel. "Pulsed-field ablation reduces neurocardiac damage versus cryoballoon ablation." In The Annual Congress of the European Heart Rhythm Association 2022, edited by Michiel Rienstra. Baarn, the Netherlands: Medicom Medical Publishers, 2022. http://dx.doi.org/10.55788/ae6d06cb.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Saleh, Keenan, Zaki Akhtar, Yaseen Mukadam, Ahmed Abdi, Rui Shi, James Bilham, Wajid Hussain, et al. "101 Is pulsed field ablation better tolerated? - A comparative study of patient experience after af ablation using pulsed field, radiofrequency and cryoballoon ablation." In British Cardiovascular Society Annual Conference, ‘Back to the patient’, 3–5 June 2024. BMJ Publishing Group Ltd and British Cardiovascular Society, 2024. http://dx.doi.org/10.1136/heartjnl-2024-bcs.100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Beebe, S. J., Xinhua Chen, J. A. Liu, and K. H. Schoenbach. "Nanosecond pulsed electric field ablation of hepatocellular carcinoma." In 2011 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2011. http://dx.doi.org/10.1109/iembs.2011.6091692.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tent, Michiel. "Pulsed-field ablation appears safe and effective for atrial fibrillation." In ACC 2023 Scientific Session, edited by Marc Bonaca. Baarn, the Netherlands: Medicom Medical Publishers, 2023. http://dx.doi.org/10.55788/97116710.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kueffer, Thomas, and Robert van den Heuvel. "Low AF recurrence rates after PVI using pulsed-field ablation." In The Annual Congress of the European Heart Rhythm Association 2022, edited by Michiel Rienstra. Baarn, the Netherlands: Medicom Medical Publishers, 2022. http://dx.doi.org/10.55788/e4f726b6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Reddy, Vivek, and Robert van den Heuvel. "Real-world safety results on pulsed-field ablation with pentaspline catheter." In The Annual Congress of the European Heart Rhythm Association 2022, edited by Michiel Rienstra. Baarn, the Netherlands: Medicom Medical Publishers, 2022. http://dx.doi.org/10.55788/2bfa9dbd.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography