Academic literature on the topic 'PSO (PRATICLE SWARM OPTIMIZATION)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'PSO (PRATICLE SWARM OPTIMIZATION).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "PSO (PRATICLE SWARM OPTIMIZATION)"
Aziz, Nor Azlina Ab, Zuwairie Ibrahim, Marizan Mubin, Sophan Wahyudi Nawawi, and Nor Hidayati Abdul Aziz. "Transitional Particle Swarm Optimization." International Journal of Electrical and Computer Engineering (IJECE) 7, no. 3 (June 1, 2017): 1611. http://dx.doi.org/10.11591/ijece.v7i3.pp1611-1619.
Full textGolubovic, Ruzica, and Dragan Olcan. "Antenna optimization using Particle Swarm Optimization algorithm." Journal of Automatic Control 16, no. 1 (2006): 21–24. http://dx.doi.org/10.2298/jac0601021g.
Full textJiang, Chang Yuan, Shu Guang Zhao, Li Zheng Guo, and Chuan Ji. "An Improved Particle Swarm Optimization Algorithm." Applied Mechanics and Materials 195-196 (August 2012): 1060–65. http://dx.doi.org/10.4028/www.scientific.net/amm.195-196.1060.
Full textShen, Yuanxia, Linna Wei, Chuanhua Zeng, and Jian Chen. "Particle Swarm Optimization with Double Learning Patterns." Computational Intelligence and Neuroscience 2016 (2016): 1–19. http://dx.doi.org/10.1155/2016/6510303.
Full textXu, Yu Fa, Jie Gao, Guo Chu Chen, and Jin Shou Yu. "Quantum Particle Swarm Optimization Algorithm." Applied Mechanics and Materials 63-64 (June 2011): 106–10. http://dx.doi.org/10.4028/www.scientific.net/amm.63-64.106.
Full textMoraglio, Alberto, Cecilia Di Chio, Julian Togelius, and Riccardo Poli. "Geometric Particle Swarm Optimization." Journal of Artificial Evolution and Applications 2008 (February 21, 2008): 1–14. http://dx.doi.org/10.1155/2008/143624.
Full textZhang, Guan Yu, Xiao Ming Wang, Rui Guo, and Guo Qiang Wang. "An Improved Particle Swarm Optimization Algorithm." Applied Mechanics and Materials 394 (September 2013): 505–8. http://dx.doi.org/10.4028/www.scientific.net/amm.394.505.
Full textHudaib, Amjad A., and Ahmad Kamel AL Hwaitat. "Movement Particle Swarm Optimization Algorithm." Modern Applied Science 12, no. 1 (December 31, 2017): 148. http://dx.doi.org/10.5539/mas.v12n1p148.
Full textGonsalves, Tad, and Akira Egashira. "Parallel Swarms Oriented Particle Swarm Optimization." Applied Computational Intelligence and Soft Computing 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/756719.
Full textMa, Zi Rui. "Particle Swarm Optimization Based on Multiobjective Optimization." Applied Mechanics and Materials 263-266 (December 2012): 2146–49. http://dx.doi.org/10.4028/www.scientific.net/amm.263-266.2146.
Full textDissertations / Theses on the topic "PSO (PRATICLE SWARM OPTIMIZATION)"
SINGH, BHUPINDER. "A HYBRID MSVM COVID-19 IMAGE CLASSIFICATION ENHANCED USING PARTICLE SWARM OPTIMIZATION." Thesis, DELHI TECHNOLOGICAL UNIVERSITY, 2021. http://dspace.dtu.ac.in:8080/jspui/handle/repository/18864.
Full textUrade, Hemlata S., and Rahila Patel. "Performance Evaluation of Dynamic Particle Swarm Optimization." IJCSN, 2012. http://hdl.handle.net/10150/283597.
Full textIn this paper the concept of dynamic particle swarm optimization is introduced. The dynamic PSO is different from the existing PSO’s and some local version of PSO in terms of swarm size and topology. Experiment conducted for benchmark functions of single objective optimization problem, which shows the better performance rather the basic PSO. The paper also contains the comparative analysis for Simple PSO and Dynamic PSO which shows the better result for dynamic PSO rather than simple PSO.
Cleghorn, Christopher Wesley. "A Generalized theoretical deterministic particle swarm model." Diss., University of Pretoria, 2013. http://hdl.handle.net/2263/33333.
Full textDissertation (MSc)--University of Pretoria, 2013.
gm2014
Computer Science
Unrestricted
Amiri, Mohammad Reza Shams, and Sarmad Rohani. "Automated Camera Placement using Hybrid Particle Swarm Optimization." Thesis, Blekinge Tekniska Högskola, Institutionen för datalogi och datorsystemteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-3326.
Full textSarmad Rohani: 004670606805 Reza Shams: 0046704030897
Brits, Riaan. "Niching strategies for particle swarm optimization." Diss., Pretoria : [s.n.], 2002. http://upetd.up.ac.za/thesis/available/etd-02192004-143003.
