Journal articles on the topic 'Proton exchange membrane'

To see the other types of publications on this topic, follow the link: Proton exchange membrane.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Proton exchange membrane.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

JIANG, ZHONGQING, YUEDONG MENG, ZHONG-JIE JIANG, and YICAI SHI. "PREPARATION OF HIGHLY SULFONATED ULTRA-THIN PROTON-EXCHANGE POLYMER MEMBRANES FOR PROTON EXCHANGE MEMBRANE FUEL CELLS." Surface Review and Letters 16, no. 02 (April 2009): 297–302. http://dx.doi.org/10.1142/s0218625x09012627.

Full text
Abstract:
Sulfonated ultra-thin proton-exchange polymer membrane carrying pyridine groups was made from a plasma polymerization of styrene, 2-vinylpyridine, and trifluoromethanesulfonic acid by after-glow capacitively coupled discharge technique. Pyridine groups tethered to the polymer backbone acts as a medium through the basic nitrogen for transfer of protons between the sulfonic acid groups of proton exchange membrane. It shows that the method using present technology could effectively depress the degradation of monomers during the plasma polymerization. Spectroscopic analyses reveal that the obtained membranes are highly functionalized with proton exchange groups and have higher proton conductivity. Thus, the membranes are expected to be used in direct methanol fuel cells.
APA, Harvard, Vancouver, ISO, and other styles
2

Maizelis, Antonina, Boris Bayrachniy, and Gennady Tul'skiy. "Formation of the organic-inorganic proton exchange membrane." Odes’kyi Politechnichnyi Universytet. Pratsi, no. 2 (August 20, 2016): 76–80. http://dx.doi.org/10.15276/opu.2.49.2016.17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Peterson, Vanessa K., Cormac Corr, Gordon J. Kearley, Roderick Boswell, and Zunbeltz Izaola. "High Water Diffusivity in Low Hydration Plasma-Polymerised Proton Exchange Membranes." Materials Science Forum 654-656 (June 2010): 2871–74. http://dx.doi.org/10.4028/www.scientific.net/msf.654-656.2871.

Full text
Abstract:
This paper compares proton diffusion through plasma-polymerised proton-exchange membranes (PEMs) produced using traditional wet-chemical methods (Nafion®) and those produced using plasma-polymerisation. Using quasielastic neutron scattering and a simple model of proton motion we find the measured diffusion-rate of protons in the plasma-polymerised material and Nafion® is the same (within 1 standard error) even though the plasma-polymerised membrane has 80 % less water than the Nafion®. We attribute this result to the highly cross-linked structure of the plasma-polymerised membrane.
APA, Harvard, Vancouver, ISO, and other styles
4

Cheng, Wang, Zong Qiang Mao, Jing Ming Xu, and Xiao Feng Xie. "Study of Novel Self-Humidifying PEMFC with Nano-TiO2-Based Membrane." Key Engineering Materials 280-283 (February 2007): 899–902. http://dx.doi.org/10.4028/www.scientific.net/kem.280-283.899.

Full text
Abstract:
We propose self-humidifying polymer electrolyte membranes with highly dispersed nanometer-sized Titanium dioxides for proton exchange membrane fuel cells operated with dry H2 and O2. The nanosized TiO2 particles that have hygroscopic property are expected to adsorb the water produced from the cathode reaction and to release the water once the proton exchange membrane needs water. The preparation technology of nano-TiO2 particles in a commercial Nafion 112 membrane via novel in situ sol-gel reactions was developed, resulting in a semitransparent membrane with uniform distribution of TiO2 in the proton exchange membrane. It is found that Proton conductivity increases observably by dispersing 3 wt % nano-TiO2 in the Proton exchange membrane at low humidity condition, and the newly prepared TiO2-PEM improve the self-humidifying performance of Proton exchange membrane fuel cell.
APA, Harvard, Vancouver, ISO, and other styles
5

Zhang, Ya Ping, Ming Zhu Yue, and Yan Chen. "Proton Exchange Membrane Based on Sulfonated Polyimide for Fuel Cells: State-of-the-Art and Recent Developments." Advanced Materials Research 239-242 (May 2011): 3032–38. http://dx.doi.org/10.4028/www.scientific.net/amr.239-242.3032.

Full text
Abstract:
Proton exchange membrane is one of the most important components for proton exchange membrane fuel cells (PEMFCs). The preparation of proton exchange membranes based on sulfonated polyimide (SPI) for PEMFCs in recent years was reviewed, and methods of improving the water stability and proton conductivity of such membranes were highlighted. It was suggested that preparation of novel SPI membranes or organic-inorganic composite SPI membranes should be a reasonable approach to strengthen their combination property.
APA, Harvard, Vancouver, ISO, and other styles
6

Nikinmaa, Mikko, and Bruce L. Tufts. "Regulation of acid and ion transfer across the membrane of nucleated erythrocytes." Canadian Journal of Zoology 67, no. 12 (December 1, 1989): 3039–45. http://dx.doi.org/10.1139/z89-427.

Full text
Abstract:
The major pathways for proton transport across the membrane of nucleated erythrocytes are the passive Jacobs–Stewart cycle and the secondarily active sodium–proton exchange. The relative importance of these two pathways in the control of red cell pH depends on the sodium–proton exchange rate and the rate of the slowest step of passive proton equilibration. In cyclostome red cells, which lack anion exchange, intracellular pH is controlled by the sodium-dependent acid–extrusion mechanism. In unstimulated teleost red cells, the Jacobs–Stewart cycle appears to be the most important pathway for the transport of protons across the membrane. Adrenergic stimulation activates sodium–proton exchange. Sodium–proton exchange is able to increase intracellular pH and decrease extracellular pH because the rate of proton transport via the Jacobs–Stewart cycle is limited by the uncatalysed extracellular dehydration of carbonic acid to carbon dioxide. The turnover rate of the adrenergically activated sodium–proton exchange is influenced by pH and oxygen tension. In amphibian red cells, acidification activates sodium–proton exchange. The exchange may limit the changes in intracellular pH after acid–base disturbances.
APA, Harvard, Vancouver, ISO, and other styles
7

Chandra Kishore, Somasundaram, Suguna Perumal, Raji Atchudan, Muthulakshmi Alagan, Mohammad Ahmad Wadaan, Almohannad Baabbad, and Devaraj Manoj. "Recent Advanced Synthesis Strategies for the Nanomaterial-Modified Proton Exchange Membrane in Fuel Cells." Membranes 13, no. 6 (June 9, 2023): 590. http://dx.doi.org/10.3390/membranes13060590.

Full text
Abstract:
Hydrogen energy is converted to electricity through fuel cells, aided by nanostructured materials. Fuel cell technology is a promising method for utilizing energy sources, ensuring sustainability, and protecting the environment. However, it still faces drawbacks such as high cost, operability, and durability issues. Nanomaterials can address these drawbacks by enhancing catalysts, electrodes, and fuel cell membranes, which play a crucial role in separating hydrogen into protons and electrons. Proton exchange membrane fuel cells (PEMFCs) have gained significant attention in scientific research. The primary objectives are to reduce greenhouse gas emissions, particularly in the automotive industry, and develop cost-effective methods and materials to enhance PEMFC efficiency. We provide a typical yet inclusive review of various types of proton-conducting membranes. In this review article, special focus is given to the distinctive nature of nanomaterial-filled proton-conducting membranes and their essential characteristics, including their structural, dielectric, proton transport, and thermal properties. We provide an overview of the various reported nanomaterials, such as metal oxide, carbon, and polymeric nanomaterials. Additionally, the synthesis methods in situ polymerization, solution casting, electrospinning, and layer-by-layer assembly for proton-conducting membrane preparation were analyzed. In conclusion, the way to implement the desired energy conversion application, such as a fuel cell, using a nanostructured proton-conducting membrane has been demonstrated.
APA, Harvard, Vancouver, ISO, and other styles
8

Khan, Muhammad Imran, Abdallah Shanableh, Shabnam Shahida, Mushtaq Hussain Lashari, Suryyia Manzoor, and Javier Fernandez. "SPEEK and SPPO Blended Membranes for Proton Exchange Membrane Fuel Cells." Membranes 12, no. 3 (February 25, 2022): 263. http://dx.doi.org/10.3390/membranes12030263.

