Academic literature on the topic 'Pruning random forest'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Pruning random forest.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Pruning random forest"
Yang, Fan, Wei-hang Lu, Lin-kai Luo, and Tao Li. "Margin optimization based pruning for random forest." Neurocomputing 94 (October 2012): 54–63. http://dx.doi.org/10.1016/j.neucom.2012.04.007.
Full textTarchoune, Ilhem, Akila Djebbar, and Hayet Farida Merouani. "Improving Random Forest with Pre-pruning technique for Binary classification." All Sciences Abstracts 1, no. 2 (July 25, 2023): 11. http://dx.doi.org/10.59287/as-abstracts.1202.
Full textFawagreh, Khaled, and Mohamed Medhat Gaber. "eGAP: An Evolutionary Game Theoretic Approach to Random Forest Pruning." Big Data and Cognitive Computing 4, no. 4 (November 28, 2020): 37. http://dx.doi.org/10.3390/bdcc4040037.
Full textEl Habib Daho, Mostafa, Nesma Settouti, Mohammed El Amine Bechar, Amina Boublenza, and Mohammed Amine Chikh. "A new correlation-based approach for ensemble selection in random forests." International Journal of Intelligent Computing and Cybernetics 14, no. 2 (March 23, 2021): 251–68. http://dx.doi.org/10.1108/ijicc-10-2020-0147.
Full textGefeller, Olaf, Asma Gul, Folkert Horn, Zardad Khan, Berthold Lausen, and Werner Adler. "Ensemble Pruning for Glaucoma Detection in an Unbalanced Data Set." Methods of Information in Medicine 55, no. 06 (2016): 557–63. http://dx.doi.org/10.3414/me16-01-0055.
Full textZhu, Wancai, Zhaogang Liu, Weiwei Jia, and Dandan Li. "Modelling the Tree Height, Crown Base Height, and Effective Crown Height of Pinus koraiensis Plantations Based on Knot Analysis." Forests 12, no. 12 (December 15, 2021): 1778. http://dx.doi.org/10.3390/f12121778.
Full textPaudel, Nawaraj, and Jagdish Bhatta. "Mushroom Classification using Random Forest and REP Tree Classifiers." Nepal Journal of Mathematical Sciences 3, no. 1 (August 31, 2022): 111–16. http://dx.doi.org/10.3126/njmathsci.v3i1.44130.
Full textYadav, Dhyan Chandra, and Saurabh Pal. "Analysis of Heart Disease Using Parallel and Sequential Ensemble Methods With Feature Selection Techniques." International Journal of Big Data and Analytics in Healthcare 6, no. 1 (January 2021): 40–56. http://dx.doi.org/10.4018/ijbdah.20210101.oa4.
Full textGonzález, Sergio, Francisco Herrera, and Salvador García. "Monotonic Random Forest with an Ensemble Pruning Mechanism based on the Degree of Monotonicity." New Generation Computing 33, no. 4 (July 2015): 367–88. http://dx.doi.org/10.1007/s00354-015-0402-4.
Full textMulyo, Harminto, and Nadia Annisa Maori. "PENINGKATAN AKURASI PREDIKSI PEMILIHAN PROGRAM STUDI CALON MAHASISWA BARU MELALUI OPTIMASI ALGORITMA DECISION TREE DENGAN TEKNIK PRUNING DAN ENSEMBLE." Jurnal Disprotek 15, no. 1 (January 2, 2024): 15–25. http://dx.doi.org/10.34001/jdpt.v15i1.5585.
Full textDissertations / Theses on the topic "Pruning random forest"
Diyar, Jamal. "Post-Pruning of Random Forests." Thesis, Blekinge Tekniska Högskola, Institutionen för datalogi och datorsystemteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-15904.
