Dissertations / Theses on the topic 'Proton therap'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Proton therap.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
JAFER, RASHIDA. "Laser plasma protons and applications in cancer therapy and proton radiography." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2009. http://hdl.handle.net/10281/7457.
Full textBattinelli, Cecilia. "Proton Arc Therapy Optimization." Thesis, KTH, Optimeringslära och systemteori, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-253362.
Full textCancer tillhör de främsta dödsorsakerna i världen. Under de senaste decennierna har utvecklingen av avancerad mjukvara haft en ökad betydelse för cancerbehandlingsplanering. Idag används flera metoder för att behandla cancer. Till dem hör strålterapi. Inom strålterapi är matematisk optimering av stråldosen en central komponent i den mjukvara som används för att ta fram behandlingsplaner. Detta examensarbete fokuserar på denna optimering specifikt inom protonterapi och syftar till att utveckla nya metoder för att generera avancerade behandlingar med en ny form av strålteknik. I konventionell protonterapi så strålas patienten från ett fåtal bestämda riktningar, vanligen två eller tre. Från varje riktning skjuts en protonstråle, vars energi moduleras för att kontrollera vid vilket djup protonerna levererar sin energi. Detta arbete behandlar en alternativ teknik som kallas protonbågsterapi, där den centrala idén är att stråla patienten från betydligt fler riktningar, men med färre energier från varje riktning. Denna teknik möjliggör förbättringar av behandlingens utfall liksom dess hastighet. Antalet protonenergier som används måste dock begränsas, eftersom ändringar av energin står för den primära tidsåtgången i behandlingen och det är önskvärt att stråla patienten under så kort tid som möjligt. Därmed är den centrala uppgiften i protonbågsterapi att bestämma vilka och hur många energier som ska användas från varje möjlig strålvinkel. Syftet med detta arbete är att ta fram metoder som presterar bättre än de befintliga för att lösa denna uppgift på ett optimalt sätt. När en strålbehandling modelleras som ett optimeringsproblem så är målfunktionen ett kvantitativt evalueringsmått baserat på den levererade dosfördelningen i patienten. I detta arbete utvidgas den konventionella problemformuleringen till att även involvera ett bivillkor avseende antalet energier som används i behandlingen. Problemet löses sedan med olika algoritmer och heuristiska metoder. Metoderna utvärderas genom att generera behandlingar i tre olika patientfall, samtliga med bukspottkörtelcancer. Tre krit erier utvärderas: målfunktionsvärde, behandlingstid samt dosens biologiska effekt. De utvecklade metoderna producerar samtliga behandlingar bättre än den som ges med konventionell protonterapi, med avseende på alla tre utvärderingskriterier. Således dras slutsatsen att protonbågsterapi kan vara en förbättring av konventionell protonterapi. Den föreslagna metoden för att välja energier är en hybridmetod bestående av en girig och en omvänt girig optimeringsmetod. Framtida arbete bör fokusera på att inkludera den biologiska effekten av dosen i optimeringsmodellen, och även att ta hänsyn till maskinspecifika begränsningar.
Aloufi, K. M. H. "Neutron spectroscopy in proton therapy." Thesis, University College London (University of London), 2016. http://discovery.ucl.ac.uk/1493068/.
Full textRyckman, Jeffrey M. "Using MCNPX to calculate primary and secondary dose in proton therapy." Thesis, Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/39499.
Full textSchneider, Uwe. "Proton radiography : a tool for quality control in proton therapy /." [S.l.] : [s.n.], 1994. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=10780.
Full textMorel, Paul. "MSPT : Motion Simulator for Proton Therapy." Thesis, Paris Est, 2014. http://www.theses.fr/2014PEST1094/document.
Full textIn proton therapy, the delivery method named spot scanning, can provide a particularly efficient treatment in terms of tumor coverage and healthy tissues protection. The dosimetric benefits of proton therapy may be greatly degraded due to intra-fraction motions. Hence, the study of mitigation or adaptive methods is necessary. For this purpose, we developed an open-source 4D dose computation and evaluation software, MSPT (Motion Simulator for Proton Therapy), for the spot-scanning delivery technique. It aims at highlighting the impact of intra-fraction motions during a treatment delivery by computing the dose distribution in the moving patient. In addition, the use of MSPT allowed us to develop and propose a new motion mitigation strategy based on the adjustment of the beam's weight when the proton beam is scanning across the tumor. In photon therapy, a main concern for deliveries using a multileaf collimator (MLC) relies on finding a series of MLC configurations to deliver properly the treatment. The efficiency of such series is measured by the total beam-on time and the total setup time. In our work, we study the minimization of these efficiency criteria from an algorithmic point of view, for new variants of MLCs: the rotating MLC and the dual-layer MLC. In addition, we propose an approximation algorithm to find a series of configurations that minimizes the total beam-on time for the rotating MLC
Salhani, Maat Bilhal. "Backprojection-then-filtering reconstruction along the most likely path in proton computed tomography." Thesis, KTH, Skolan för teknik och hälsa (STH), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-189495.
Full textHenry, Thomas. "The development of a proton grid therapy." Licentiate thesis, Stockholms universitet, Fysikum, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-144098.
Full textSmeets, Julien. "Prompt gamma imaging with a slit camera for real time range control in particle therapy." Doctoral thesis, Universite Libre de Bruxelles, 2012. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209624.