Full textCleghorn, Christopher Wesley. "Particle swarm optimization : empirical and theoretical stability analysis." Thesis, University of Pretoria, 2017. http://hdl.handle.net/2263/61265.
Full textThesis (PhD)--University of Pretoria, 2017.
Computer Science
PhD
Unrestricted
Veselý, Filip. "Aplikace optimalizační metody PSO v podnikatelství." Master's thesis, Vysoké učení technické v Brně. Fakulta podnikatelská, 2010. http://www.nusl.cz/ntk/nusl-222445.
Full textFranz, Wayne. "Multi-population PSO-GA hybrid techniques: integration, topologies, and parallel composition." Springer, 2013. http://hdl.handle.net/1993/23842.
Full textLai, Chun-Hau. "Diseño e implementación de algoritmos aproximados de clustering balanceado en PSO." Tesis, Universidad de Chile, 2012. http://www.repositorio.uchile.cl/handle/2250/111954.
Full textEste trabajo de tesis está dedicado al diseño e implementación de algoritmos aproximados que permiten explorar las mejores soluciones para el problema de Clustering Balanceado, el cual consiste en dividir un conjunto de n puntos en k clusters tal que cada cluster tenga como m ́ınimo ⌊ n ⌋ puntos, k y éstos deben estar lo más cercano posible al centroide de cada cluster. Estudiamos los algoritmos existentes para este problema y nuestro análisis muestra que éstos podrían fallar en entregar un resultado óptimo por la ausencia de la evaluación de los resultados en cada iteración del algoritmo. Entonces, recurrimos al concepto de Particles Swarms, que fue introducido inicialmente para simular el comportamiento social humano y que permite explorar todas las posibles soluciones de manera que se aproximen a la óptima rápidamente. Proponemos cuatro algoritmos basado en Particle Swarm Optimization (PSO): PSO-Hu ́ngaro, PSO-Gale-Shapley, PSO-Aborci ́on-Punto-Cercano y PSO-Convex-Hull, que aprovechan la característica de la generación aleatoria de los centroides por el algoritmo PSO, para asignar los puntos a estos centroides, logrando una solución más aproximada a la óptima. Evaluamos estos cuatro algoritmos con conjuntos de datos distribuidos en forma uniforme y no uniforme. Se encontró que para los conjuntos de datos distribuidos no uniformemente, es impredecible determinar cuál de los cuatro algoritmos propuestos llegaría a tener un mejor resultado de acuerdo al conjunto de métricas (intra-cluster-distancia, índice Davies-Doublin e índice Dunn). Por eso, nos concentramos con profundidad en el comportamiento de ellos para los conjuntos de datos distribuidos en forma uniforme. Durante el proceso de evaluación se descubrió que la formación de los clusters balanceados de los algoritmos PSO-Absorcion-Puntos-Importantes y PSO-Convex-Hull depende fuertemente del orden con que los centroides comienzan a absorber los puntos más cercanos. En cambio, los algoritmos PSO-Hungaro y PSO-Gale-Shapley solamente dependen de los centroides generados y no del orden de los clusters a crear. Se pudo concluir que el algoritmo PSO-Gale-Shapley presenta el rendimiento menos bueno para la creación de clusters balanceados, mientras que el algoritmo PSO-Hungaro presenta el rendimiento más eficiente para lograr el resultado esperado. Éste último está limitado al tamaño de los datos y la forma de distribución. Se descubrió finalmente que, para los conjuntos de datos de tamaños grandes, independiente de la forma de distribución, el algoritmo PSO-Convex-Hull supera a los demás, entregando mejor resultado según las métricas usadas.
Oldewage, Elre Talea. "The perils of particle swarm optimization in high dimensional problem spaces." Diss., University of Pretoria, 2005. http://hdl.handle.net/2263/66233.
Full textDissertation (MSc)--University of Pretoria, 2017.
Computer Science
MSc
Unrestricted
Books on the topic "PSO (PRATICLE SWARM OPTIMIZATION)"
López, Javier. Optimización multi-objetivo. Editorial de la Universidad Nacional de La Plata (EDULP), 2015. http://dx.doi.org/10.35537/10915/45214.
Full textBook chapters on the topic "PSO (PRATICLE SWARM OPTIMIZATION)"
Wang, Feng-Sheng, and Li-Hsunan Chen. "Particle Swarm Optimization (PSO)." In Encyclopedia of Systems Biology, 1649–50. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_416.
Full textBadar, Altaf Q. H. "Different Applications of PSO." In Applying Particle Swarm Optimization, 191–208. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70281-6_11.
Full textCuevas, Erik, and Alma Rodríguez. "Particle Swarm Optimization (PSO) Algorithm." In Metaheuristic Computation with MATLAB®, 159–81. First edition. | Boca Raton : CRC Press, 2020.: Chapman and Hall/CRC, 2020. http://dx.doi.org/10.1201/9781003006312-6.