Full textSammanfattning Kontext. Ensemble metoder fortsätter att få mer uppmärksamhet inom maskininlärning. Då maskininlärningstekniker som genererar en enskild klassificerare eller prediktor har visat tecken på begränsad kapacitet i vissa sammanhang, har ensemble metoder vuxit fram som alternativa metoder för att åstadkomma bättre prediktiva prestanda. En av de mest intressanta och effektiva ensemble algoritmerna som har introducerats under de senaste åren är Random Forests. För att säkerställa att Random Forests uppnår en hög prediktiv noggrannhet behöver oftast ett stort antal träd användas. Resultatet av att använda ett större antal träd för att öka den prediktiva noggrannheten är en komplex modell som kan vara svår att tolka eller analysera. Problemet med det stora antalet träd ställer dessutom högre krav på såväl lagringsutrymmet som datorkraften. Syfte. Denna uppsats utforskar möjligheten att automatiskt förenkla modeller som är genererade av Random Forests i syfte att reducera storleken på modellen, öka dess tolkningsbarhet, samt bevara eller förbättra den prediktiva noggrannheten. Syftet med denna uppsats är tvåfaldigt. Vi kommer först att jämföra och empiriskt utvärdera olika beskärningstekniker. Den andra delen av uppsatsen undersöker sambandet mellan den prediktiva noggrannheten och modellens tolkningsbarhet. Metod. Den primära forskningsmetoden som har använts för att genomföra den studien är experiment. Alla beskärningstekniker är implementerade i Python. För att träna, utvärdera, samt validera de olika modellerna, har fem olika datamängder använts. Resultat. Det finns inte någon signifikant skillnad i det prediktiva prestanda mellan de jämförda teknikerna och ingen av de undersökta beskärningsteknikerna är överlägsen på alla plan. Resultat från experimenten har också visat att sambandet mellan tolkningsbarhet och noggrannhet är proportionellt, i alla fall för de studerade konfigurationerna. Det vill säga, en positiv förändring i modellens tolkningsbarhet åtföljs av en negativ förändring i modellens noggrannhet. Slutsats. Det är möjligt att reducera storleken på en komplex Random Forests modell samt bibehålla eller förbättra den prediktiva noggrannheten. Dessutom beror valet av beskärningstekniken på användningsområdet och mängden träningsdata tillgänglig. Slutligen kan modeller som är signifikant förenklade vara mindre noggranna men å andra sidan tenderar de att uppfattas som mer förståeliga.
Fawagreh, Khaled. "On pruning and feature engineering in Random Forests." Thesis, Robert Gordon University, 2016. http://hdl.handle.net/10059/2113.
Full textCherfaoui, Farah. "Echantillonnage pour l'accélération des méthodes à noyaux et sélection gloutonne pour les représentations parcimonieuses." Electronic Thesis or Diss., Aix-Marseille, 2022. http://www.theses.fr/2022AIXM0256.
Full textThe contributions of this thesis are divided into two parts. The first part is dedicated to the acceleration of kernel methods and the second to optimization under sparsity constraints. Kernel methods are widely known and used in machine learning. However, the complexity of their implementation is high and they become unusable when the number of data is large. We first propose an approximation of Ridge leverage scores. We then use these scores to define a probability distribution for the sampling process of the Nyström method in order to speed up the kernel methods. We then propose a new kernel-based framework for representing and comparing discrete probability distributions. We then exploit the link between our framework and the maximum mean discrepancy to propose an accurate and fast approximation of the latter. The second part of this thesis is devoted to optimization with sparsity constraint for signal optimization and random forest pruning. First, we prove under certain conditions on the coherence of the dictionary, the reconstruction and convergence properties of the Frank-Wolfe algorithm. Then, we use the OMP algorithm to reduce the size of random forests and thus reduce the size needed for its storage. The pruned forest consists of a subset of trees from the initial forest selected and weighted by OMP in order to minimize its empirical prediction error
Book chapters on the topic "Pruning random forest"
Dheenadayalan, Kumar, G. Srinivasaraghavan, and V. N. Muralidhara. "Pruning a Random Forest by Learning a Learning Algorithm." In Machine Learning and Data Mining in Pattern Recognition, 516–29. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41920-6_41.