Full textThis thesis reports on the feasibility, development and test of a new type of prompt gamma camera for proton therapy. This concept uses a knife-edge slit collimator to obtain a 1-dimensional projection of the beam path on a gamma camera. It was optimized, using the Monte Carlo code MCNPX version 2.5.0, to select high energy photons correlated with the beam range and detect them with both high counting statistics and sufficient spatial resolution for use in clinical routine. To validate the Monte Carlo model, spectrometry measurements of secondary particles emitted by a PMMA target during proton irradiation at 160 MeV were realised. An excellent agreement with the simulations was observed when using subtraction methods to isolate the gammas in direct incidence. A first prototype slit camera using the HiCam gamma detector was consequently prepared and tested successfully at 100 and 160 MeV beam energies. If we neglect electronic dead times and rejection of detected events, the current solution with its collimator at 15 cm from beam axis can achieve a 1-2 mm standard deviation on range estimation in a homogeneous PMMA target for numbers of protons that correspond to doses in water at Bragg peak as low as 15 cGy at 100 MeV and 25 cGy at 160 MeV assuming pencil beams with a Gaussian profile of 5 mm sigma at target entrance.
This thesis also investigates the applicability of the slit camera for carbon ion therapy. On the basis of Monte Carlo simulations with the code MCNPX version 2.7.E, this type of camera appears not to be able to identify the beam range with the required sensitivity. The feasibility of prompt gamma imaging itself seems questionable at high beam energies given the weak correlation of secondaries leaving the patient.
This work consequently concludes to the relevance of the slit camera approach for real time range monitoring in proton therapy, but not in carbon ion therapy.
Doctorat en Sciences de l'ingénieur
info:eu-repo/semantics/nonPublished
Vanaudenhove, Thibault. "Shielding study against high-energy neutrons produced in a proton therapy facility by means of Monte Carlo codes and on-site measurements." Doctoral thesis, Universite Libre de Bruxelles, 2014. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209276.
Full textAs a consequence, thick concrete shielding walls are placed around the treatment room to ensure that other people and workers received a dose as small as possible. The dose measurement is performed with specific dosemeters such as the WENDI-II, which gives a conservative estimation of the ambient dose equivalent up to 5 GeV. The dose in working areas may also be estimated by means of numerical calculations by using simulation codes of particle transport such as the GEANT4, MCNPX, FLUKA and PHITS Monte Carlo codes.
Secondary particle yields calculated with Monte Carlo codes show discrepancies when different physical models are used but are globally in good agreement with experimental data from the literature. Neutron and photon doses decrease exponentially through concrete shielding wall but the neutron dose is definitely the main component behind a wall with sufficient thickness. Shielding parameters, e.g. attenuation coefficients, vary as functions of emission angle (regarding the incident beam direction), incident proton energy, and target material and composition.
The WENDI-II response functions computed by using different hadronic models show also some discrepancies. Thermal treatment of hydrogen in the polyethylene composing the detector is also of great importance to calculate the correct response function and the detector sensitivity.
Secondary particle sources in a proton therapy facility are essentially due to losses in cyclotron and beam interactions inside the energy selection system, with the treatment nozzle components and the target - patient or phantom. Numerical and experimental results of the dose in mazes show a good agreement for the most of detection points while they show large discrepancies in control rooms. Indeed, statistical consistency is reached with difficulty for both experimental and calculated results in control rooms since concrete walls are very thick in this case.
/
La radiothérapie utilisant des faisceaux de protons d’énergie entre 50 MeV et 250 MeV s’est largement développée ces dernières années. Elle a l’immense avantage de pouvoir concentrer la dose due au faisceau incident de manière très efficace et très précise sur la tumeur, en épargnant les éventuels organes sains et sensibles aux radiations situés aux alentours. Cependant, des rayonnements « secondaires » très énergétiques sont créés par les réactions nucléaires subies par les protons lors de leur parcours dans les tissus, et peuvent sortir du patient. Des blindages entourant la salle de traitement et suffisamment épais doivent être présents afin que la dose reçue par les personnes se trouvant aux alentours soit la plus faible possible. La mesure de la dose se fait avec des dosimètres spécifiques et sensibles aux rayonnements de haute énergie, tels que le WENDI-II pour les neutrons. L’estimation de cette dose, et donc la modélisation des blindages, se fait également avec des codes de simulation numérique de transport de particules par les méthodes de Monte Carlo, tels que GEANT4, MCNPX, FLUKA et PHITS.
La production de rayonnements secondaires calculée à l’aide de codes Monte Carlo montre des écarts significatifs lorsque différents modèles d’interactions physiques sont utilisés, mais est en bon accord avec des données expérimentales de référence. L’atténuation de la dose due aux neutrons et aux photons secondaires à travers un blindage composé de béton est exponentielle. De plus, la dose due aux neutrons est clairement la composante dominante au-delà d’une certaine épaisseur. Les paramètres d’atténuation, comme par exemple le coefficient d’atténuation, dépendent de l’angle d’émission (par rapport à la direction du faisceau incident), de l’énergie des protons incidents et de la nature et la composition de la cible.
La fonction de réponse du dosimètre WENDI-II montre également des variations lorsque différents modèles physiques sont considérés dans les codes Monte Carlo. La prise en compte d’effets fins comme les états de vibration et de rotation des atomes d’hydrogène au sein du polyéthylène composant le détecteur se révèle essentielle afin de caractériser correctement la réponse du détecteur ainsi que sa sensibilité.
L’émission secondaire dans un centre de protonthérapie est essentiellement due aux pertes dans le cyclotron et aux interactions du faisceau avec les systèmes de sélection de l’énergie, les composants de la tête de tir et le patient (ou le fantôme). L’évaluation numérique de la dose dans les labyrinthes des différentes salles du centre montre un bon accord avec les données expérimentales. Tandis que pour les points de mesure dans leur salle de contrôle respective, de larges différences peuvent apparaitre. Ceci est en partie dû à la difficulté d’obtenir des résultats statistiquement recevables du point de vue expérimental, mais aussi numérique, au vu de l’épaisseur des blindages entourant les salles de contrôle.
Doctorat en Sciences de l'ingénieur
info:eu-repo/semantics/nonPublished
McGowan, Stacey Elizabeth. "Incorporating range uncertainty into proton therapy treatment planning." Thesis, University of Cambridge, 2015. https://www.repository.cam.ac.uk/handle/1810/248787.