Full text
Abstract:
In fuel cell applications, the proton exchange membrane (PEM) is the major component where the balance among dimensional stability, proton conductivity, and durability is a long-term trail. In this research, a series of blended SPEEK/SPPO membranes were designed by varying the amounts of sulfonated poly(ether ether ketone) (SPEEK) into sulfonated poly(phenylene) oxide (SPPO) for fuel cell application. Fourier transform infrared spectroscopy (FTIR) was used to confirm the successful synthesis of the blended membranes. Morphological features of the fabricated membranes were characterized by using scanning electron microscopy (SEM). Results showed that these membranes exhibited homogeneous structures. The fabricated blended membranes SPEEK/SPPO showed ion exchange capacity (IEC) of 1.23 to 2.0 mmol/g, water uptake (WR) of 22.92 to 64.57% and membrane swelling (MS) of 7.53 to 25.49%. The proton conductivity of these blended membranes was measured at different temperature. The proton conductivity and chemical stability of the prepared membranes were compared with commercial membrane Nafion 117 (Sigma-Aldrich, St. Louis, Missouri, United States) under same experimental conditions. The proton conductivity of the fabricated membranes increased by enhancing the amount of SPPO into the membrane matrix. Moreover, the proton conductivity of the fabricated membranes was investigated as a function of temperature. Results demonstrated that these membranes are good for applications in proton exchange membrane fuel cell (PEMFC).
APA, Harvard, Vancouver, ISO, and other styles
9

Sun, Baoying, Huanqiao Song, Xinping Qiu, and Wentao Zhu. "New Anhydrous Proton Exchange Membrane for Intermediate Temperature Proton Exchange Membrane Fuel Cells." ChemPhysChem 12, no. 6 (April 5, 2011): 1196–201. http://dx.doi.org/10.1002/cphc.201000848.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bébin, Philippe, and Hervé Galiano. "Proton Exchange Membrane Development and Processing for Fuel Cell Application." Materials Science Forum 539-543 (March 2007): 1327–31. http://dx.doi.org/10.4028/www.scientific.net/msf.539-543.1327.

Full text
Abstract:
The development of new proton exchange membranes for PEMFC has to be related to the membrane processing as it can change drastically the final properties of the material. Indeed, for the same material, a membrane prepared by a solvent-casting process has a lower lifetime than an extruded one. The proton conduction of the membrane can also be dependent on the membrane processing, especially when some removable plasticizers are used to perform the membrane extrusion. Some residual porosity, left in the material after removing the plasticizer, is suspected to enhance the proton conduction of the film. Fuel cell experiments have shown that extruded sulfonated polysulfone membrane can give the same performance as a Nafion® reference membrane whereas the proton conductivity of PSUs is twenty times lower than the Nafion® one. Additional improvements of the membrane properties can also be expected by adding some proton conductive fillers to the organic polymer. This approach enhances the proton conductivity of sulfonated polysulfone to values similar to Nafion®. On the other hand, when Nafion® is used as a matrix for the proton conductive fillers, a very significant improvement of fuel cell performance is obtained.
APA, Harvard, Vancouver, ISO, and other styles
11

Klein, Lisa C. "Sol-Gel Process for Proton Exchange Membranes." Key Engineering Materials 391 (October 2008): 159–68. http://dx.doi.org/10.4028/www.scientific.net/kem.391.159.

Full text
Abstract:
The sol-gel process has been used to modify the electrolyte membrane used in proton exchange membrane fuel cells (PEMFC) and direct methanol fuel cells (DMFC). Recent progress is reported in the synthesis of hybrid membranes involving Nafion®. These membranes have been prepared by infiltration and recasting, and contain silicates, phosphosilicates, zirconium phosphosilicates, titanosilicates, or phosphotungstates.
APA, Harvard, Vancouver, ISO, and other styles
12

Pintauro, Peter N. "(Invited) Monopolar and Bipolar Membranes Based on Nanofiber Electrospinning." ECS Meeting Abstracts MA2023-02, no. 39 (December 22, 2023): 1893. http://dx.doi.org/10.1149/ma2023-02391893mtgabs.

Full text
Abstract:
Cation-exchange, anion-exchange, and bipolar membranes play crucial roles in a variety of electrochemical processes and devices, including chloralkali cells, electrodialysis separations for water purification, proton-exchange membrane and hydroxide-exchange membrane (alkaline) fuel cells, redox flow batteries, and processes for direct air capture of CO2. The incorporation of polymeric nanofibers into such membranes provides an attractive and tunable method of creating materials with new nano-morphologies and highly desirable properties. The impregnation of an ionomer solution into a pre-formed nonwoven porous mat of electrospun polymer fibers is a well-known method of making reinforced proton-exchange membranes. The use of simultaneous dual-fiber electrospinning or the electrospinning of polymer blends can be used to intermix/incorporate/co-locate dissimilar and incompatible polymers on the nanoscale. Although less studied in the literature, these methods offer many interesting possibilities for new membrane structures with targeted and unique transport and mechanical properties. In this review talk, the use of dual fiber and blended polymer fiber electrospinning for membrane fabrication will be presented for the following: (1) Nanofiber reinforced cation (proton) exchange membranes, (2) Electrospun NafionTM/PVDF dual fiber and single-fiber membranes for H2/Br2 redox flow batteries, (3) Composite anion exchange membranes, and (4) Bipolar membranes with a 3D nanofiber junction. Materials and methods for membrane fabrication will be described and the properties of the membranes will be discussed.
APA, Harvard, Vancouver, ISO, and other styles
13

Shyuan, Loh Kee, Eng Lee Tan, Wan Ramli Wan Daud, and Abu Bakar Mohamad. "Synthesis and Characterization of Sulfonated Polybenzimidazole (SPBI) Copolymer for Polymer Exchange Membrane Fuel Cell." Advanced Materials Research 860-863 (December 2013): 803–6. http://dx.doi.org/10.4028/www.scientific.net/amr.860-863.803.

Full text
Abstract:
A diverse sulfonated polybenzimidazole copolymer (SPBI) as proton exchange membrane was synthesiszed via one-step high temperature polymerization method with 3,3-diaminobenzidine (DABD), 5-sulfoisophthalic acid (SIPA), 4,4-sulfonyldibenzoic acid (SDBA) and biphenyl-4,4-dicarboxylic acid (BDCA). The SPBI membrane was prepared through a direct hot-casting and in situ phase inversion technique. Characterization tests were carried out on the membranes including surface morphology, distribution of elements on the membrane, determination of functional groups, thermal stability, ion exchange capacity, water uptake rate and proton conductivity. The as-synthesized SPBI membrane displayed a smooth surface via scanning electron microscopy (SEM) analysis which is thermally stable up to 443 °C. The SPBI membrane showed higher water uptake rate (WUR) and proton conductivity though it had lower ion exchange capacity (IEC) value compared to recast Nafion membrane. The proton conductivity of the SPBI membrane with IEC of 0.60 mmol/g was 4.50 × 10-2 S/cm at 90 °C. This study shows that the SPBI membrane has great potential in polymer exchange membrane fuel cell (PEMFC) applications.
APA, Harvard, Vancouver, ISO, and other styles
14

Wafiroh, Siti, Suyanto Suyanto, and Yuliana Yuliana. "PEMBUATAN DAN KARAKTERISASI MEMBRAN KOMPOSIT KITOSAN-SODIUM ALGINAT TERFOSFORILASI SEBAGAI PROTON EXCHANGE MEMBRANE FUEL CELL (PEMFC)." Jurnal Kimia Riset 1, no. 1 (June 1, 2016): 14. http://dx.doi.org/10.20473/jkr.v1i1.2436.