Full textLi, Zhaozhao, Lide Wang, Ping Shen, Hui Song, and Xiaomin Du. "Fault Diagnosis of MVB Based on Random Forest and Ensemble Pruning." In Lecture Notes in Electrical Engineering, 91–100. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2866-8_9.
Full textTaleb Zouggar, Souad, and Abdelkader Adla. "Measures of Random Forest Pruning: Comparative Study and Experiment on Diabetic Monitoring." In Advances in Intelligent Systems and Computing, 263–72. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36664-3_30.
Full textKiran, B. Ravi, and Jean Serra. "Cost-Complexity Pruning of Random Forests." In Lecture Notes in Computer Science, 222–32. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57240-6_18.
Full textFawagreh, Khaled, Mohamed Medhat Gaber, and Eyad Elyan. "CLUB-DRF: A Clustering Approach to Extreme Pruning of Random Forests." In Research and Development in Intelligent Systems XXXII, 59–73. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25032-8_4.
Full textFawagreh, Khaled, Mohamed Medhat Gaber, and Eyad Elyan. "An Outlier Ranking Tree Selection Approach to Extreme Pruning of Random Forests." In Engineering Applications of Neural Networks, 267–82. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-44188-7_20.
Full textAhmad, Mahmood, Xiaowei Tang, and Feezan Ahmad. "Evaluation of Liquefaction-Induced Settlement Using Random Forest and REP Tree Models: Taking Pohang Earthquake as a Case of Illustration." In Natural Hazards - Impacts, Adjustments and Resilience. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.94274.
Full textHeutte, Laurent, Caroline Petitjean, and Chesner Désir. "PRUNING TREES IN RANDOM FORESTS FOR MINIMIZING NON DETECTION IN MEDICAL IMAGING." In Handbook of Pattern Recognition and Computer Vision, 89–107. WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814656535_0005.
Full textConference papers on the topic "Pruning random forest"
Rose, Minu, and Hani Ragab Hassen. "A Survey of Random Forest Pruning Techniques." In 9th International Conference on Computer Science, Engineering and Applications. Aircc publishing Corporation, 2019. http://dx.doi.org/10.5121/csit.2019.91808.
Full textKulkarni, Vrushali Y., and Pradeep K. Sinha. "Pruning of Random Forest classifiers: A survey and future directions." In 2012 International Conference on Data Science & Engineering (ICDSE). IEEE, 2012. http://dx.doi.org/10.1109/icdse.2012.6282329.
Full textLiu, Xin, Qifeng Zhou, and Fan Yang. "Leaf node-level ensemble pruning approaches based on node-sample correlation for random forest." In IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2017. http://dx.doi.org/10.1109/iecon.2017.8217016.
Full textLiang, Yu-Pei, Yung-Han Hsu, Tseng-Yi Chen, Shuo-Han Chen, Hsin-Wen Wei, Tsan-sheng Hsu, and Wei-Kuan Shih. "Eco-feller: Minimizing the Energy Consumption of Random Forest Algorithm by an Eco-pruning Strategy over MLC NVRAM." In 2021 58th ACM/IEEE Design Automation Conference (DAC). IEEE, 2021. http://dx.doi.org/10.1109/dac18074.2021.9586164.
Full textAl-Khudafi, Abbas M., Hamzah A. Al-Sharifi, Ghareb M. Hamada, Mohamed A. Bamaga, Abdulrahman A. Kadi, and A. A. Al-Gathe. "Evaluation of Different Tree-Based Machine Learning Approaches for Formation Lithology Classification." In International Geomechanics Symposium. ARMA, 2023. http://dx.doi.org/10.56952/igs-2023-0026.
Full textAl-Sharifi, H. A., A. M. Alkhudafi, A. A. Al-Gathe, S. O. Baarimah, Wahbi Al-Ameri, and A. T. Alyazidi. "Prediction of Two-Phase Flow Regimes in Vertical Pipes Using Tree-Based Ensemble Models." In International Petroleum Technology Conference. IPTC, 2024. http://dx.doi.org/10.2523/iptc-24084-ms.
Full text