Full textHuisman, Brent. "Accelerated clinical prompt gamma simulations for proton therapy." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEI039/document.
Full textAfter an introduction to particle therapy and prompt gamma detection, this doctoral dissertation comprises two main contributions: the development of a fast prompt gammas (PGs) simulation method and its application in a study of change detectability in clinical treatments. The variance reduction method (named vpgTLE) is a two-stage track length estimation method developed to estimate the PG yield in voxelized volumes. As primary particles are propagated throughout the patient CT, the PG yields are computed as function of the current energy of the primary, the material in the voxel and the step length. The second stage uses this intermediate image as a source to generate and propagate the number of PGs throughout the rest of the scene geometry, e.g. into a detection device. For both a geometrical heterogeneous phantom and a complete patient CT treatment plan with respect to analog MC, at a convergence level of 2\% relative uncertainty on the PG yield per voxel in the 90\% yield region, a gain of around $10^3$ was achieved. The method agrees with reference analog MC simulations to within $10^{-4}$ per voxel, with negligible bias. The second major study conducted in this PhD program was on PG FOP estimation in clinical simulations. The number of protons (spot weight) required for a consistent FOP estimate was investigated for the first time for two optimized PG cameras, a multi-parallel slit (MPS) and a knife edge design (KES). Three spots were selected for an in depth study, and at the prescribed spot weights were found to produce results of insufficient precision, rendering usable clinical output on the spot level unlikely. When the spot weight is artificially increased to $10^9$ primaries, the precision on the FOP reaches millimetric precision. On the FOP shift the MPS camera provides between 0.71 - 1.02 mm (1$\upsigma$) precision for the three spots at $10^9$ protons; the KES between 2.10 - 2.66 mm. Grouping iso-energy layers was employed in passive delivery PG detection for one of the PG camera prototypes. In iso-depth grouping, enabled by active delivery, spots with similar distal dose fall-offs are grouped so as to provide well-defined fall-offs as an attempt to sidestep range mixing. It is shown that grouping spots does not necessarily negatively affect the precision compared to the artificially increased spot, which means some form of spot grouping can enable clinical use of these PG cameras. With all spots or spot groups the MPS has a better signal compared to the KES, thanks to a larger detection efficiency and a lower background level due to time of flight selection
Vilches, Freixas Gloria. "Dual-energy cone-beam CT for proton therapy." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEI099/document.
Full textProton therapy is a promising radiation treatment modality that uses proton beams to treat cancer. Current treatment planning systems rely on an X-ray computed tomography (CT) image of the patient's anatomy to design the treatment plan. The proton stopping-power ratio relative to water (SPR) is derived from CT numbers (HU) to compute the absorbed dose in the patient. Protons are more vulnerable than photons to changes in tissue SPR in the beam direction caused by movement, misalignment or anatomical changes. In addition, inaccuracies arising from the planning CT and intrinsic to the HU-SPR conversion greatly contribute to the proton range uncertainty. In clinical practice, safety margins are added to the treatment volume to account for these uncertainties at the expense of losing organ-sparing capabilities. The use of dual-energy (DE) in proton therapy was first suggested in 2009 to better estimate the SPR with respect to single-energy X-ray imaging. The aim of this thesis work is to investigate the potential improvement in determining proton SPR using DE to reduce the uncertainty in predicting the proton range in the patient. This PhD work is applied to a new imaging device, the Imaging Ring (IR), which is a cone-beam CT (CBCT) scanner developed for image-guided radiotherapy (IGRT). The IR is equipped with a fast kV switching X-ray source, synchronized with a filter wheel, allowing for multi-energy CBCT imaging. The first contribution of this thesis is a method to calibrate a model for the X-ray source and the detector response to be used in X-ray image simulations. It has been validated experimentally on three CBCT scanners. Secondly, the investigations have evaluated the factors that have an impact on the outcome of the DE decomposition process, from the acquisition parameters to the post-processing. Both image- and projection-based decomposition domains have been thoroughly investigated, with special emphasis on projection-based approaches. Two novel DE decomposition bases have been proposed to estimate proton SPRs, without the need for an intermediate variable such as the effective atomic number. The last part of the thesis proposes an estimation of proton SPR maps of tissue characterization and anthropomorphic phantoms through DE-CBCT acquisitions with the IR. A correction for X-ray scattering has been implemented off-line, and a routine to linearly interpolate low-energy and high-energy sinograms from sequential and fast-switching DE acquisitions has been proposed to perform DE material decomposition in the projection domain with real data. DECT-derived SPR values have been compared with experimentally-determined SPR values in a carbon-ion beam
Fair, Jenna Leigh. "Spatially fractionated proton therapy: A Monte Carlo verification." Thesis, Georgia Institute of Technology, 2016. http://hdl.handle.net/1853/55045.
Full textNchodu, M. R. "Determination of energy spectra of proton therapy beams." Doctoral thesis, University of Cape Town, 2002. http://hdl.handle.net/11427/7415.
Full textA technique has been developed for measuring the energy spectra of high-energy proton therapy beams in situ under conditions similar to those used for radiotherapy at the South African National Accelerator Centre. The method is based on proton elastic scattering, H(p,p)H, in a thin polyethylene radiator and uses two ΔE-E detector telescopes to detect coincident proton pairs. Measurements have been made to investigate the effect of standard beam modification elements on the energy spectra of proton therapy beams produced by a passive scattering system. Monte Carlo simulations of the spectra were computed with the MCNPX 2.1.5 Monte Carlo code to compare with experimental measurements.
Cunningham, Charnay. "Radiosensitization effects of gold nanoparticles in proton therapy." University of the Western Cape, 2017. http://hdl.handle.net/11394/5758.
