Academic literature on the topic 'Pseudo-random number generator (PRNG)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Pseudo-random number generator (PRNG).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Pseudo-random number generator (PRNG)"
Lambic, Dragan, and Mladen Nikolic. "New pseudo-random number generator based on improved discrete-space chaotic map." Filomat 33, no. 8 (2019): 2257–68. http://dx.doi.org/10.2298/fil1908257l.
Full textWang, Luyao, and Hai Cheng. "Pseudo-Random Number Generator Based on Logistic Chaotic System." Entropy 21, no. 10 (September 30, 2019): 960. http://dx.doi.org/10.3390/e21100960.
Full textBhattacharjee, Kamalika, Dipanjyoti Paul, and Sukanta Das. "Pseudo-random number generation using a 3-state cellular automaton." International Journal of Modern Physics C 28, no. 06 (April 19, 2017): 1750078. http://dx.doi.org/10.1142/s0129183117500784.
Full textPasqualini, Luca, and Maurizio Parton. "Pseudo Random Number Generation through Reinforcement Learning and Recurrent Neural Networks." Algorithms 13, no. 11 (November 23, 2020): 307. http://dx.doi.org/10.3390/a13110307.
Full textAdak, Sumit, Kamalika Bhattacharjee, and Sukanta Das. "Maximal length cellular automata in GF(q) and pseudo-random number generation." International Journal of Modern Physics C 31, no. 03 (January 9, 2020): 2050037. http://dx.doi.org/10.1142/s0129183120500370.
Full textLiu, Junxiu, Zhewei Liang, Yuling Luo, Lvchen Cao, Shunsheng Zhang, Yanhu Wang, and Su Yang. "A Hardware Pseudo-Random Number Generator Using Stochastic Computing and Logistic Map." Micromachines 12, no. 1 (December 30, 2020): 31. http://dx.doi.org/10.3390/mi12010031.
Full textDe Micco, L., H. A. Larrondo, A. Plastino, and O. A. Rosso. "Quantifiers for randomness of chaotic pseudo-random number generators." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 367, no. 1901 (August 28, 2009): 3281–96. http://dx.doi.org/10.1098/rsta.2009.0075.
Full textAskar, Tair, Bekdaulet Shukirgaliyev, Martin Lukac, and Ernazar Abdikamalov. "Evaluation of Pseudo-Random Number Generation on GPU Cards." Computation 9, no. 12 (December 14, 2021): 142. http://dx.doi.org/10.3390/computation9120142.
Full textRichardson, Joseph D. "Pseudo-random number generation based on digit isolation referenced to entropy buffers." SIMULATION 98, no. 5 (October 29, 2021): 389–406. http://dx.doi.org/10.1177/00375497211054462.
Full textTANG, K. W., WALLACE K. S. TANG, and K. F. MAN. "A CHAOS-BASED PSEUDO-RANDOM NUMBER GENERATOR AND ITS APPLICATION IN VOICE COMMUNICATIONS." International Journal of Bifurcation and Chaos 17, no. 03 (March 2007): 923–33. http://dx.doi.org/10.1142/s021812740701763x.
Full textDissertations / Theses on the topic "Pseudo-random number generator (PRNG)"
Yang, Chunxiao. "Fractional chaotic pseudo-random number generator design and application to image cryptosystem." Electronic Thesis or Diss., Ecole centrale de Nantes, 2022. http://www.theses.fr/2022ECDN0063.
Full textChaotic systems have been employed to design pseudo-random number generators (PRNG) and applied to cryptosystems due to their promising features, such as randomness and sensitivity to initial conditions. The fractional chaotic systems, though muchless discussed than the classical integer order chaotic maps and systems, possess intriguing intricacy which can provide novelty, complexity, and extra secret keys to the Chaotic PRNG (CPRNG) design, which in turn enhance the security of the cryptosystem.This thesis investigated different numerical calculation approaches for fractional chaotic systems. A non-uniform gird calculationmethod with two different grid compositions was proposed to solve the 3D fractional chaotic systems numerically. The FractionalCPRNGs (FCPRNG), which meet the randomness and statistical requirements, were designed for the first time employing threedifferent fractional chaotic systems. In addition, a stream cipher and a block cipher based on DNA encoding and decoding methods were proposed and studied using the designed FCPRNGs. Both ciphers have been verified to be secure and reliable
Gärtner, Joel. "Analysis of Entropy Usage in Random Number Generators." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-214567.