Full textCouceiro, Micael, and Pedram Ghamisi. "Fractional-Order Darwinian PSO." In Fractional Order Darwinian Particle Swarm Optimization, 11–20. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19635-0_2.
Full textEhteram, Mohammad, Akram Seifi, and Fatemeh Barzegari Banadkooki. "Structure of Particle Swarm Optimization (PSO)." In Application of Machine Learning Models in Agricultural and Meteorological Sciences, 23–32. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-9733-4_2.
Full textKao, Yucheng, Ming-Hsien Chen, and Kai-Ming Hsieh. "Combining PSO and FCM for Dynamic Fuzzy Clustering Problems." In Swarm Intelligence Based Optimization, 1–8. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12970-9_1.
Full textFernández-Brillet, Lucas, Oscar Álvarez, and Juan Luis Fernández-Martínez. "The PSO Family: Application to the Portfolio Optimization Problem." In Applying Particle Swarm Optimization, 111–32. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70281-6_7.
Full textYarat, Serhat, Sibel Senan, and Zeynep Orman. "A Comparative Study on PSO with Other Metaheuristic Methods." In Applying Particle Swarm Optimization, 49–72. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70281-6_4.
Full textDeroussi, Laurent. "A Hybrid PSO Applied to the Flexible Job Shop with Transport." In Swarm Intelligence Based Optimization, 115–22. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12970-9_13.
Full textGkaidatzis, Paschalis A., Aggelos S. Bouhouras, and Dimitris P. Labridis. "Application of PSO in Distribution Power Systems: Operation and Planning Optimization." In Applying Particle Swarm Optimization, 321–51. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70281-6_17.
Full textConference papers on the topic "PSO (PRATICLE SWARM OPTIMIZATION)"
Hu, Jhen-Jai, Yu-Te Su, and Tzuu-Hseng S. Li. "A novel ecological-biological-behavior praticle swarm optimization for Ackley's function." In 2010 International Symposium on Computer, Communication, Control and Automation (3CA). IEEE, 2010. http://dx.doi.org/10.1109/3ca.2010.5533436.
Full textDas, M. Taylan, L. Canan Dulger, and G. Sena Das. "Robotic applications with Particle Swarm Optimization (PSO)." In 2013 International Conference on Control, Decision and Information Technologies (CoDIT). IEEE, 2013. http://dx.doi.org/10.1109/codit.2013.6689537.
Full textSchutze, Oliver, El-ghazali Talbi, Gregorio Toscano Pulido, Carlos Coello Coello, and Luis Vicente Santana-Quintero. "A Memetic PSO Algorithm for Scalar Optimization Problems." In 2007 IEEE Swarm Intelligence Symposium. IEEE, 2007. http://dx.doi.org/10.1109/sis.2007.368036.
Full textVatankhah, Ramin, Shahram Etemadi, Mohammad Honarvar, Aria Alasty, Mehrdad Boroushaki, and Gholamreza Vossoughi. "Online velocity optimization of robotic swarm flocking using particle swarm optimization (PSO) method." In 2009 6th International Symposium on Mechatronics and its Applications (ISMA). IEEE, 2009. http://dx.doi.org/10.1109/isma.2009.5164776.
Full textPappala, V. S., and I. Erlich. "Power system optimization under uncertainties: A PSO approach." In 2008 IEEE Swarm Intelligence Symposium (SIS). IEEE, 2008. http://dx.doi.org/10.1109/sis.2008.4668276.
Full textGies, D., and Y. Rahmat-Samii. "Particle swarm optimization (PSO) for reflector antenna shaping." In IEEE Antennas and Propagation Society Symposium, 2004. IEEE, 2004. http://dx.doi.org/10.1109/aps.2004.1331828.
Full textKohler, Manoela, Leonardo Forero, Marley Vellasco, Ricardo Tanscheit, and Marco Aurelio Pacheco. "PSO+: A nonlinear constraints-handling particle swarm optimization." In 2016 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2016. http://dx.doi.org/10.1109/cec.2016.7744102.
Full textAhmadie, Beryl Labique, Wanda Athira Luqyana, Wayan Firdaus Mahmudy, and Rio Arifando. "Milkfish Feed Optimization Using Adaptive Particle Swarm Optimization (PSO) Algorithm." In 2019 International Conference on Sustainable Information Engineering and Technology (SIET). IEEE, 2019. http://dx.doi.org/10.1109/siet48054.2019.8986094.
Full textDaneshyari, Moayed, and Gary G. Yen. "Solving constrained optimization using multiple swarm cultural PSO with inter-swarm communication." In 2010 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2010. http://dx.doi.org/10.1109/cec.2010.5586103.
Full textWu, Di, and G. Gary Wang. "Enhanced Particle Swarm Optimization via Reinforcement Learning." In ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/detc2020-22519.
Full textReports on the topic "PSO (PRATICLE SWARM OPTIMIZATION)"
Styling Parameter Optimization of the Type C Recreational Vehicle Air Drag. SAE International, September 2021. http://dx.doi.org/10.4271/2021-01-5094.
Full text