Full textDespite recent advances in radiotherapy, some tumours have shown to be resistant to treatment and patients still experience long term side effects. Gold nanoparticles (AuNPs) have been identified as effective radiosensitizers when employed concurrently with kilovoltage X-rays, which could selectively increase the dose delivered to a patient's tumour. The clinical application of proton radiation has gained renewed attention due to the lower integral body dose of protons compared to traditional X-ray based therapy. While extensive research has been formed on the behaviour of AuNPs in photon beams, limited information is available on the combination of AuNPs and proton radiation. Several questions remain regarding the interaction of protons with the AuNPs and possible dose enhancement effects at different depths along the Spread Out Bragg Peak (SOBP).
Handley, Stephen Michael. "Monte Carlo simulations using MCNPX of proton and anti-proton beam profiles for radiation therapy." Oklahoma City : [s.n.], 2010.
Find full textLa, Rosa V. "Proton-induced X-ray emissions from metal markers for range verification in eye proton therapy." Thesis, University College London (University of London), 2014. http://discovery.ucl.ac.uk/1436761/.
Full textLasagni, Lorenzo. "4D-treatment with patches and rescanning in proton therapy." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18140/.
Full textMarusic, Tibor. "Ray Cast/Dose Superposition algorithm for proton grid therapy." Thesis, Stockholms universitet, Medicinsk strålningsfysik (tills m KI), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-148174.
Full textProton grid therapy group
Schneider, Tim. "Advancing the generation of proton minibeams for radiation therapy." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASP069.
Full textDespite major advances over the last decades, the dose tolerance of normal tissue continues to be a central problem in radiation therapy, limiting for example the effective treatment of hypoxic tumours and high-grade gliomas. Proton minibeam radiation therapy (pMBRT) is a novel therapeutic strategy, combining the improved ballistics of protons with the enhanced tissue sparing potential of submillimetric, spatially fractionated beams (minibeams), that has already demonstrated its ability to significantly improve the therapeutic index for brain cancers in rats. In contrast to conventional proton therapy which uses comparatively large beam diameters of five millimetres to several centimetres, minibeams require beam sizes of less than 1 mm which are challenging to create in a clinical context. So far, every implementation of pMBRT at clinically relevant beam energies could only be achieved with the help of mechanical collimators (metal blocks with thin slits or holes). However, this method is inefficient, inflexible and creates high levels of unwanted secondary particles. The optimal approach may therefore be the generation of minibeams through magnetic focussing.This thesis investigates how magnetically focussed proton minibeams can be realised in a clinical context. Starting from the computer model of a modern pencil beam scanning nozzle (the term "nozzle" describes the final elements of a clinical beamline), it could be shown that current nozzles will not be suitable for this task, since their large dimensions and the presence of too much air in the beam path make it impossible to focus the beam down to the required sizes. Instead, an optimised nozzle design has been developed and evaluated with clinical beam models. It could be demonstrated that this design allows the generation of proton minibeams through magnetic focussing and that the new nozzle can be used with already existing technology. Moreover, a Monte Carlo study was performed to compare and quantify the differences between magnetically focussed minibeams and mechanically collimated minibeams.Finally, as the second aspect of this thesis, helium ions were evaluated as a potential alternative to protons for minibeam radiation therapy. It could be shown that helium ions could present a good compromise exhibiting many of the dosimetric advantages of heavier ions without the risks related to normal tissue toxicities
Edmonds, Chris. "FFAGs and synchrotrons for proton therapy : a comparative study." Thesis, University of Liverpool, 2015. http://livrepository.liverpool.ac.uk/2038203/.
Full textPflugfelder, Daniel. "Risk adapted optimization in intensity modulated proton therapy (IMPT)." Saarbrücken VDM Verlag Dr. Müller, 2008. http://d-nb.info/988728478/04.
Full textWarren, Daniel Rosevear. "Proton radiotherapy uncertainties arising from computed tomography." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:ab59f596-e277-490a-a7c1-1cb81b47b9a9.
Full textMandelli, Elena. "Ionizing radiation detectors and their innovative application in proton therapy." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21880/.
Full textQhobosheane, Sehlabaka. "Implementation of a proton therapy supervisory system for iThemba Labs." Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/71676.
Full textKing, David John Stephen. "A biomechanical model for lung fibrosis in proton beam therapy." Thesis, University of Surrey, 2017. http://epubs.surrey.ac.uk/814043/.
Full textFolkert, Michael R. (Michael Ryan) 1975. "Monte Carlo simulation of neutron shielding for proton therapy facilities." Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/50492.
Full textIncludes bibliographical references (leaves 60-63).
A study was performed to develop a Monte Carlo method of modeling neutron shielding of proton therapy facilities in a complex, realistic environment. The bulk neutron shielding of the Northeast Proton Therapy Center (Massachusetts General Hospital, Boston, MA) was used as the basis of the design work. A geometrical model of the facility was simulated using the LAHET Code System, a set of Monte Carlo codes developed at Los Alamos National Laboratory. Additional software tools for reading and analyzing the simulation data that the model provides have been developed and tested. In order to verify the computer simulations, neutron detection and data acquisition systems have been assembled, modified, and thoroughly tested in order to monitor the neutron dose equivalent during proton beam operation at several locations on a continuous basis. Preliminary tests show that the geometry and physics models proposed in this work are valid.
by Michael R. Folkert.
S.B.and S.M.
Topi, Albana. "Positron Emission Tomography Applied in Proton Therapy for Treatment Delivery Verification." Doctoral thesis, Università di Siena, 2018. http://hdl.handle.net/11365/1066400.
Full textFlejmer, Anna M. "Radiation burden from modern radiation therapy techniques including proton therapy for breast cancer treatment - clinical implications." Doctoral thesis, Linköpings universitet, Avdelningen för kliniska vetenskaper, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-127370.
Full textBelloni, Silvia. "Applications of advanced and dual energy computed tomography in proton therapy." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/12023/.