Full text
Abstract:
AbstrakDi era globalisasi ini, kebutuhan bahan bakar fosil semakin meningkat dan ketersediannya semakin menipis. Oleh karena itu, dibutuhkan bahan bakar alternatif seperti Proton Exchange Membrane Fuel Cell (PEMFC). Tujuan dari penelitian ini adalah membuat dan mengkarakterisasi membran komposit kitosan-sodium alginat dari rumput laut coklat (Sargassum sp.) terfosforilasi sebagai Proton Exchange Membrane Fuel Cell (PEMFC). PEM dibuat dengan 4 variasi perbandingan konsentrasi antara kitosan dengan sodium alginat 8:0, 8:1, 8:2, dan 8:4 (b/b). Membran komposit kitosan-sodium alginat difosforilasi dengan STPP 2N. Karakterisasi PEM meliputi: uji tarik, swelling air, kapasitas penukar ion, FTIR, SEM, permeabilitas metanol, dan konduktivitas proton. Berdasarkan hasil analisis tersebut, membran yang optimal adalah perbandingan 8:1 (b/b) dengan nilai modulus young sebesar 0,0901 kN/cm2, swelling air sebesar 19,14 %, permeabilitas metanol sebesar 72,7 x 10-7, dan konduktivitas proton sebesar 4,7 x 10-5 S/cm. Membran komposit kitosan-sodium alginat terfosforilasi memiliki kemampuan yang cukup baik untuk bisa diaplikasikan sebagai membran polimer elektrolit dalam PEMFC. Kata kunci: kitosan, sodium alginat, terfosforilasi, PEMFC AbstractIn this globalization era, the needs of fossil fuel certainly increases, but its providence decreases. Therefore, we need alternative fuels such as Proton Exchange Membrane Fuel Cell (PEMFC). The purpose of this study is preparationand characterization of phosphorylated chitosan-sodium alginate composite membrane from brown seaweed (Sargassum sp.) as Proton Exchange Membrane Fuel Cell (PEMFC). PEM is produced with 4 variations of concentration ratio between chitosan and sodium alginate 8:0, 8:1, 8:2, and 8:4 (w/w). Chitosan-sodium alginate composite membrane phosphorylated with 2 N STPP. The characterization of PEM include: tensile test, water swelling, ion exchange capacity, FTIR, SEM, methanol permeability, and proton conductivity. Based on the analysis result, the optimal membrane is ratio of 8:1 (w/w) with the value of Young’s modulus about 0.0901 kN/cm2, water swelling at 19.14%, methanol permeability about 72.7 x 10-7, and proton conductivity about 4.7 x 10-5 S/cm. The phosphorylated chitosan-sodium alginate composite membrane has good potentials for the application of the polymer electrolyte membrane in PEMFC. Keywords: chitosan, sodium alginate, phosphorylated, PEMFC
APA, Harvard, Vancouver, ISO, and other styles
15

Mungkalasiri, W., and J. Mungkalasiri. "Simulation of Biomass Gasification with Proton Exchange Membrane Fuel Cell System." International Journal of Chemical Engineering and Applications 9, no. 6 (December 2018): 189–93. http://dx.doi.org/10.18178/ijcea.2018.9.6.725.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Wafiroh, Siti, Abdulloh Abdulloh, and Alfa Akustia Widati. "Phosphorylated Zeolite-A/Chitosan Composites as Proton Exchange Membrane Fuel Cell." Chemistry & Chemical Technology 12, no. 2 (June 25, 2018): 229–35. http://dx.doi.org/10.23939/chcht12.02.229.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Shang, Zhihao, Ryszard Wycisk, and Peter Pintauro. "Electrospun Composite Proton-Exchange and Anion-Exchange Membranes for Fuel Cells." Energies 14, no. 20 (October 15, 2021): 6709. http://dx.doi.org/10.3390/en14206709.

Full text
Abstract:
A fuel cell is an electrochemical device that converts the chemical energy of a fuel and oxidant into electricity. Cation-exchange and anion-exchange membranes play an important role in hydrogen fed proton-exchange membrane (PEM) and anion-exchange membrane (AEM) fuel cells, respectively. Over the past 10 years, there has been growing interest in using nanofiber electrospinning to fabricate fuel cell PEMs and AEMs with improved properties, e.g., a high ion conductivity with low in-plane water swelling and good mechanical strength under wet and dry conditions. Electrospinning is used to create either reinforcing scaffolds that can be pore-filled with an ionomer or precursor mats of interwoven ionomer and reinforcing polymers, which after suitable processing (densification) form a functional membrane. In this review paper, methods of nanofiber composite PEMs and AEMs fabrication are reviewed and the properties of these membranes are discussed and contrasted with the properties of fuel cell membranes prepared using conventional methods. The information and discussions contained herein are intended to provide inspiration for the design of high-performance next-generation fuel cell ion-exchange membranes.
APA, Harvard, Vancouver, ISO, and other styles
18

Qu, Erli, Xiaofeng Hao, Min Xiao, Dongmei Han, Sheng Huang, Zhiheng Huang, Shuanjin Wang, and Yuezhong Meng. "Proton exchange membranes for high temperature proton exchange membrane fuel cells: Challenges and perspectives." Journal of Power Sources 533 (June 2022): 231386. http://dx.doi.org/10.1016/j.jpowsour.2022.231386.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Rosli, Nur Adiera Hanna, Kee Shyuan Loh, Wai Yin Wong, Tian Khoon Lee, and Azizan Ahmad. "Hybrid Composite Membrane of Phosphorylated Chitosan/Poly (Vinyl Alcohol)/Silica as a Proton Exchange Membrane." Membranes 11, no. 9 (August 31, 2021): 675. http://dx.doi.org/10.3390/membranes11090675.

Full text
Abstract:
Chitosan is one of the natural biopolymers that has been studied as an alternative material to replace Nafion membranes as proton change membranes. Nevertheless, unmodified chitosan membranes have limitations including low proton conductivity and mechanical stability. The aim of this work is to study the effect of modifying chitosan through polymer blending with different compositions and the addition of inorganic filler on the microstructure and physical properties of N-methylene phosphonic chitosan/poly (vinyl alcohol) (NMPC/PVA) composite membranes. In this work, the NMPC biopolymer and PVA polymer are used as host polymers to produce NMPC/PVA composite membranes with different compositions (30–70% NMPC content). Increasing NMPC content in the membranes increases their proton conductivity, and as NMPC/PVA-50 composite membrane demonstrates the highest conductivity (8.76 × 10−5 S cm−1 at room temperature), it is chosen to be the base membrane for modification by adding hygroscopic silicon dioxide (SiO2) filler into its membrane matrix. The loading of SiO2 filler is varied (0.5–10 wt.%) to study the influence of filler concentration on temperature-dependent proton conductivity of membranes. NMPC/PVA-SiO2 (4 wt.%) exhibits the highest proton conductivity of 5.08 × 10−4 S cm−1 at 100 °C. In conclusion, the study shows that chitosan can be modified to produce proton exchange membranes that demonstrate enhanced properties and performance with the addition of PVA and SiO2.
APA, Harvard, Vancouver, ISO, and other styles
20

Vishnyakov, V. M. "Proton exchange membrane fuel cells." Vacuum 80, no. 10 (August 2006): 1053–65. http://dx.doi.org/10.1016/j.vacuum.2006.03.029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Ralph, T. R. "Proton Exchange Membrane Fuel Cells." Platinum Metals Review 41, no. 3 (July 1, 1997): 102–13. http://dx.doi.org/10.1595/003214097x413102113.

Full text
Abstract:
Proton exchange membrane fuel cells operating on hydrogen/air are being considered as high efficiency, low pollution power generators for stationary and transportation applications. There have been many successful demonstrations of this technology in recent years. However, to penetrate these markets the cost of the fuel cell stack must be reduced. This report details the progress made on reductions in the stack cost by lowered platinum catalyst loadings in the latest stack designs, the development of lower cost membrane electrolytes, the design of alternative bipolar flow field plates, and the introduction of mass production technology. Despite such advances, there is still a need for further reductions in the stack cost, through improvements in the performance of the membrane electrode assembly. However, improved stack performance must be demonstrated not only with pure hydrogen fuel but also, more particularly, with reformate fuel, where tolerance to poisoning by carbon monoxide and carbon dioxide needs to be improved. Advances that are required in the ancillary sub-systems are also briefly considered here.
APA, Harvard, Vancouver, ISO, and other styles
22

Sun, Baoying, Huanqiao Song, Xinping Qiu, and Wentao Zhu. "Corrigendum: New Anhydrous Proton Exchange Membrane for Intermediate Temperature Proton Exchange Membrane Fuel Cells." ChemPhysChem 12, no. 13 (September 6, 2011): 2366. http://dx.doi.org/10.1002/cphc.201190067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Septiawan, Muhammad Ridwan, Dian Permana, Sitti Hadijah Sabarwati, La Ode Ahmad, and La Ode Ahmad Nur Ramadhan. "Functionalization of Chitosan with Maleic Anhydride for Proton Exchange Membrane." Indonesian Journal of Chemistry 18, no. 2 (May 30, 2018): 313. http://dx.doi.org/10.22146/ijc.33141.

Full text
Abstract:
Chitosan was modified by maleic anhydride, and it was then functionalized using heterogeneous and blending method to obtain the membrane. The results of the reaction between chitosan with maleic anhydride were signed by the new peak appears around 1475 cm-1 which attributed to C=C bending of alkene. The new peak also appears at 1590 cm-1 which attributed to N-H bending of amide. Chitosan-maleic anhydride membranes show microstructure of chitosan membrane with high porous density and rigidity while chitosan-maleic anhydride membranes have clusters. In addition, the thermal tenacity of membranes reached 500 °C. Modified membrane by heterogeneous and blending method have higher water uptake, ion exchange capacity, and proton conductivity than chitosan membrane. Moreover, the blending method is much more effective than the heterogeneous method that can be exhibited from ion exchange capacity and proton conductivity values of 1.08–6.38 meq g-1 and 1x10-3–1x10-2 S cm-1, 0.92–2.27 meq g-1 and 1.53x10-4–3.04x10-3 S cm-1, respectively. The results imply that modification of chitosan membrane with the addition of maleic anhydride using heterogeneous and blending method can be applied to proton exchange membrane.
APA, Harvard, Vancouver, ISO, and other styles
24

Min, Ting, Ruiyuan Zhang, Li Chen, and Qiang Zhou. "Reactive Transport Processes in Proton Exchange Membrane Fuel Cells." Encyclopedia 3, no. 2 (June 19, 2023): 746–58. http://dx.doi.org/10.3390/encyclopedia3020054.