Full textKryptografiskt säkra slumptalsgeneratorer behöver ofta initialiseras med ett oförutsägbart frö. En annan lösning är att istället konstant ge slumptalsgeneratorer entropi. Detta gör det möjligt att garantera att det interna tillståndet i generatorn hålls oförutsägbart. I den här rapporten analyseras fyra sådana generatorer som matas med entropi. Dessutom presenteras olika sätt att skatta entropi och en ny skattningsmetod utvecklas för att användas till analysen av generatorerna. Den framtagna metoden för entropiskattning lyckas bra i tester och används för att analysera entropin i de olika generatorerna. Alla analyserade generatorer uppvisar beteenden som inte verkar optimala för generatorns funktionalitet. De flesta av de analyserade generatorerna verkar dock oftast säkra att använda.
Nordmark, Oskar. "Turbo Code Performance Analysis Using Hardware Acceleration." Thesis, Linköpings universitet, Datorteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-137666.
Full textBakiri, Mohammed. "Hardware implementation of a pseudo random number generator based on chaotic iteration." Thesis, Bourgogne Franche-Comté, 2018. http://www.theses.fr/2018UBFCD014/document.
Full textSecurity and cryptography are key elements in constrained devices such as IoT, smart card, embedded system, etc. Their hardware implementations represent a challenge in terms of limitations in physical resources, operating speed, memory capacity, etc. In this context, as most protocols rely on the security of a good random number generator, considered an indispensable element in lightweight security core. Therefore, this work proposes new pseudo-random generators based on chaotic iterations, and designed to be deployed on hardware support, namely FPGA or ASIC. These hardware implementations can be described as post-processing on existing generators. They transform a sequence of numbers not uniform into another sequence of numbers uniform. The dependency between input and output has been proven chaotic, according notably to the mathematical definitions of chaos provided by Devaney and Li-Yorke. Following that, we firstly elaborate or develop out a complete state of the art of the material and physical implementations of pseudo-random number generators (PRNG, for pseudorandom number generators). We then propose new generators based on chaotic iterations (IC) which will be tested on our hardware platform. The initial idea was to start from the n-cube (or, in an equivalent way, the vectorial negation in CIs), then remove a Hamiltonian cycle balanced enough to produce new functions to be iterated, for which is added permutation on output . The methods recommended to find good functions, will be detailed, and the whole will be implemented on our FPGA platform. The resulting generators generally have a better statistical profiles than its inputs, while operating at a high speed. Finally, we will implement them on many hardware support (65-nm ASIC circuit and Zynq FPGA platform)
Mahdal, Jakub. "Bezpečné kryptografické algoritmy." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2008. http://www.nusl.cz/ntk/nusl-235972.
Full textDusitsin, Krid, and Kurt Kosbar. "Accuracy of Computer Simulations that use Common Pseudo-random Number Generators." International Foundation for Telemetering, 1998. http://hdl.handle.net/10150/609238.
Full textIn computer simulations of communication systems, linear congruential generators and shift registers are typically used to model noise and data sources. These generators are often assumed to be close to ideal (i.e. delta correlated), and an insignificant source of error in the simulation results. The samples generated by these algorithms have non-ideal autocorrelation functions, which may cause a non-uniform distribution in the data or noise signals. This error may cause the simulation bit-error-rate (BER) to be artificially high or low. In this paper, the problem is described through the use of confidence intervals. Tests are performed on several pseudo-random generators to access which ones are acceptable for computer simulation.
Zouhar, Petr. "Generátor náhodných čísel." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2010. http://www.nusl.cz/ntk/nusl-218290.
Full textStewart, Robert Grisham. "A Statistical Evaluation of Algorithms for Independently Seeding Pseudo-Random Number Generators of Type Multiplicative Congruential (Lehmer-Class)." Digital Commons @ East Tennessee State University, 2007. https://dc.etsu.edu/etd/2049.
Full textXu, Jinzhong. "Stream Cipher Analysis Based on FCSRs." UKnowledge, 2000. http://uknowledge.uky.edu/gradschool_diss/320.
Full textNovotný, Marek. "Programy pro výpočet nejistoty měření metodou Monte Carlo." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2015. http://www.nusl.cz/ntk/nusl-221220.
Full textBook chapters on the topic "Pseudo-random number generator (PRNG)"
Zhu, Huafei, Wee-Siong Ng, and See-Kiong Ng. "Sustainable Pseudo-random Number Generator." In Security and Privacy Protection in Information Processing Systems, 139–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39218-4_11.
Full textAnderson, Peter G. "A Fibonacci-Based Pseudo-Random Number Generator." In Applications of Fibonacci Numbers, 1–8. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3586-3_1.
Full textDörre, Felix, and Vladimir Klebanov. "Pseudo-Random Number Generator Verification: A Case Study." In Lecture Notes in Computer Science, 61–72. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29613-5_4.
Full textLv, Jianwen, Xiaodong Li, Tao Yang, Haoyang Yu, and Beisheng Liu. "A General Pseudo-Random Number Generator Based on Chaos." In 4th EAI International Conference on Robotic Sensor Networks, 103–9. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70451-3_9.