Full textda, Silva Joakim. "Pencil beam dose calculation for proton therapy on graphics processing units." Thesis, University of Cambridge, 2016. https://www.repository.cam.ac.uk/handle/1810/254300.
Full textLönn, Gustaf. "In-beam proton range monitoring during proton therapy : a Monte Carlo study on the feasibility of secondary gamma imaging." Thesis, KTH, Skolan för teknikvetenskap (SCI), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-188651.
Full textStrålbehandling av cancer med hjälp av protoner är fördelaktigt jämfört medkonventionell strålterapi då protonerna kan leverera en hög dos till ett välavgränsat område samtidigt som dosen till intilliggande vävnad effektivtreduceras. Tack vare statistiska variationer i protoners dosfördelning, anatomiskaavvikelser i patienter samt små fel vid patientfixering måste behandlingsplanerinnehålla marginaler som motsvarar ca 3.5% avvikelse i protonräckvidd. Att irealtid kunna mäta protoners räckvidd i patienten skulle vara tills stor nytta ochskulle bidra till att minska marginalerna i behandlingsplanen. I ett första skede avarbetet undersöktes möjligheten att avbilda protonräckvidden med promptgammaemission och Positron Emissions Tomografi (PET) genom GEANT4Application for Tomographic Emission (GATE) Monte Carlo (MC) simuleringar.Resultatet från MC simuleringarna användes sedan för att utvärdera ettdetektorsystem för prompt-gamma avbildning. Simuleringarna indikerade attproduktion av både prompt-gamma och PET isotoper är korrelerade medprotonernas räckvidd, särskilt 4.4 MeV emissionslinjen från Kol. Positionen förmaximal gamma emission kunde avbildas för tre olika positioner idetektorsystemet med en medelförskjutning på -2 ± 1 mm, -3 ± 0.7 mm och -4 ±1.3 mm. Detektorprofilen var förskjuten -12 ± 1 mm, -13 ± 0.7 mm och -14 ± 1.3mm jämfört med protonräckvidden p.g.a. interaktionernas energiberoende.Resultatet påvisar detektorsystemets potential att avbilda prompt-gamma fotoneroch framtida arbete omfattar ytterligare MC simuleringar och experimentellamätningar på Skandionklinken.
Shin, Naomi. "Modeling secondary cancer risk following paediatric radiotherapy: a comparison of intensity modulated proton therapy and photon therapy." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=106431.
Full textUn avantage connu de la radiothérapie par protons est la réduction de la dose reçue par les tissus normaux et sains par rapport aux traitements en photons. Cette réduction de dose peut résulter en une diminution des effets aigus et tardifs de la radiothérapie. Dans cet ouvrage, les plans de protonthérapie ont été créés pour des patients ayant été traités par radiothérapie en photons. Les plans de protonthérapie conformationnelle avec modulation d'intensité (PCMI) ont été conçus par planification inverse dans le système de planification de traitement Eclipse de Varian de façon à ce que le faisceau de protons en balayage produise la même dose de prescription que plan en photons, tout en tenant compte des efficacités biologiques relatives des deux types de radiation. Les plans en photons et en protons ont ensuite été comparés en termes de conformité de la dose, d'homogénéité de la dose, de volumes recevant 2 et 5 Gy, de dose intégrale, de dose aux tissus normaux et de risque de cancer secondaire. Le risque relatif de cancer secondaire a été determiné par la méthode décrite par Nguyen et al. en applicant une relation linéaire entre la dose intégrale et le risque relatif de cancer secondaire. Une deuxième approche employée dans cet ouvrage utilise le concept de dose équivalente à un organe de Schneider et al. pour décrire la dose dans le corps et par la suite calculer l'excès de risque absolu et le risque cumulatif de cancers solides dans le corps. Les traitements comparés, soit en photons et en protons, ont démontré une conformité et une homogénéité de la dose similaires dans le volume cible. Toutefois, les plans de PCMI réduisent la dose intégrale et diminuent les volumes du corps recevant une faible dose. Globalement, le risque d'induction d'un cancer secondaire est plus faible pour les plans de PCMI que pour les plans équivalents en photons avec une réduction de ~36% en utilisant le modèle de dose intégrale et ~50% en utilisant le modèle de dose équivalente à un organe.
Green, Andrew. "Computational techniques for fast Monte Carlo validation of proton therapy treatment plans." Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/computational-techniques-for-fast-monte-carlo-validation-of-proton-therapy-treatment-plans(96ab69f6-9ec3-44e5-ba13-c3021bfa4d59).html.
Full textSarfehnia, Arman. "Water calorimetry-based radiation dosimetry in iridium-192 brachytherapy and proton therapy." Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:8881/R/?func=dbin-jump-full&object_id=92297.
Full textGustafsson, Björn. "Optimization of material in proton-therapy collimators with respect to neutron production." Thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-162510.
Full textZhang, Pengfei, Neng Fan, Jie Shan, Steven E. Schild, Martin Bues, and Wei Liu. "Mixed integer programming with dose-volume constraints in intensity-modulated proton therapy." WILEY, 2017. http://hdl.handle.net/10150/626184.
Full textHandrack, Josefine [Verfasser], and Peter [Akademischer Betreuer] Bachert. "MR-based treatment planning for proton therapy / Josefine Handrack ; Betreuer: Peter Bachert." Heidelberg : Universitätsbibliothek Heidelberg, 2019. http://d-nb.info/1202608086/34.
Full textFenning, Richard. "Novel FFAG gantry and transport line designs for charged particle therapy." Thesis, Brunel University, 2012. http://bura.brunel.ac.uk/handle/2438/6860.
Full textKhellaf, Feriel. "List-mode proton CT reconstruction." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI074.