Full text
Abstract:
Proton exchange membrane fuel cells are devices that directly convert chemical energy to electricity. A hydrogen oxidation reaction takes place on the anode side, generating protons and electrons. In the cathode, oxygen reduction reaction involving oxygen, proton and electron occurs, producing water and heat. The water content in PEMFCs should be maintained at a reasonable amount to avoid water flooding or membrane dehydration. The thermal management and water management of PEMFCs are important for an efficient and stable operation of PEMFCs. Inside the multiscale spaces of PEMFCs, multiphase flow with a phase change, heat and mass transfer, proton and electron conduction, and electrochemical reaction simultaneously take place, which play important roles in the performance, lifetime and cost of PEMFCs. These processes should be well understood for better designing PEMFCs and improving the thermal management and water management.
APA, Harvard, Vancouver, ISO, and other styles
25

Gao, Yushan, Zhidan Zhang, Shuangling Zhong, and Reza Daneshfar. "Preparation and Application of Aromatic Polymer Proton Exchange Membrane with Low-Sulfonation Degree." International Journal of Chemical Engineering 2020 (October 14, 2020): 1–9. http://dx.doi.org/10.1155/2020/8834471.

Full text
Abstract:
4,4′-Dichlorodiphenylsulfone-3,3′-disulfonic acid (disodium) salt and 4,4′-difluorodiphenylsulfone were used as sulfonated monomer. 4,4′-Fluorophenyl sulfones were used as the nonsulfonated monomer. 4,4′-Dihydroxy diphenyl ether or 4,4′-thiodibenzenethiol was used as the comonomer. The sulfonated poly (aryl ether sulfone) (SPES) and sulfonated poly (arylene thioether sulfone) (SPTES) with sulfonation degree of 30% and 50% were successfully prepared by nucleophilic polycondensation. Two kinds of aromatic polymer proton exchange membranes were prepared by using sulfonated poly phthalazinone ether ketone (SPPEK) material and fluidization method. The performance of the prepared aromatic polymer proton exchange membrane was researched by the micromorphology, ion exchange capacity, water absorption and swelling rate, oxidation stability, tensile properties, and proton conductivity. Experimental results show that there is no agglomeration in the prepared aromatic polymer proton exchange membrane. The ion exchange capacity is 0.76–1.15 mmol/g. The water absorption and swelling rate increase with the increase of sulfonation degree. The sulfonated poly (aryl ether sulfone) membrane shows better oxidation stability than sulfonated poly (aryl sulfide sulfone). They have good mechanical stability. The prepared aromatic polymer proton exchange membrane with low sulfonation degree has good performance, which can be widely used in portable power equipment, electric vehicles, fixed power stations, and other new energy fields.
APA, Harvard, Vancouver, ISO, and other styles
26

Rokitskaya, Tatyana I., Alexander M. Arutyunyan, Ljudmila S. Khailova, Alisa D. Kataeva, Alexander M. Firsov, Elena A. Kotova, and Yuri N. Antonenko. "Usnic Acid-Mediated Exchange of Protons for Divalent Metal Cations across Lipid Membranes: Relevance to Mitochondrial Uncoupling." International Journal of Molecular Sciences 23, no. 24 (December 19, 2022): 16203. http://dx.doi.org/10.3390/ijms232416203.

Full text
Abstract:
Usnic acid (UA), a unique lichen metabolite, is a protonophoric uncoupler of oxidative phosphorylation, widely known as a weight-loss dietary supplement. In contrast to conventional proton-shuttling mitochondrial uncouplers, UA was found to carry protons across lipid membranes via the induction of an electrogenic proton exchange for calcium or magnesium cations. Here, we evaluated the ability of various divalent metal cations to stimulate a proton transport through both planar and vesicular bilayer lipid membranes by measuring the transmembrane electrical current and fluorescence-detected pH gradient dissipation in pyranine-loaded liposomes, respectively. Thus, we obtained the following selectivity series of calcium, magnesium, zinc, manganese and copper cations: Zn2+ > Mn2+ > Mg2+ > Ca2+ >> Cu2+. Remarkably, Cu2+ appeared to suppress the UA-mediated proton transport in both lipid membrane systems. The data on the divalent metal cation/proton exchange were supported by circular dichroism spectroscopy of UA in the presence of the corresponding cations.
APA, Harvard, Vancouver, ISO, and other styles
27

Xiao, Yiming, Haoran Chen, Ranxin Sun, Lei Zhang, Jun Xiang, Penggao Cheng, Huaiyuan Han, Songbo Wang, and Na Tang. "Poly(ionic liquid)/OPBI Composite Membrane with Excellent Chemical Stability for High-Temperature Proton Exchange Membrane." Polymers 15, no. 15 (July 27, 2023): 3197. http://dx.doi.org/10.3390/polym15153197.

Full text
Abstract:
Despite the outstanding proton conductivity of phosphoric acid (PA)-doped polybenzimidazole (PBI) membranes as high-temperature proton exchange membranes (HT-PEMs), chemical stability is a critical issue for the operation life of PEM fuel cells (PEMFCs). Herein, we introduced polymerized [HVIM]H2PO4 ionic liquids (PIL) into an OPBI membrane to accelerate proton transfer and enhance the chemical stability of the membrane. Based on the regulation of the intrinsic viscosity of PIL, the entanglement between PIL chains and OPBI chains is enhanced to prevent the loss of PIL and the oxidative degradation of membrane materials. The PIL/OPBI membrane with the intrinsic viscosity of 2.34 dL·g−1 (2.34-PIL/OPBI) exhibited the highest proton conductivity of 113.9 mS·cm−1 at 180 °C, which is 3.5 times that of the original OPBI membrane. The 2.34-PIL/OPBI membrane exhibited the highest remaining weight of 92.1% under harsh conditions (3 wt% H2O2; 4 ppm Fe2+ at 80 °C) for 96 h, and a much lower attenuation amplitude than the OPBI did in mechanical strength and proton conductivity performance. Our present work demonstrates a simple and effective method for blending PIL with OPBI to enhance the chemical durability of the PA-PBI membranes as HT-PEMs.
APA, Harvard, Vancouver, ISO, and other styles
28

Mugtasimova, Kamila R., Alexey P. Melnikov, Elena A. Galitskaya, Ivan A. Ryzhkin, Dimitri A. Ivanov, and Vitaly V. Sinitsyn. "Effect of Annealing on Proton Conductivity of Aquivion-Like Proton-Exchange Membrane." Key Engineering Materials 869 (October 2020): 367–74. http://dx.doi.org/10.4028/www.scientific.net/kem.869.367.

Full text
Abstract:
Proton-conducting membranes were fabricated from a new short-side chain ionomer Inion (Russian analogue of Aquivion) by solution casting method. A series of temperature treatment experiments was conducted to show that annealing of Inion membranes at the temperature range from 160 °C to 170 °C leads to a significant increase of specific proton conductivity to values even higher than those of commercial membrane Nafion NR212. An explanation of this fact can be given by considering the membranes’ proton transport mechanism and water behavior models in nanopores. Matching the proton conductivity mechanism of the membranes, which is realized in nanostructured channels with the diameter of about several nanometers according to the Grotthuss proton hopping mechanism, and the model of water and ice states in nanopores leads to the comprehensive understanding for the further optimization of the membranes to achieve high transport characteristic. For example, it can be improved by increasing the number of side-chain branches of the polymer.
APA, Harvard, Vancouver, ISO, and other styles
29

Sun, Zhe, Hong Sun, Yu Lan Tang, Jia Ji Zuo, and Yu Hou Wu. "Proton Transfer in Proton Exchange Membrane Based on RDF." Advanced Materials Research 295-297 (July 2011): 1742–46. http://dx.doi.org/10.4028/www.scientific.net/amr.295-297.1742.