Full textShah, Trishla, Srinivas Sampalli, Darshana Upadhyay, and Priyanka Sharma. "Performance Evaluation of a Pseudo-Random Number Generator Against Various Attacks." In Proceedings of the Future Technologies Conference (FTC) 2018, 291–304. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-02683-7_21.
Full textMukherjee, Ayan, Pradeep Kumar Mallick, and Debahuti Mishra. "Chaotic Pseudo Random Number Generator (cPRNG) Using One-Dimensional Logistic Map." In Biologically Inspired Techniques in Many Criteria Decision Making, 697–708. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8739-6_62.
Full textKim, Hyunji, Yongbeen Kwon, Minjoo Sim, Sejin Lim, and Hwajeong Seo. "Generative Adversarial Networks-Based Pseudo-Random Number Generator for Embedded Processors." In Information Security and Cryptology – ICISC 2020, 215–34. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68890-5_12.
Full textRajashekharan, Lekshmi, and C. Shunmuga Velayutham. "Is Differential Evolution Sensitive to Pseudo Random Number Generator Quality? – An Investigation." In Advances in Intelligent Systems and Computing, 305–13. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23036-8_26.
Full textLópez, Amalia Beatriz Orúe, Gonzalo Álvarez Marañon, Alberto Guerra Estévez, Gerardo Pastor Dégano, Miguel Romera García, and Fausto Montoya Vitini. "Trident, a New Pseudo Random Number Generator Based on Coupled Chaotic Maps." In Advances in Intelligent and Soft Computing, 183–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-16626-6_20.
Full textSharma, Moolchand, Suman Deswal, Jigyasa Sachdeva, Varun Maheshwari, and Mayank Arora. "Security on Cloud Computing Using Pseudo-random Number Generator Along with Steganography." In Artificial Intelligence and Applied Mathematics in Engineering Problems, 654–65. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36178-5_54.
Full textConference papers on the topic "Pseudo-random number generator (PRNG)"
Ribeiro, Wellinton Costa, and Marcus Tadeu Pinheiro Silva. "Evaluating the Randomness of the RNG in a Commercial Smart Card." In Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais. Sociedade Brasileira de Computação - SBC, 2017. http://dx.doi.org/10.5753/sbseg.2017.19531.
Full textYoo, Dongchang, Yewon Kim, Taeill Yoo, and Yongjin Yeom. "Analysis of the Random Number Generator Using MD5 PRNG in Linux Kernel." In Advanced Science and Technology 2017. Science & Engineering Research Support soCiety, 2017. http://dx.doi.org/10.14257/astl.2017.143.34.
Full textRikitake, Kenji. "TinyMT pseudo random number generator for Erlang." In the eleventh ACM SIGPLAN workshop. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2364489.2364504.
Full textRikitake, Kenji. "SFMT pseudo random number generator for Erlang." In the 10th ACM SIGPLAN workshop. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/2034654.2034669.
Full textChefranov, A., and T. Mazurova. "Pseudo-Random Number Generator RC4 Period Improvement." In 2006 IEEE International Conference on Automation, Quality and Testing, Robotics. IEEE, 2006. http://dx.doi.org/10.1109/aqtr.2006.254596.
Full textBagdasar, Ovidiu D., and Minsi Chen. "A Horadam-Based Pseudo-Random Number Generator." In 2014 UKSim-AMSS 16th International Conference on Modelling and Simulation (UKSim). IEEE, 2014. http://dx.doi.org/10.1109/uksim.2014.55.
Full textAbutaha, Mohammed, Safwan El Assad, Ons Jallouli, Audrey Queudet, and Olivier Deforges. "Design of a pseudo-chaotic number generator as a random number generator." In 2016 International Conference on Communications (COMM). IEEE, 2016. http://dx.doi.org/10.1109/iccomm.2016.7528291.
Full textChang, Weiling, Binxing Fang, Xiaochun Yun, Shupeng Wang, and Xiangzhan Yu. "A Pseudo-Random Number Generator Based on LZSS." In 2010 Data Compression Conference. IEEE, 2010. http://dx.doi.org/10.1109/dcc.2010.77.
Full textBo Yang, Qingfeng Hu, Jie Liu, and Chunye Gong. "GPU optimized Pseudo Random Number Generator for MCNP." In 2013 IEEE Conference Anthology. IEEE, 2013. http://dx.doi.org/10.1109/anthology.2013.6784792.
Full textKim, Soo Hyeon, Daewan Han, and Dong Hoon Lee. "Predictability of Android OpenSSL's pseudo random number generator." In the 2013 ACM SIGSAC conference. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2508859.2516706.
Full textReports on the topic "Pseudo-random number generator (PRNG)"
Bailey, David H. A Pseudo-Random Number Generator Based on Normal Numbers. Office of Scientific and Technical Information (OSTI), December 2004. http://dx.doi.org/10.2172/860344.
Full text