Full textProton therapy is used for cancer treatment to achieve better dose conformity by exploiting the energy-loss properties of protons. Proton treatment planning systems require knowledge of the stopping-power map of the patient’s anatomy to compute the absorbed dose. In clinical practice, this map is generated through a conversion from X-ray computed tomography (CT) Hounsfield units to proton stopping power relative to water (RSP). This calibration generates uncertainties as photon and proton physics are different, which leads to the use of safety margins and the reduction of dose conformity. In order to reduce uncertainties, proton CT (pCT) was proposed as a planning imaging modality since the reconstructed quantity is directly the RSP. In addition to energy loss, protons also undergo multiple Coulomb scattering (MCS) inducing non-linear paths, thus making the pCT reconstruction problem different from that of X-ray CT. The objective of this thesis is to improve image quality of pCT list-mode reconstruction. The use of a most likely path (MLP) formalism for protons to account for the effects of MCS has improved the spatial resolution in pCT. This formalism assumes a homogeneous medium. The first contribution of this thesis is a study on proton paths in heteregeneous media: the accuracy of the MLP was evaluated against a Monte Carlo generated path in different heterogeneous configurations. Results in terms of spatial, angular, and energy distributions were analyzed to assess the impact on reconstruction. The second contribution is a 2D directional ramp filter used for pCT data reconstruction. An intermediate between a filtered backprojection and a backproject-filter approach was proposed, based on the extension of the usual ramp filter to two dimensions, in order to preserve the MLP spatial information. An expression for a band-limited 2D version of the ramp filter was derived and tested on simulated pCT list-mode data. Then, a comparison of direct reconstruction algorithms in terms of spatial resolution and RSP accuracy was conducted. Five algorithms, including the 2D directional ramp, were tested to reconstruct different simulated phantoms. Results were compared between reconstruction from data acquired using idealized or realistic trackers. Finally, the last contribution is a deconvolution method using the information on the MLP uncertainty in order to improve spatial resolution of pCT images
Van, der Bijl Leendert. "Verification of patient position for proton therapy using portal X-Rays and digitally reconstructed radiographs." Thesis, Link to the online version, 2006. http://hdl.handle.net/10019/1250.
Full textMei, Chang-Sheng. "Accelerated MR Thermometry for High Intensity Focused Ultrasound Therapy." Thesis, Boston College, 2011. http://hdl.handle.net/2345/2425.
Full textThe purpose of this dissertation was to investigate the temporal limit on the ability to measure temperature changes using magnetic resonance imaging (MRI). The limit was examined in experiments using a variety of imaging techniques for MRI-based temperature measurements. We applied these methods for monitoring temperature changes in focused ultrasound (FUS) heating experiments. FUS is an attractive alternative to surgical resection due to its noninvasive character. FUS treatments have been successfully conducted in several clinical applications. MRI and MR thermometry is a natural choice for the guidance of FUS surgeries, given its ability to visualize, monitor, and evaluate the success of treatments. MR thermometry, however, can be a very challenging application, as good resolution is often needed along spatial, temporal as well as temperature axes. These three quantities are strictly related to each other, and normally it is theoretically impossible to simultaneously achieve high resolutions for all axes. In this dissertation, techniques were developed to achieve this at cost of some reduction in spatial coverage. Given that the heated foci produced during thermal therapies are typically much smaller than the anatomy being imaged, much of the imaged field-of-view is not actually being heated and may not require temperature monitoring. By sacrificing some of the in-plane spatial coverage outside the region-of-interest (ROI), significant gains can be obtained in terms of temporal resolution. In the extreme, an ROI can be chosen to be a narrow pencil-like column, and a sampling time for temperature imaging is possible with a temporal resolution of a few milliseconds. MRI-based thermal imaging, which maps temperature-induced changes in the proton resonance frequency, was implemented in two projects. In the first project, three previously described, fast MR imaging techniques were combined in a hybrid method to significantly speed up acquisition compared to the conventional thermometry. Acceleration factors up to 24-fold were obtained, and a temporal resolution as high as 320 milliseconds was achieved. The method was tested in a gel phantom and in bovine muscle samples in FUS heating experiments. The robustness of the hybrid method with respect to the cancellation of the fat signal, which causes temperature errors, and the incorporation of the method into an ultrafast, three dimensional sequence were also investigated. In the second project, a novel MR spectroscopic sequence was investigated for ultrafast one-dimension thermometry. Temperature monitoring was examined during FUS sonications in a gel phantom, SNR performance was evaluated in vivo in a rabbit brain, and feasibility was tested in a human heart. It was shown capable in a FUS heating experiment in a gel phantom of increasing temporal resolution to as high as 53 milliseconds in a three Tesla MRI. The temporal resolution achieved is an order of magnitude faster than any other rapid MR thermometry sequences reported. With this one-dimensional approach, a short sampling time as low as 3.6 milliseconds was theoretically achievable. However, given the SNR that could be achieved and the limited heating induced by FUS in the gel phantom in a few milliseconds, any temperature changes in such a short period were obscured by noise. We have analyzed the conditions whereby a temporal resolution of a few-milliseconds could be obtained
Thesis (PhD) — Boston College, 2011
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Physics
Golnik, Christian. "Treatment verification in proton therapy based on the detection of prompt gamma-rays." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-227948.