Full text
Abstract:
PEM fuel cell is the most promising application as an automotive power. Proton transfer in PEM is one of important factors to understand the performance of PEM fuel cell. In this paper, the proton transfer mechanisms are analyzed by the molecular simulation based on the basic principle of molecular dynamics. Effects of water content in the proton exchange membrane and cell temperature on the proton transfer in the membrane are studied by the radial distribution function (RDF). Results show that proton transfers in the Nafion polymer by water bridges between two sulfonic groups of adjacent side chains. There are more water bridges supporting proton transfer with the increase of water content in membrane. The increase of cell temperature speeds up the form and break of O-H bond, which promotes the proton transfer. The research results are very helpful to understanding the proton transfer mechanism in proton exchange membrane and promoting the applications of PEM fuel cell.
APA, Harvard, Vancouver, ISO, and other styles
30

Ahmed, Saad, Tasleem Arshad, Amir Zada, Annum Afzal, Muhammad Khan, Amjad Hussain, Muhammad Hassan, Muhammad Ali, and Shiai Xu. "Preparation and Characterization of a Novel Sulfonated Titanium Oxide Incorporated Chitosan Nanocomposite Membranes for Fuel Cell Application." Membranes 11, no. 6 (June 17, 2021): 450. http://dx.doi.org/10.3390/membranes11060450.

Full text
Abstract:
In this study, nano-TiO2 sulfonated with 1,3-propane sultone (STiO2) was incorporated into the chitosan (CS) matrix for the preparation of CS/STiO2 nanocomposite membranes for fuel cell applications. The grafting of sulfonic acid (–SO3H) groups was confirmed by Fourier transform infrared spectroscopy, thermogravimetric analysis and energy-dispersive X-ray spectroscopy. The physicochemical properties of these prepared membranes, such as water uptake, swelling ratio, thermal and mechanical stability, ion exchange capacity and proton conductivity, were determined. The proton conducting groups on the surface of nano-TiO2 can form continuous proton conducting pathways along the CS/STiO2 interface and thus improve the proton conductivity of CS/STiO2 nanocomposite membranes. The CS/STiO2 nanocomposite membrane with 5 wt% of sulfonated TiO2 showed a proton conductivity (0.035 S·cm−1) equal to that of commercial Nafion 117 membrane (0.033 S·cm−1). The thermal and mechanical stability of the nanocomposite membranes were improved because the interfacial interaction between the -SO3H group of TiO2 and the –NH2 group of CS can restrict the mobility of CS chains to enhance the thermal and mechanical stability of the nanocomposite membranes. These CS/STiO2 nanocomposite membranes have promising applications in proton exchange membrane fuel cells.
APA, Harvard, Vancouver, ISO, and other styles
31

Ling, H. H., N. Misdan, F. Mustafa, N. H. H. Hairom, S. H. Nasir, J. Jaafar, and N. Yusof. "Triptycene copolymers as proton exchange membrane for fuel cell - A topical review." Malaysian Journal of Fundamental and Applied Sciences 17, no. 4 (August 31, 2021): 321–31. http://dx.doi.org/10.11113/mjfas.v17n4.1492.

Full text
Abstract:
In view of the pressing need for alternative clean energy source to displace the current dependence on fossil fuel, proton exchange membrane fuel cell (PEMFC) technology have received renewed research and development interest in the past decade. The electrolyte, which is the proton exchange membrane, is a critical component of the PEMFC and is specifically targeted for research efforts because of its high commercial cost that effectively hindered the widespread usage and competitiveness of the PEMFC technology. Much effort has been focused over the last five years towards the development of novel, durable, highly effective, commercially viable, and low-cost co-polymers as alternative for the expensive Nafion® proton exchange membrane, which is the current industry standard. Our primary review efforts will be directed upon the reported researches of alternative proton exchange membrane co-polymers which involved Triptycene derivatives. Triptycene derivatives, which contain three benzene rings in a three-dimensional non-compliant paddlewheel configuration, are attractive building blocks for the synthesis of proton exchange membranes because it increases the free volume in the polymer. The co-polymers considered in this review are based on hydrocarbon molecular structure, with Triptycene involved as a performance enhancer. Detailed herein are the development and current state of these co-polymers and their performance as alternative fuel cell electrolyte.
APA, Harvard, Vancouver, ISO, and other styles
32

NIKINMAA, MIKKO, KIRSTI TIIHONEN, and MARITA PAAJASTE. "Adrenergic Control of Red Cell pH in Salmonid Fish: Roles of the Sodium/Proton Exchange, Jacobs-Stewart Cycle and Membrane Potential." Journal of Experimental Biology 154, no. 1 (November 1, 1990): 257–71. http://dx.doi.org/10.1242/jeb.154.1.257.

Full text
Abstract:
We investigated the mechanisms by which adrenergic activation of sodium/proton exchange reduces the pH gradient across the membrane of rainbow trout red cells. In untreated cells, adrenergic stimulation caused a significant increase in the proton distribution ratio ([H+]e/[H+]i) across the red cell membrane. The increase in the proton distribution ratio caused by adrenergic stimulation was inhibited by the protonophore 2,4-dinitrophenol (2,4-DNP). Thus, sodium/proton exchange displaces protons from electrochemical equilibrium. Active regulation of intracellular pH by sodium/proton exchange is possible, because the extracellular dehydration of carbonic acid to carbon dioxide is uncatalyzed. The increase in proton distribution ratio caused by adrenergic stimulation was inhibited in red cell suspensions to which extracellular carbonic anhydrase had been added before stimulation. In contrast, inhibition of intracellular carbonic anhydrase markedly increased the pH changes induced by adrenergic stimulation, suggesting that the net direction of the intracellular hydration/dehydration reaction may markedly affect the intracellular pH changes. Membrane potential changes are not a necessary component of the adrenergic response. The increases in red cell volume and sodium and chloride concentrations induced by adrenergic stimulation were unaffected in cells ‘voltage-clamped’ by valinomycin.
APA, Harvard, Vancouver, ISO, and other styles
33

Heo, Pilwon, Mijeong Kim, Hansol Ko, Sang Yong Nam, and Kihyun Kim. "Self-Humidifying Membrane for High-Performance Fuel Cells Operating at Harsh Conditions: Heterojunction of Proton and Anion Exchange Membranes Composed of Acceptor-Doped SnP2O7 Composites." Membranes 11, no. 10 (October 11, 2021): 776. http://dx.doi.org/10.3390/membranes11100776.

Full text
Abstract:
Here we suggest a simple and novel method for the preparation of a high-performance self-humidifying fuel cell membrane operating at high temperature (>100 °C) and low humidity conditions (<30% RH). A self-humidifying membrane was effectively prepared by laminating together proton and anion exchange membranes composed of acceptor-doped SnP2O7 composites, Sn0.9In0.1H0.1P2O7/Sn0.92Sb0.08(OH)0.08P2O7. At the operating temperature of 100 °C, the electrochemical performances of the membrane electrode assembly (MEA) with this heterojunction membrane at 3.5% RH were better than or comparable to those of each MEA with only the proton or anion exchange membranes at 50% RH or higher.
APA, Harvard, Vancouver, ISO, and other styles
34

Valle, Karine, Franck Pereira, Frederic Rambaud, Philippe Belleville, Christel Laberty, and Clément Sanchez. "Hybrid Membranes for Proton Exchange Fuel Cell." Advances in Science and Technology 72 (October 2010): 265–70. http://dx.doi.org/10.4028/www.scientific.net/ast.72.265.

Full text
Abstract:
Fuel cell technology has merged in recent years as a keystone for future energy supply. The proton exchange membrane fuel cell (PEMFC) is one of the most promising projects of this energy technology program; the PEMFC is made of a conducting polymer that usually operates at temperatures in the range 20-80°C. In order to reach high energy consumption application like transportation, the using temperatures need to be increased above 100°C. Sol-gel organic/inorganic hybrids have been evaluated as materials for membranes to full file the high temperature using requirement. These new materials for membrane need to retain water content and therefore proton conductivity property with using temperature and time. The membranes also need to be chemical-resistant to strong acidic conditions and to keep their mechanical properties regarding stacking requirements. In order to! answer all these specifications, the proposed hybrid membranes are based on nanoporous inorganic phase embedded in an organic polymer in which chemical grafting and conductivity network microstructure are optimized to preserve both water-uptake and proton conductivity at higher temperatures. Such very promising results on these new hybrids are presented and discussed regarding electrochemical properties/microstructure
APA, Harvard, Vancouver, ISO, and other styles
35

Otaibi, Ahmed Al, Mallikarjunagouda B. Patil, Shwetarani B. Rajamani, Shridhar N. Mathad, Arun Y. Patil, M. K. Amshumali, Jilani Purusottapatnam Shaik, Abdullah M. Asiri, and Anish Khan. "Development and Testing of Zinc Oxide Embedded Sulfonated Poly (Vinyl Alcohol) Nanocomposite Membranes for Fuel Cells." Crystals 12, no. 12 (December 1, 2022): 1739. http://dx.doi.org/10.3390/cryst12121739.

Full text
Abstract:
The sol-gel technique was adopted to synthesize the zinc oxide (ZnO) nanoparticles. Nano-sized ZnO particles are embedded in-situ to the poly(vinyl alcohol) (PVA) matrix to form the nanocomposite polymeric membranes. The nanocomposite membranes were fabricated by varying concentration of ZnO nanoparticles of 2.5, 5, and 10 wt.% in the base PVA membrane matrix. The membranes were crosslinked using tetraethyl orthosilicate (TEOS) followed by hydrolysis and co-condensation. Immersion in a 2 molar sulphuric acid (H2SO4) bath produced sulfonated membranes. The membranes were characterized using Fourier transform infrared (FTIR) and scanning electron microscopy (SEM). The fabricated nano-composite membranes are being evaluated for proton exchange membrane fuel cell research (PEMFC). The computed test results demonstrate that increasing the concentration of ZnO in the membrane increased the ionic exchange capacity and proton conductivity efficiency of the nano-composite membranes. The incorporation of a quantum quantity of ZnO particles in the membrane improved the presentation in terms of proton conductivity characteristics. Membranes demonstrated excellent proton conductivity (10−2 S cm−1 range) while consuming less hydrogen gas. The highest measured proton conductivity is observed for 10 wt.% ZnO embedded PVA membrane and the value is 15.321 × 10−2 S cm−1 for 100% RH. The combination of ZnO and PVA nanocomposite membrane is a novel, next-generation eco-friendly method that is economical and convenient for large-scale commercial production in fuel cell applications.
APA, Harvard, Vancouver, ISO, and other styles
36

Jiang, Wei, Ke Song, Bailin Zheng, Yongchuan Xu, and Ruoshi Fang. "Study on Fast Cold Start-Up Method of Proton Exchange Membrane Fuel Cell Based on Electric Heating Technology." Energies 13, no. 17 (August 28, 2020): 4456. http://dx.doi.org/10.3390/en13174456.

Full text
Abstract:
In order to realize the low temperature and rapid cold start-up of a proton exchange membrane fuel cell stack, a dynamic model containing 40 single proton exchange membrane fuel cells is established to estimate the melting time of the proton exchange membrane fuel cell stack as well as to analyze the melting process of the ice by using the obtained liquid–solid boundary. The methods of proton exchange membrane electric heating and electrothermal film heating are utilized to achieve cold start-up of the proton exchange membrane fuel cell (PEMFC). The fluid simulation software fluent is used to simulate and analyze the process of melting ice. The solidification and melting model and multi-phase flow model are introduced. The pressure-implicit with splitting of operators algorithm is also adopted. The results show that both the proton exchange membrane electric heating technology and the electrothermal film heating method can achieve rapid cold start-up. The interior ice of the proton exchange membrane fuel cell stack melts first, while the first and 40th pieces melt afterwards. The ice melting time of the proton exchange membrane fuel cell stack is 32.5 s and 36.5 s with the two methods, respectively. In the end, the effect of different electrothermal film structures on cold start-up performance is studied, and three types of pore diameter electrothermal films are established. It is found that the electrothermal film with small holes melts completely first, and the electrothermal film with large holes melts completely last.
APA, Harvard, Vancouver, ISO, and other styles
37

Kim, Ae, Mohanraj Vinothkannan, Kyu Lee, Ji Chu, Sumg Ryu, Hwan Kim, Jae-Young Lee, Hong-Ki Lee, and Dong Yoo. "Ameliorated Performance of Sulfonated Poly(Arylene Ether Sulfone) Block Copolymers with Increased Hydrophilic Oligomer Ratio in Proton-Exchange Membrane Fuel Cells Operating at 80% Relative Humidity." Polymers 12, no. 9 (August 20, 2020): 1871. http://dx.doi.org/10.3390/polym12091871.

Full text
Abstract:
We designed and synthesized a series of sulfonated poly(arylene ether sulfone) (SPES) with different hydrophilic or hydrophobic oligomer ratios using poly-condensation strategy. Afterward, we fabricated the corresponding membranes via a solution-casting approach. We verified the SPES membrane chemical structure using nuclear magnetic resonance (1H NMR) and confirmed the resulting oligomer ratio. Field-emission scanning electron microscope (FE-SEM) and atomic force microscope (AFM) results revealed that we effectively attained phase separation of the SPES membrane along with an increased hydrophilic oligomer ratio. Thermal stability, glass transition temperature (Tg) and membrane elongation increased with the ratio of hydrophilic oligomers. SPES membranes with higher hydrophilic oligomer ratios exhibited superior water uptake, ion-exchange capacity, contact angle and water sorption, while retaining reasonable swelling degree. The proton conductivity results showed that SPES containing higher amounts of hydrophilic oligomers provided a 74.7 mS cm−1 proton conductivity at 90 °C, which is better than other SPES membranes, but slightly lower than that of Nafion-117 membrane. When integrating SPES membranes with proton-exchange membrane fuel cells (PEMFCs) at 60 °C and 80% relative humidity (RH), the PEMFC power density exhibited a similar increment-pattern like proton conductivity pattern.
APA, Harvard, Vancouver, ISO, and other styles
38

Zhai, Zhen Yu, Ying Gang Shen, Bin Jia, and Yan Yin. "Surface Morphology Studies on PBI Membrane Materials of High Temperature for Proton Exchange Membrane Fuel Cells." Advanced Materials Research 625 (December 2012): 239–42. http://dx.doi.org/10.4028/www.scientific.net/amr.625.239.

Full text
Abstract:
Compare with the conventional proton exchange membrane fuel cells (PEMFCs), high temperature proton exchange membrane fuel cells (HT-PEMFCs) have more advantages such as higher CO tolerance of catalyst, easier water management and higher catalyst activity. As the core component of the HT-PEMFC, proton exchange membrane should have excellent flexibility , thermal stability and high proton conductivity at high operation temperature and anhydrous environments. By atomic force microscope (AFM) technology, the surface topography image and lateral force image of the untreated and treated polybenzimidazole (PBI) membrane are investigated.
APA, Harvard, Vancouver, ISO, and other styles
39

Muljani, S., and A. Wulanawati. "Microbial Fuel Cell Based Polystyrene Sulfonated Membrane as Proton Exchange Membrane." ALCHEMY Jurnal Penelitian Kimia 12, no. 2 (November 2, 2016): 155. http://dx.doi.org/10.20961/alchemy.12.2.1818.155-166.

Full text
Abstract:
<p>Microbial fuel cell (MFC) represents a major bioelectrochemical system that converts biomass spontaneously into electricity through the activity of microorganisms. The MFC consists of anode and cathode compartments. Microorganisms in MFC liberate electrons while the electron donor is consumed. The produced electron is transmitted to the anode surface, but the generated protons must pass through the proton exchange membrane (PEM) to reach the cathode compartment. PEM, as a key factor, affects electricity generation in MFCs. The study attempted to investigate if the sulfonated polystyrene (SPS) membrane can be used as a PEM in the application on MFC. SPS membrane has been characterized using Fourier transform infrared spectrophotometer (FTIR), scanning electron microscope (SEM) and conductivity. The result of the conductivity (σ) revealed that the membrane has a promising application for MFC.</p>
APA, Harvard, Vancouver, ISO, and other styles
40

Muljani, S., and A. Wulanawati. "Microbial Fuel Cell Based Polystyrene Sulfonated Membrane as Proton Exchange Membrane." ALCHEMY Jurnal Penelitian Kimia 12, no. 2 (November 2, 2016): 155. http://dx.doi.org/10.20961/alchemy.v12i2.1818.

Full text
Abstract:
<p>Microbial fuel cell (MFC) represents a major bioelectrochemical system that converts biomass spontaneously into electricity through the activity of microorganisms. The MFC consists of anode and cathode compartments. Microorganisms in MFC liberate electrons while the electron donor is consumed. The produced electron is transmitted to the anode surface, but the generated protons must pass through the proton exchange membrane (PEM) to reach the cathode compartment. PEM, as a key factor, affects electricity generation in MFCs. The study attempted to investigate if the sulfonated polystyrene (SPS) membrane can be used as a PEM in the application on MFC. SPS membrane has been characterized using Fourier transform infrared spectrophotometer (FTIR), scanning electron microscope (SEM) and conductivity. The result of the conductivity (σ) revealed that the membrane has a promising application for MFC.</p>
APA, Harvard, Vancouver, ISO, and other styles
41

Cheng, Geng, Zhen Li, Shan Ren, Dongmei Han, Min Xiao, Shuanjin Wang, and Yuezhong Meng. "A Robust Composite Proton Exchange Membrane of Sulfonated Poly (Fluorenyl Ether Ketone) with an Electrospun Polyimide Mat for Direct Methanol Fuel Cells Application." Polymers 13, no. 4 (February 10, 2021): 523. http://dx.doi.org/10.3390/polym13040523.