Full textHintergrund Strahlentherapie ist eine wichtige Modalität der therapeutischen Behandlung von Krebs. Das Ziel dieser Behandlungsform ist die Applikation einer bestimmten Strahlendosis im Tumorvolumen, wobei umliegendes, gesundes Gewebe nach Möglichkeit geschont werden soll. Bei der Bestrahlung mit einem hochenergetischen Protonenstrahl erlaubt die wohldefinierte Reichweite der Teilchen im Gewebe, in Kombination mit dem steilen, distalen Dosisgradienten, eine hohe Tumor-Konformalität der deponierten Dosis. Verglichen mit der klassisch eingesetzten Behandlung mit Photonen ergibt sich für eine optimiert geplante Behandlung mit Protonen ein deutlich reduziertes Dosisnivau im den Tumor umgebenden Gewebe. Motivation Die tatsächlich applizierte Reichweite der Protonen im Körper, und somit auch die lokal deponierte Dosis, ist stark abhängig vom Bremsvermögen der Materie im Strahlengang der Protonen. Bestrahlungspläne werden mit Hilfe eines Computertomographen (CT) erstellt, wobei die CT Bilder vor der eigentlichen Behandlung aufgenommen werden. Ein CT misst allerdings lediglich den linearen Schwächungskoeffizienten für Photonen in der Einheit Hounsfield Units (HU). Die Ungenauigkeit in der Umrechnung von HU in Protonen-Bremsvermögen ist, unter anderem, eine wesentliche Ursache für die Unsicherheit über die tatsächliche Reichweite der Protonen im Körper des Patienten. Derzeit existiert keine routinemäßige Methode, um die applizierte Dosis oder auch die Protonenreichweite in-vivo und in Echtzeit zu bestimmen. Um das geplante Dosisniveau im Tumorvolumen trotz möglicher Reichweiteunterschiede zu gewährleisten, werden die Bestrahlungspläne für Protonen auf Robustheit optimiert, was zum Einen das geplante Dosisniveau im Tumorvolumen trotz auftretender Reichweiteveränderungen sicherstellen soll, zum Anderen aber auf Kosten der möglichen Dosiseinsparung im gesunden Gewebe geht. Zusammengefasst kann der Hauptvorteil einer Therapie mit Protonen wegen der Unsicherheit über die tatsächlich applizierte Reichweite nicht wirklich realisiert. Eine Methode zur Bestimmung der Reichweite in-vivo und in Echtzeit wäre daher von großem Nutzen, um das theoretische Potential der Protonentherapie auch in der praktisch ausschöpfen zu können. Material und Methoden In dieser Arbeit werden zwei Konzepte zur Messung prompter Gamma-Strahlung behandelt, welche potentiell zur Bestimmung der Reichweite der Protonen im Körper eingesetzt werden können. Prompte Gamma-Strahlung entsteht durch Proton-Atomkern-Kollision auf einer Zeitskala unterhalb von Picosekunden entlang des Strahlweges der Protonen im Gewebe. Aufgrund der prompten Emission ist diese Form der Sekundärstrahlung ein aussichtsreicher Kandidat für eine Bestrahlungs-Verifikation in Echtzeit. Zum Einen wird die Anwendbarkeit von Compton-Kameras anhand eines Prototyps untersucht. Dabei zielt die Messung auf die Rekonstruktion des örtlichen Emissionsprofils der prompten Gammas ab. Zum Zweiten wird eine, im Rahmen dieser Arbeit neu entwickelte Messmethode, das Prompt Gamma-Ray Timing (PGT), vorgestellt und international zum Patent angemeldet. Im Gegensatz zu bereits bekannten Ansätzen, verwendet PGT die endliche Flugzeit der Protonen durch das Gewebe und bestimmt zeitliche Emissionsprofile der prompten Gammas. Ergebnisse Compton Kamera: Die örtliche Emissionsverteilung einer punktförmigen 22-Na Quelle wurde wurde bei einer Photonenenergie von 1.275 MeV nachgewiesen. Dabei konnten sowohl die absolute Quellposition als auch laterale Verschiebungen der Quelle rekonstruiert werden. Da prompte Gamma-Strahlung Emissionsenergien von einigen MeV aufweist, wurde als nächster Schritt ein Bildrekonstruktionstest bei 4.44 MeV durchgeführt. Ein geeignetes Testsetup wurde am Tandetron Beschleuniger am Helmholtz-Zentrum Dresden-Rossendorf, Deutschland, identifiziert, wo eine monoenergetische, punktförmige Emissionverteilung von 4.44 MeV Photonen erzeugt werden konnte. Für die Detektoren des Prototyps wurden zum Einen die örtliche und zeitliche Auflösung sowie die Energieauflösungen untersucht. Zum Anderen wurde die Emissionsverteilung der erzeugten 4.44 MeV Quelle rekonstruiert und die zugehörige Effizienz des Prototyps experimentell bestimmt. PGT: Für das neu vorgeschlagene Messverfahren PGT wurden im Rahmen dieser Arbeit die theoretischen Grundlagen ausgearbeitet und dargestellt. Darauf basierend, wurde ein Monte Carlo (MC) Code entwickelt, welcher die Modellierung von PGT Spektren ermöglicht. Am Protonenstrahl des Kernfysisch Verschneller Institut (KVI), Groningen, Niederlande, wurden zeitaufgelöste Spektren prompter Gammastrahlung aufgenommen und analysiert. Durch einen Vergleich von experimentellen und modellierten Daten konnte die Gültigkeit der vorgelegten theoretischen Überlegungen quantitativ bestätigt werden. Anhand eines hypothetischen Bestrahlungsszenarios wurde gezeigt, dass der statistische Fehler in der Bestimmung der Reichweite mit einer Genauigkeit von 5 mm bei einem Konfidenzniveau von 90 % für einen einzelnen starken Spot 5x10E8 Protonen mit PGT erreichbar ist. Schlussfolgerungen Für den Compton Kamera Prototyp wurde gezeigt, dass eine Bildgebung für Gamma-Energien einiger MeV, wie sie bei prompter Gammastrahlung auftreten, möglich ist. Allerdings erlaubt die prinzipielle Abbildbarkeit noch keine Nutzbarkeit unter therapeutischen Strahlbedingungen nicht. Der wesentliche und in dieser Arbeit nachgewiesene Hinderungsgrund liegt in der niedrigen (gemessenen) Nachweiseffizienz, welche die Anzahl der validen Daten, die für die Bildrekonstruktion genutzt werden können, drastisch einschränkt. PGT basiert, im Gegensatz zur Compton Kamera, auf einem einfachen zeit-spektroskopischen Messaufbau. Die kollimatorfreie Messmethode erlaubt eine gute Nachweiseffizienz und kann somit den statistischen Fehler bei der Reichweitenbestimmung auf ein klinisch relevantes Niveau reduzieren. Die guten Ergebnissen und die ausgeführten Abschätzungen für therapeutische Bedingungen lassen erwarten, dass PGT als Grundlage für eine Bestrahlungsverifiktation in-vivo und in Echtzeit zügig klinisch umgesetzt werden kann
Styczynski, John R. "Assessment of the use of prompt gamma emission for proton therapy range verification." Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/54468.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 69-70).
PURPOSE: Prompt gamma rays emitted from proton-nucleus interactions in tissue present a promising non-invasive, in situ means of monitoring proton beam based radiotherapy. This study investigates the fluence and energy distribution of prompt gamma rays emitted during proton irradiation of phantoms. This information was used to develop a correlation between the measured and calculated gamma emission and the proton beam range, which would allow treatments to more effectively exploit the sharp distal falloff in the dose distributions of protons. METHOD & MATERIALS: A model of a cylindrical Lucite phantom with a monoenergetic proton beam and an annular array of ideal photon tallies arranged orthogonal to the beam was developed using the Monte Carlo code MCNPX 2.6.0. Heterogeneous geometries were studied by inserting metal implants into the Lucite phantom, and simulating a phantom composed of bone and lung equivalent materials and polymethyl methacrylate. RESULTS: Experimental and computational results indicated a correlation between gamma emission and the proton depth-dose profile. Several peaks were evident in the calculated energy spectrum and the 4.44 MeV emission from 12C was the most intense line having any apparent correlation with the depth dose profile. Arbitrary energy binning of 4-5 MeV and 4-8 MeV was performed on the Monte Carlo data; this binned data yielded a distinct emission peak 1cm proximal to the Bragg peak. In all cases in the Lucite phantom the position of the Bragg peak's 80% distal falloff corresponded with the position of the 4-8MeV binned 50% distal falloff. The 4-5MeV binning strategy was successful with the heterogeneous phantom in which the proton beam entered lung and stopped in bone. However, the density disparity between the bone and lung equivalent materials rendered this technique unsuccessful for the heterogeneous phantom in which the beam entered bone and stopped in lung. For this 1.4MeV binning was conducted, assessing the 1.37 MeV characteristic gamma peak of 24Mg, which was only present in the lung slab. CONCLUSIONS: The results are promising and indicate the feasibility of prompt gamma emission detection as a means of characterizing the proton beam range in situ. This study has established the measurement and omputational tools necessary to pursue the development of this technique.
by John R. Styczynski.
S.M.and S.B.
Hough, Jan K. "Assessment of and improvements to a stereophotogrammetric patient positioning system for proton therapy." Master's thesis, University of Cape Town, 1999. http://hdl.handle.net/11427/26784.
Full textBibliography: pages 125-129.
This thesis describes the construction and use of the facemask at the National Accelerator Centre (NAC) as used to both immobilise and position patients for precision proton radiotherapy. The precision achieved using the stereophotogrammetric (SPG) positioning system is measured, and the shortcomings and errors in using the facemask by the SPG system are measured and analysed. The implementation of improvements made to the SPG system is reported upon, and alternative means of both supporting the fiducial markers and immobilising the patient are investigated and evaluated. The accuracy of positioning a facemask using the SPG system is 1.4 mm and of positioning a newly designed frame is 1.6 mm. These measurements were made without using a patient. It is estimated that the total uncertainty of positioning a patient's tumour at the isocentre is 1.6 (1SD) mm using the facemask and it is estimated that the precision using the frame will be less than this value. The largest component of this error (1.39 mm) is due to the error in obtaining the CT scanner co-ordinates. These results are comparable to those obtained by other investigators. The movement of patient bony landmarks within the facemask was measured to be 1.0 ± 0.8 mm. Three main recommendations are that the CT scanner co-ordinating procedure be improved, the SPG computer program be rewritten in parts to achieve greater speed and accuracy, and that the new frame be used. The frame is easier to manufacture than the facemask and allows real time monitoring of the position of the patient's head by the SPG system thus allowing faster throughput of patients and better positioning quality control.
Grefve, Josefine. "Evaluation of margins and plan robustness for proton therapy of unilateral tonsil cancer." Thesis, Umeå universitet, Institutionen för fysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-186403.
Full textNihei, Keiji. "High dose proton beam therapy for stage 1 non-small cell lung cancer." Kyoto University, 2006. http://hdl.handle.net/2433/135872.
Full textCartechini, Giorgio. "A new prompt gamma spectroscopy-based approach for range verification in proton therapy." Doctoral thesis, Università degli studi di Trento, 2023. https://hdl.handle.net/11572/370474.
Full textNguyen, Vo Thu An. "Magnetic polyion complex micelles as therapy and diagnostic agents." Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0138/document.
Full textThis Ph.D. dissertation describes the synthesis of superparamagnetic iron oxide nanoparticles (SPIONs) designed to serve as magnetic resonance imaging (MRI) contrast agents and for heat generation in cellular radiofrequency magnetic field hyperthermia (MFH) treatment. Control over the size and size distribution of the iron oxide nanoparticles (NPs), and thus over their magnetic properties, was achieved using a G1 arborescent copolymer (comb-branched (G0) polystyrene substrate grafted with poly(2-vinylpyridine) side chains, or G0PS-g-P2VP) as a template. Good colloidal stability and biocompatibility of the SPIONs were achieved via the formation of polyion complex (PIC) micelles with a poly(acrylic acid)-block-poly(2-hydroxyethyl acrylate) (PAA-b-PHEA) double-hydrophilic block copolymer