Full text
Abstract:
As a key component of direct methanol fuel cells, proton exchange membranes with suitable thickness and robust mechanical properties have attracted increasing attention. On the one hand, a thinner membrane gives a lower internal resistance, which contributes highly to the overall electrochemical performance of the cell, on the other hand, strong mechanical strength is required for the application of proton exchange membranes. In this work, a sulfonated poly (fluorenyl ether ketone) (SPFEK)-impregnated polyimide nanofiber mat composite membrane (PI@SPFEK) was fabricated. The new composite membrane with a thickness of about 55 μm exhibited a tensile strength of 35.1 MPa in a hydrated state, which is about 65.8% higher than that of the pristine SPFEK membrane. The antioxidant stability test in Fenton’s reagent shows that the reinforced membrane affords better oxidation stability than does the pristine SPFEK membrane. Furthermore, the morphology, proton conductivity, methanol permeability, and fuel cell performance were carefully evaluated and discussed.
APA, Harvard, Vancouver, ISO, and other styles
42

Wu, Guo-Mei, Wen-Jing Li, Li-Bin Yang, and Chen-Xi Zhang. "A Dual-Function Cobalt Metal-Organic Framework for High Proton Conduction and Selective Luminescence Sensing of Histidine." Journal of The Electrochemical Society 169, no. 1 (January 1, 2022): 014512. http://dx.doi.org/10.1149/1945-7111/ac4931.

Full text
Abstract:
Proton exchange membrane (PEM) is a key component of proton exchange membrane fuel cells (PEMFCs). In recent years, metal organic framework (MOF) and its composite membranes have become the research hotspots. [Co(L-Glu)(H2O)·H2O]n (Co-MOF, L-Glu = L-glutamate) was synthesized by hydrothermal method. Co2+ ions are coordinated with L-Glu ligands and water molecules to form one-dimensional chains extending along the a-axis, which are further bridged by L-Glu ligands to form a three-dimensional network structure. AC impedance analysis shows that the proton conductivity of Co-MOF reaches 3.14 × 10−4 S·cm−1 under 98% relative humidity (RH) and 338 K. To improve proton conductivity, different contents of Co-MOF were added in chitosan (CS) to form composite membranes Co-MOF@CS-X (mass fraction X = 5%, 10%, 15% wt). The results show the proton conductivity of the Co-MOF@CS-10 composite membrane is 1.73 × 10−3 S·cm−1 at 358 K and 98% RH, which is more than 3 times that of pure CS. As far as we known, this is the first composite made of amino acid MOFs and CS as proton exchange membrane. Furthermore, Co-MOF has an obvious quenching effect on L-histidine in aqueous solution, which can detect the content of L-histidine in water with high sensitivity, and the detection limit is 1 × 10−7 M.
APA, Harvard, Vancouver, ISO, and other styles
43

Meng, Xiaoyu, Yinan Lv, Jihong Wen, Xiaojing Li, Luman Peng, Chuanbo Cong, Haimu Ye, and Qiong Zhou. "In Situ Growth of COF on PAN Nanofibers to Improve Proton Conductivity and Dimensional Stability in Proton Exchange Membranes." Energies 15, no. 9 (May 6, 2022): 3405. http://dx.doi.org/10.3390/en15093405.

Full text
Abstract:
Perfluorosulfonic acid (PFSA) polymer is considered as a proton exchange membrane material with great potential. Nevertheless, excessive water absorption caused by abundant sulfonic acid groups makes PFSA have low dimensional stabilities. In order to improve the dimensional stability of PFSA membranes, nanofibers are introduced into PFSA membranes. However, because nanofibers lack proton conducting groups, it usually reduces the proton conductivities of PFSA membranes. It is a challenge to improve dimensional stabilities while maintaining high proton conductivities. Due to the structural designability, covalent organic frameworks (COFs) with proton conductive groups are chosen to improve the overall performance of PFSA membranes. Herein, COFs synthesized in situ on three-dimensional PAN nanofibers were introduced into PFSA to prepare PFSA@PAN/TpPa-SO3H sandwiched membranes. The PFSA@PAN/TpPa-SO3H-5 composite membrane exhibited outstanding proton conductivity, which reached 260.81 mS·cm−1 at 80 °C and 100% RH, and only decreased by 4.7% in 264 h. The power density of a single fuel cell with PFSA@PAN/TpPa-SO3H-5 was as high as 392.7 mW·cm−2. Compared with the pristine PFSA membrane, the conductivity of PFSA@PAN/TpPa-SO3H-5 increased by 70.0 mS·cm−1, and the area swelling ratio decreased by 8.1%. Our work provides a novel strategy to prepare continuous proton transport channels to simultaneously improve conductivities and dimensional stabilities of proton exchange membranes.
APA, Harvard, Vancouver, ISO, and other styles
44

Xie, Chong, Runde Yang, Xing Wan, Haorong Li, Liangyao Ge, Xiaofeng Li, and Guanglei Zhao. "A High-Proton Conductivity All-Biomass Proton Exchange Membrane Enabled by Adenine and Thymine Modified Cellulose Nanofibers." Polymers 16, no. 8 (April 11, 2024): 1060. http://dx.doi.org/10.3390/polym16081060.

Full text
Abstract:
Nanocellulose fiber materials were considered promising biomaterials due to their excellent biodegradability, biocompatibility, high hydrophilicity, and cost-effectiveness. However, their low proton conductivity significantly limited their application as proton exchange membranes. The methods previously reported to increase their proton conductivity often introduced non-biodegradable groups and compounds, which resulted in the loss of the basic advantages of this natural polymer in terms of biodegradability. In this work, a green and sustainable strategy was developed to prepare cellulose-based proton exchange membranes that could simultaneously meet sustainability and high-performance criteria. Adenine and thymine were introduced onto the surface of tempo-oxidized nanocellulose fibers (TOCNF) to provide many transition sites for proton conduction. Once modified, the proton conductivity of the TOCNF membrane increased by 31.2 times compared to the original membrane, with a specific surface area that had risen from 6.1 m²/g to 86.5 m²/g. The wet strength also increased. This study paved a new path for the preparation of environmentally friendly membrane materials that could replace the commonly used non-degradable ones, highlighting the potential of nanocellulose fiber membrane materials in sustainable applications such as fuel cells, supercapacitors, and solid-state batteries.
APA, Harvard, Vancouver, ISO, and other styles
45

Wei, Fei, Aslan Kosakian, Jiafei Liu, and Marc Secanell. "Water Transport Characterization of Anion and Proton Exchange Membranes." ECS Meeting Abstracts MA2022-02, no. 50 (October 9, 2022): 2620. http://dx.doi.org/10.1149/ma2022-02502620mtgabs.

Full text
Abstract:
Proton exchange membrane (PEM) and anion exchange membrane (AEM) fuel cells (FCs) are the two types of fuel cell devices that electrochemically convert the chemical energy of hydrogen into electricity and heat with water as the only by-product. Due to no requirement of precious and non-renewable platinum as the catalyst material, AEMFCs have attracted great attention in recent years [1,2]. However, water balance between anode and cathode in AEMFCs is more crucial than in PEMFCs, as water not only is produced in the anode, hindering hydrogen transport to the anode catalyst layer, but also functions as reactant in the cathode. Water transport properties of AEMs is one of the key factors affecting water balance between anode and cathode [1]. Accurate measurement of AEM water transport properties is paramount for AEM design and manufacturing to improve AEMFC water management and, in turn, performance and durability. AEMFCs with recently developed PiperION AEMs have been shown to achieve good AEMFC performance [3,4]; however, there is no available study in the literature measuring its water transport properties. To the best of the authors' knowledge, there are only a few studies reporting the measurement of AEMs water diffusivity, such as Fumapem FAA-3 [5,6], Aemion [5], Tokuyama A201 [7,8] and SnowPure Excellion I-200 [9]. Even in those limited studies, interfacial transport rates were either not considered in the data analysis [6,8,9] or not given as a function of water activity [5,7,8]. In this work, the interfacial desorption rate of AEMs is determined from a liquid-vapor permeation setup by measuring the water flux through the membrane at different relative humidity (RH). To quantify the interfacial exchange rate and determine which mode of transport is dominant (bulk or interfacial), a novel approach involving three different mathematical models was used: a diffusion-dominant model, a desorption-dominant model, and a combined diffusion-desorption model. By analyzing the sensitivity of the modeling results to the individual transport process, the dominant mode was identified. The model correctly identified the limiting transport mode in Nafion membranes, and suggested that interfacial transport was also limiting in AEMs of Aemion AH1-HNN8-50-X, Fumapem FAA-3-30/50 and PiperION-A40. With the developed model, semi-empirical relationships for the water desorption rate from AEMs and Nafion membranes as functions of the water content and temperature were obtained. These relationships can be readily used in AEMFCs and PEMFCs models. References [1] K. Yassin, et al., Quantifying the critical effect of water diffusivity in anion exchange membranes for fuel cell applications, Journal of Membrane Science 608 (2020) 118206. [2] X. Luo, et al., Structure-transport relationships of poly (aryl piperidinium) anion-exchange membranes: Eeffect of anions and hydration, Journal of Membrane Science 598 (2020) 117680. [3] J. Wang, et al., Poly (aryl piperidinium) membranes and ionomers for hydroxide exchange membrane fuel cells, Nature Energy 4(5) (2019) 392-398. [4] T. Wang, et al., High-performance hydroxide exchange membrane fuel cells through optimization of relative humidity, backpressure and catalyst selection, Journal of The Electrochemical Society 166(7) (2019) F3305. [5] X. Luo, et al., Water permeation through anion exchange membranes, Journal of Power Sources 375 (2018) 442-451. [6] M. Marino, et al., Hydroxide, halide and water transport in a model anion exchange membrane, Journal of Membrane Science 464 (2014) 61-71. [7] Y. Li, et al., Measurements of water uptake and transport properties in anion-exchange membranes, International Journal of Hydrogen Energy 35 (11) (2010) 5656-5665. [8] B. Eriksson, et al., Quantifying water transport in anion exchange membrane fuel cells, International Journal of Hydrogen Energy 44 (10) (2019) 4930–4939. [9] T.D. Myles, et al., Calculation of water diffusion coefficients in an anion exchange membrane using a water permeation technique, Journal of the Electrochemical Society 158(7) (2011) B790.
APA, Harvard, Vancouver, ISO, and other styles
46

Son, Tae Yang, Kwang Seop Im, Ha Neul Jung, and Sang Yong Nam. "Blended Anion Exchange Membranes for Vanadium Redox Flow Batteries." Polymers 13, no. 16 (August 23, 2021): 2827. http://dx.doi.org/10.3390/polym13162827.

Full text
Abstract:
In this study, blended anion exchange membranes were prepared using polyphenylene oxide containing quaternary ammonium groups and polyvinylidene fluoride. A polyvinylidene fluoride with high hydrophobicity was blended in to lower the vanadium ion permeability, which increased when the hydrophilicity increased. At the same time, the dimensional stability also improved due to the excellent physical properties of polyvinylidene fluoride. Subsequently, permeation of the vanadium ions was prevented due to the positive charge of the anion exchange membrane, and thus the permeability was relatively lower than that of a commercial proton exchange membrane. Due to the above properties, the self-discharge of the blended anion exchange membrane (30.1 h for QA–PPO/PVDF(2/8)) was also lower than that of the commercial proton exchange membrane (27.9 h for Nafion), and it was confirmed that it was an applicable candidate for vanadium redox flow batteries.
APA, Harvard, Vancouver, ISO, and other styles
47

Zeng, Zhiyang, Ruiyang Song, Shengping Zhang, Xiao Han, Zhen Zhu, Xiaobo Chen, and Luda Wang. "Biomimetic N-Doped Graphene Membrane for Proton Exchange Membranes." Nano Letters 21, no. 10 (April 13, 2021): 4314–19. http://dx.doi.org/10.1021/acs.nanolett.1c00813.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Madhav, Dharmjeet, Junru Wang, Rajesh Keloth, Jorben Mus, Frank Buysschaert, and Veerle Vandeginste. "A Review of Proton Exchange Membrane Degradation Pathways, Mechanisms, and Mitigation Strategies in a Fuel Cell." Energies 17, no. 5 (February 20, 2024): 998. http://dx.doi.org/10.3390/en17050998.

Full text
Abstract:
Proton exchange membrane fuel cells (PEMFCs) have the potential to tackle major challenges associated with fossil fuel-sourced energy consumption. Nafion, a perfluorosulfonic acid (PFSA) membrane that has high proton conductivity and good chemical stability, is a standard proton exchange membrane (PEM) used in PEMFCs. However, PEM degradation is one of the significant issues in the long-term operation of PEMFCs. Membrane degradation can lead to a decrease in the performance and the lifespan of PEMFCs. The membrane can degrade through chemical, mechanical, and thermal pathways. This paper reviews the different causes of all three routes of PFSA degradation, underlying mechanisms, their effects, and mitigation strategies. A better understanding of different degradation pathways and mechanisms is valuable in producing robust fuel cell membranes. Hence, the progress in membrane fabrication for PEMFC application is also explored and summarized.
APA, Harvard, Vancouver, ISO, and other styles
49

Palanisamy, Gowthami, Yeong Min Im, Ajmal P. Muhammed, Karvembu Palanisamy, Sadhasivam Thangarasu, and Tae Hwan Oh. "Fabrication of Cellulose Acetate-Based Proton Exchange Membrane with Sulfonated SiO2 and Plasticizers for Microbial Fuel Cell Applications." Membranes 13, no. 6 (June 2, 2023): 581. http://dx.doi.org/10.3390/membranes13060581.

Full text
Abstract:
Developing a hybrid composite polymer membrane with desired functional and intrinsic properties has gained significant consideration in the fabrication of proton exchange membranes for microbial fuel cell applications. Among the different polymers, a naturally derived cellulose biopolymer has excellent benefits over synthetic polymers derived from petrochemical byproducts. However, the inferior physicochemical, thermal, and mechanical properties of biopolymers limit their benefits. In this study, we developed a new hybrid polymer composite of a semi-synthetic cellulose acetate (CA) polymer derivate incorporated with inorganic silica (SiO2) nanoparticles, with or without a sulfonation (–SO3H) functional group (sSiO2). The excellent composite membrane formation was further improved by adding a plasticizer (glycerol (G)) and optimized by varying the SiO2 concentration in the polymer membrane matrix. The composite membrane’s effectively improved physicochemical properties (water uptake, swelling ratio, proton conductivity, and ion exchange capacity) were identified because of the intramolecular bonding between the cellulose acetate, SiO2, and plasticizer. The proton (H+) transfer properties were exhibited in the composite membrane by incorporating sSiO2. The composite CAG–2% sSiO2 membrane exhibited a higher proton conductivity (6.4 mS/cm) than the pristine CA membrane. The homogeneous incorporation of SiO2 inorganic additives in the polymer matrix provided excellent mechanical properties. Due to the enhancement of the physicochemical, thermal, and mechanical properties, CAG–sSiO2 can effectively be considered an eco-friendly, low-cost, and efficient proton exchange membrane for enhancing MFC performance.
APA, Harvard, Vancouver, ISO, and other styles
50

Kuanchaitrakul, Tanita, S. Chirachanchai, and H. Manuspiya. "Inorganic Mesoporous Membrane for Potentially Used in Proton Exchange Membrane." Advances in Science and Technology 54 (September 2008): 311–16. http://dx.doi.org/10.4028/www.scientific.net/ast.54.311.

Full text
Abstract:
Inorganic Mesoporous Membrane is a new alternative to improve high-temperature fuel cell performance in proton exchange membrane fuel cells (PEMFCs) to substitute for Nafion. It possess high porosity and high specific surface areas, resulting in high proton conductivity. In this study, niobium-modified titania and antimony/niobium-modified titania ceramic were prepared via the sol-gel technique. The various contents of antimony, 0 to 3 wt%, and 3% niobium are incorporated into titania to improve the porous surface condition of the ceramic particles. The xerogels were heated at about 500°C. Inorganic membranes were prepared by using the spin-coating technique using epoxy resin as a binder. The physical, chemical, and electrical properties of these membranes were investigated. The XRD and Raman results showed that pure TiO2 and doped TiO2 nanoparticles obtained possess an anatase structure with mesoporosity. The specific surface area of the doped TiO2 was higher than that of pure TiO2 and it is worth pointing out that the doping of antimony affected the surface areas more than the doping of niobium in TiO2. Moreover, these membranes were also tested to evaluate their potential use as an electrolyte in PEMFC by using impedance spectroscopy, TGA, mechanical properties and water uptake.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography