Academic literature on the topic 'Proton exchange membrane'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Proton exchange membrane.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Proton exchange membrane"

1

JIANG, ZHONGQING, YUEDONG MENG, ZHONG-JIE JIANG, and YICAI SHI. "PREPARATION OF HIGHLY SULFONATED ULTRA-THIN PROTON-EXCHANGE POLYMER MEMBRANES FOR PROTON EXCHANGE MEMBRANE FUEL CELLS." Surface Review and Letters 16, no. 02 (April 2009): 297–302. http://dx.doi.org/10.1142/s0218625x09012627.

Full text
Abstract:
Sulfonated ultra-thin proton-exchange polymer membrane carrying pyridine groups was made from a plasma polymerization of styrene, 2-vinylpyridine, and trifluoromethanesulfonic acid by after-glow capacitively coupled discharge technique. Pyridine groups tethered to the polymer backbone acts as a medium through the basic nitrogen for transfer of protons between the sulfonic acid groups of proton exchange membrane. It shows that the method using present technology could effectively depress the degradation of monomers during the plasma polymerization. Spectroscopic analyses reveal that the obtained membranes are highly functionalized with proton exchange groups and have higher proton conductivity. Thus, the membranes are expected to be used in direct methanol fuel cells.
APA, Harvard, Vancouver, ISO, and other styles
2

Maizelis, Antonina, Boris Bayrachniy, and Gennady Tul'skiy. "Formation of the organic-inorganic proton exchange membrane." Odes’kyi Politechnichnyi Universytet. Pratsi, no. 2 (August 20, 2016): 76–80. http://dx.doi.org/10.15276/opu.2.49.2016.17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Peterson, Vanessa K., Cormac Corr, Gordon J. Kearley, Roderick Boswell, and Zunbeltz Izaola. "High Water Diffusivity in Low Hydration Plasma-Polymerised Proton Exchange Membranes." Materials Science Forum 654-656 (June 2010): 2871–74. http://dx.doi.org/10.4028/www.scientific.net/msf.654-656.2871.

Full text
Abstract:
This paper compares proton diffusion through plasma-polymerised proton-exchange membranes (PEMs) produced using traditional wet-chemical methods (Nafion®) and those produced using plasma-polymerisation. Using quasielastic neutron scattering and a simple model of proton motion we find the measured diffusion-rate of protons in the plasma-polymerised material and Nafion® is the same (within 1 standard error) even though the plasma-polymerised membrane has 80 % less water than the Nafion®. We attribute this result to the highly cross-linked structure of the plasma-polymerised membrane.
APA, Harvard, Vancouver, ISO, and other styles
4

Cheng, Wang, Zong Qiang Mao, Jing Ming Xu, and Xiao Feng Xie. "Study of Novel Self-Humidifying PEMFC with Nano-TiO2-Based Membrane." Key Engineering Materials 280-283 (February 2007): 899–902. http://dx.doi.org/10.4028/www.scientific.net/kem.280-283.899.

Full text
Abstract:
We propose self-humidifying polymer electrolyte membranes with highly dispersed nanometer-sized Titanium dioxides for proton exchange membrane fuel cells operated with dry H2 and O2. The nanosized TiO2 particles that have hygroscopic property are expected to adsorb the water produced from the cathode reaction and to release the water once the proton exchange membrane needs water. The preparation technology of nano-TiO2 particles in a commercial Nafion 112 membrane via novel in situ sol-gel reactions was developed, resulting in a semitransparent membrane with uniform distribution of TiO2 in the proton exchange membrane. It is found that Proton conductivity increases observably by dispersing 3 wt % nano-TiO2 in the Proton exchange membrane at low humidity condition, and the newly prepared TiO2-PEM improve the self-humidifying performance of Proton exchange membrane fuel cell.
APA, Harvard, Vancouver, ISO, and other styles
5

Zhang, Ya Ping, Ming Zhu Yue, and Yan Chen. "Proton Exchange Membrane Based on Sulfonated Polyimide for Fuel Cells: State-of-the-Art and Recent Developments." Advanced Materials Research 239-242 (May 2011): 3032–38. http://dx.doi.org/10.4028/www.scientific.net/amr.239-242.3032.

Full text
Abstract:
Proton exchange membrane is one of the most important components for proton exchange membrane fuel cells (PEMFCs). The preparation of proton exchange membranes based on sulfonated polyimide (SPI) for PEMFCs in recent years was reviewed, and methods of improving the water stability and proton conductivity of such membranes were highlighted. It was suggested that preparation of novel SPI membranes or organic-inorganic composite SPI membranes should be a reasonable approach to strengthen their combination property.
APA, Harvard, Vancouver, ISO, and other styles
6

Nikinmaa, Mikko, and Bruce L. Tufts. "Regulation of acid and ion transfer across the membrane of nucleated erythrocytes." Canadian Journal of Zoology 67, no. 12 (December 1, 1989): 3039–45. http://dx.doi.org/10.1139/z89-427.

Full text
Abstract:
The major pathways for proton transport across the membrane of nucleated erythrocytes are the passive Jacobs–Stewart cycle and the secondarily active sodium–proton exchange. The relative importance of these two pathways in the control of red cell pH depends on the sodium–proton exchange rate and the rate of the slowest step of passive proton equilibration. In cyclostome red cells, which lack anion exchange, intracellular pH is controlled by the sodium-dependent acid–extrusion mechanism. In unstimulated teleost red cells, the Jacobs–Stewart cycle appears to be the most important pathway for the transport of protons across the membrane. Adrenergic stimulation activates sodium–proton exchange. Sodium–proton exchange is able to increase intracellular pH and decrease extracellular pH because the rate of proton transport via the Jacobs–Stewart cycle is limited by the uncatalysed extracellular dehydration of carbonic acid to carbon dioxide. The turnover rate of the adrenergically activated sodium–proton exchange is influenced by pH and oxygen tension. In amphibian red cells, acidification activates sodium–proton exchange. The exchange may limit the changes in intracellular pH after acid–base disturbances.
APA, Harvard, Vancouver, ISO, and other styles
7

Chandra Kishore, Somasundaram, Suguna Perumal, Raji Atchudan, Muthulakshmi Alagan, Mohammad Ahmad Wadaan, Almohannad Baabbad, and Devaraj Manoj. "Recent Advanced Synthesis Strategies for the Nanomaterial-Modified Proton Exchange Membrane in Fuel Cells." Membranes 13, no. 6 (June 9, 2023): 590. http://dx.doi.org/10.3390/membranes13060590.

Full text
Abstract:
Hydrogen energy is converted to electricity through fuel cells, aided by nanostructured materials. Fuel cell technology is a promising method for utilizing energy sources, ensuring sustainability, and protecting the environment. However, it still faces drawbacks such as high cost, operability, and durability issues. Nanomaterials can address these drawbacks by enhancing catalysts, electrodes, and fuel cell membranes, which play a crucial role in separating hydrogen into protons and electrons. Proton exchange membrane fuel cells (PEMFCs) have gained significant attention in scientific research. The primary objectives are to reduce greenhouse gas emissions, particularly in the automotive industry, and develop cost-effective methods and materials to enhance PEMFC efficiency. We provide a typical yet inclusive review of various types of proton-conducting membranes. In this review article, special focus is given to the distinctive nature of nanomaterial-filled proton-conducting membranes and their essential characteristics, including their structural, dielectric, proton transport, and thermal properties. We provide an overview of the various reported nanomaterials, such as metal oxide, carbon, and polymeric nanomaterials. Additionally, the synthesis methods in situ polymerization, solution casting, electrospinning, and layer-by-layer assembly for proton-conducting membrane preparation were analyzed. In conclusion, the way to implement the desired energy conversion application, such as a fuel cell, using a nanostructured proton-conducting membrane has been demonstrated.
APA, Harvard, Vancouver, ISO, and other styles
8

Khan, Muhammad Imran, Abdallah Shanableh, Shabnam Shahida, Mushtaq Hussain Lashari, Suryyia Manzoor, and Javier Fernandez. "SPEEK and SPPO Blended Membranes for Proton Exchange Membrane Fuel Cells." Membranes 12, no. 3 (February 25, 2022): 263. http://dx.doi.org/10.3390/membranes12030263.

Full text
Abstract:
In fuel cell applications, the proton exchange membrane (PEM) is the major component where the balance among dimensional stability, proton conductivity, and durability is a long-term trail. In this research, a series of blended SPEEK/SPPO membranes were designed by varying the amounts of sulfonated poly(ether ether ketone) (SPEEK) into sulfonated poly(phenylene) oxide (SPPO) for fuel cell application. Fourier transform infrared spectroscopy (FTIR) was used to confirm the successful synthesis of the blended membranes. Morphological features of the fabricated membranes were characterized by using scanning electron microscopy (SEM). Results showed that these membranes exhibited homogeneous structures. The fabricated blended membranes SPEEK/SPPO showed ion exchange capacity (IEC) of 1.23 to 2.0 mmol/g, water uptake (WR) of 22.92 to 64.57% and membrane swelling (MS) of 7.53 to 25.49%. The proton conductivity of these blended membranes was measured at different temperature. The proton conductivity and chemical stability of the prepared membranes were compared with commercial membrane Nafion 117 (Sigma-Aldrich, St. Louis, Missouri, United States) under same experimental conditions. The proton conductivity of the fabricated membranes increased by enhancing the amount of SPPO into the membrane matrix. Moreover, the proton conductivity of the fabricated membranes was investigated as a function of temperature. Results demonstrated that these membranes are good for applications in proton exchange membrane fuel cell (PEMFC).
APA, Harvard, Vancouver, ISO, and other styles
9

Sun, Baoying, Huanqiao Song, Xinping Qiu, and Wentao Zhu. "New Anhydrous Proton Exchange Membrane for Intermediate Temperature Proton Exchange Membrane Fuel Cells." ChemPhysChem 12, no. 6 (April 5, 2011): 1196–201. http://dx.doi.org/10.1002/cphc.201000848.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bébin, Philippe, and Hervé Galiano. "Proton Exchange Membrane Development and Processing for Fuel Cell Application." Materials Science Forum 539-543 (March 2007): 1327–31. http://dx.doi.org/10.4028/www.scientific.net/msf.539-543.1327.

Full text
Abstract:
The development of new proton exchange membranes for PEMFC has to be related to the membrane processing as it can change drastically the final properties of the material. Indeed, for the same material, a membrane prepared by a solvent-casting process has a lower lifetime than an extruded one. The proton conduction of the membrane can also be dependent on the membrane processing, especially when some removable plasticizers are used to perform the membrane extrusion. Some residual porosity, left in the material after removing the plasticizer, is suspected to enhance the proton conduction of the film. Fuel cell experiments have shown that extruded sulfonated polysulfone membrane can give the same performance as a Nafion® reference membrane whereas the proton conductivity of PSUs is twenty times lower than the Nafion® one. Additional improvements of the membrane properties can also be expected by adding some proton conductive fillers to the organic polymer. This approach enhances the proton conductivity of sulfonated polysulfone to values similar to Nafion®. On the other hand, when Nafion® is used as a matrix for the proton conductive fillers, a very significant improvement of fuel cell performance is obtained.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Proton exchange membrane"

1

Stephens, Brian Dominic. "BIOCOMPOSITE PROTON EXCHANGE MEMBRANES*." University of Cincinnati / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1147968573.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shi, Jinjun. "Composite Membranes for Proton Exchange Membrane Fuel Cells." Wright State University / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=wright1214964058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ion, Mihaela Florentina. "Proton transport in proton exchange membrane fuel cells /." free to MU campus, to others for purchase, 2004. http://wwwlib.umi.com/cr/mo/fullcit?p3164514.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Choi, Jonghyun. "Nanofiber Network Composite Membranes for Proton Exchange Membrane Fuel Cells." Case Western Reserve University School of Graduate Studies / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=case1260461818.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ergun, Dilek. "High Temperature Proton Exchange Membrane Fuel Cells." Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/12610803/index.pdf.

Full text
Abstract:
It is desirable to increase the operation temperature of proton exchange membrane fuel cells above 100oC due to fast electrode kinetics, high tolerance to fuel impurities and simple thermal and water management. In this study
the objective is to develop a high temperature proton exchange membrane fuel cell. Phosphoric acid doped polybenzimidazole membrane was chosen as the electrolyte material. Polybenzimidazole was synthesized with different molecular weights (18700-118500) by changing the synthesis conditions such as reaction time (18-24h) and temperature (185-200oC). The formation of polybenzimidazole was confirmed by FTIR, H-NMR and elemental analysis. The synthesized polymers were used to prepare homogeneous membranes which have good mechanical strength and high thermal stability. Phosphoric acid doped membranes were used to prepare membrane electrode assemblies. Dry hydrogen and oxygen gases were fed to the anode and cathode sides of the cell respectively, at a flow rate of 0.1 slpm for fuel cell tests. It was achieved to operate the single cell up to 160oC. The observed maximum power output was increased considerably from 0.015 W/cm2 to 0.061 W/cm2 at 150oC when the binder of the catalyst was changed from polybenzimidazole to polybenzimidazole and polyvinylidene fluoride mixture. The power outputs of 0.032 W/cm2 and 0.063 W/cm2 were obtained when the fuel cell operating temperatures changed as 125oC and 160oC respectively. The single cell test presents 0.035 W/cm2 and 0.070 W/cm2 with membrane thicknesses of 100 µ
m and 70 µ
m respectively. So it can be concluded that thinner membranes give better performances at higher temperatures.
APA, Harvard, Vancouver, ISO, and other styles
6

Xiao, Zhiyong. "Monolithic integration of proton exchange membrane microfuel cells /." View abstract or full-text, 2008. http://library.ust.hk/cgi/db/thesis.pl?ECED%202008%20XIAO.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Oyarce, Alejandro. "Electrode degradation in proton exchange membrane fuel cells." Doctoral thesis, KTH, Tillämpad elektrokemi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-133437.

Full text
Abstract:
The topic of this thesis is the degradation of fuel cell electrodes in proton exchange membrane fuel cells (PEMFCs). In particular, the degradation associated with localized fuel starvation, which is often encountered during start-ups and shut-downs (SUs/SDs) of PEMFCs. At SU/SD, O2 and H2 usually coexist in the anode compartment. This situation forces the opposite electrode, i.e. the cathode, to very high potentials, resulting in the corrosion of the carbon supporting the catalyst, referred to as carbon corrosion. The aim of this thesis has been to develop methods, materials and strategies to address the issues associated to carbon corrosion in PEMFC.The extent of catalyst degradation is commonly evaluated determining the electrochemically active surface area (ECSA) of fuel cell electrode. Therefore, it was considered important to study the effect of RH, temperature and type of accelerated degradation test (ADT) on the ECSA. Low RH decreases the ECSA of the electrode, attributed to re-structuring the ionomer and loss of contact with the catalyst.In the search for more durable supports, we evaluated different accelerated degradation tests (ADTs) for carbon corrosion. Potentiostatic holds at 1.2 V vs. RHE were found to be too mild. Potentiostatic holds at 1.4 V vs. RHE were found to induce a large degree of reversibility, also attributed to ionomer re-structuring. Triangle-wave potential cycling was found to irreversibly degrade the electrode within a reasonable amount of time, closely simulating SU/SD conditions.Corrosion of carbon-based supports not only degrades the catalyst by lowering the ECSA, but also has a profound effect on the electrode morphology. Decreased electrode porosity, increased agglomerate size and ionomer enrichment all contribute to the degradation of the mass-transport properties of the cathode. Graphitized carbon fibers were found to be 5 times more corrosion resistant than conventional carbons, primarily attributed to their lower surface area. Furthermore, fibers were found to better maintain the integrity of the electrode morphology, generally showing less degradation of the mass-transport losses. Different system strategies for shut-down were evaluated. Not doing anything to the fuel cell during shut-downs is detrimental for the fuel cell. O2 consumption with a load and H2 purge of the cathode were found to give around 100 times lower degradation rates compared to not doing anything and almost 10 times lower degradation rate than a simple air purge of the anode. Finally, in-situ measurements of contact resistance showed that the contact resistance between GDL and BPP is highly dynamic and changes with operating conditions.
Denna doktorsavhandling behandlar degraderingen av polymerelektrolytbränslecellselektroder. polymerelektrolytbränslecellselektroder. Den handlar särskilt om nedbrytningen av elektroden kopplad till en degraderingsmekanism som heter ”localized fuel starvation” oftast närvarande vid uppstart och nedstängning av bränslecellen. Vid start och stopp kan syrgas och vätgas förekomma samtidigt i anoden. Detta leder till väldigt höga elektrodpotentialer i katoden. Resultatet av detta är att kolbaserade katalysatorbärare korroderar och att bränslecellens livslängd förkortas. Målet med avhandlingen har varit att utveckla metoder, material och strategier för att både öka förståelsen av denna degraderingsmekanism och för att maximera katalysatorbärarens livslängd.Ett vanligt tillvägagångsätt för att bestämma graden av katalysatorns degradering är genom mätning av den elektrokemiskt aktiva ytan hos bränslecellselektroderna. I denna avhandling har dessutom effekten av temperatur och relativ fukthalt studerats. Låga fukthalter minskar den aktiva ytan hos elektroden, vilket sannolikt orsakas av en omstrukturering av jonomeren och av kontaktförlust mellan jonomer och katalysator.Olika accelererade degraderingstester för kolkorrosion har använts. Potentiostatiska tester vid 1.2 V mot RHE visade sig vara för milda. Potentiostatiska tester vid 1.4 V mot RHE visade sig däremot medföra en hög grad av reversibilitet, som också den tros vara orsakad av en omstrukturering av jonomeren. Cykling av elektrodpotentialen degraderade istället elektroden irreversibelt, inom rimlig tid och kunde väldigt nära simulera förhållandena vid uppstart och nedstängning.Korrosionen av katalysatorbäraren medför degradering av katalysatorn och har också en stor inverkan på elektrodens morfologi. En minskad elektrodporositet, en ökad agglomeratstorlek och en anrikning av jonomeren gör att elektrodens masstransportegenskaper försämras. Grafitiska kolfibrer visade sig vara mer resistenta mot kolkorrosion än konventionella kol, främst p.g.a. deras låga ytarea. Grafitiska kolfibrer visade också en förmåga att bättre bibehålla elektrodens morfologi efter accelererade tester, vilket resulterade i lägre masstransportförluster.Olika systemstrategier för nedstängning jämfördes. Att inte göra något under nedstängning är mycket skadligt för bränslecellen. Förbrukning av syre med en last och spolning av katoden med vätgas visade 100 gånger lägre degraderingshastighet av bränslecellsprestanda jämfört med att inte göra något alls och 10 gånger lägre degraderingshastighet jämfört med spolning av anoden med luft. In-situ kontaktresistansmätningar visade att kontaktresistansen mellan bipolära plattor och GDL är dynamisk och kan ändras beroende på driftförhållandena.

QC 20131104

APA, Harvard, Vancouver, ISO, and other styles
8

DeLashmutt, Timothy E. "Modeling a proton exchange membrane fuel cell stack." Ohio : Ohio University, 2008. http://www.ohiolink.edu/etd/view.cgi?ohiou1227224687.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yurdakul, Ahmet Ozgur. "Acid Doped Polybenzimidazole Membranes For High Temperature Proton Exchange Membrane Fuel Cells." Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/2/12608506/index.pdf.

Full text
Abstract:
Acid Doped Polybenzimidazole Membranes for High Temperature Proton Exchange Membrane Fuel Cells Author: Ahmet Ö
zgü
r Yurdakul One of the most popular candidates for high temperature PEMFC&rsquo
s is phosphoric acid doped polybenzimidazole (PBI) membrane due to its thermal and mechanical stability. In this study, high molecular weight PBI was synthesized by using PPA polymerization. The stirring rate of reaction solution was optimized to obtain high molecular weight. The inherent viscosity of polymer was measured at four points in 96 percent sulphuric acid solution at 30 degree centigrade by using an Ubbelohde viscometer. The highest average molecular weight was found as approximately 120,000 using the Mark-Houwink equation. The polymer was dissolved in N,N-dimethylacetamide at 70 degree centigrade with an ultrasonic stirrer. The membranes cast from this solution were doped with phosphoric acid solutions at different concentrations. The doping levels of the membranes were 6, 8, 10 and 11 moles phosphoric acid/PBI repeat unit. The mechanical strength of the acid doped membranes measured by tensile tests were found as 23, 16, 12 and 11 MPa, respectively. Conductivity measurements were made using the four probe technique. The membranes were placed in a conductivity cell and measurements were taken in humidity chamber with temperature and pressure control. The conductivity of membranes was measured at 110, 130 and 150 degree centigrade in both dry air and water vapor. The highest conductivity was 0.12 S/cm at 150 degree centigrade and 33 percent relative humidity for the membrane doped with 11 moles of H3PO4. The measurements showed that conductivity increased with increasing doping and humidity. Moreover, membranes had acceptable conductivity levels in dry air.
APA, Harvard, Vancouver, ISO, and other styles
10

Hill, Melinda Lou. "Polymeric and Polymer/Inorganic Composite Membranes for Proton Exchange Membrane Fuel Cells." Diss., Virginia Tech, 2006. http://hdl.handle.net/10919/37597.

Full text
Abstract:
Several types of novel proton exchange membranes which could be used for both direct methanol fuel cells (DMFCs) and hydrogen/air fuel cells were investigated in this work. One of the main challenges for DMFC membranes is high methanol crossover. Nafion, the current perfluorosulfonic acid copolymer benchmark membrane for both DMFCs and hydrogen/air fuel cells, shows very high methanol crossover. Directly copolymerized disulfonated poly(arylene ether sulfone)s copolymers doped with zirconium phosphates and phenyl phosphonates were synthesized and showed a significant reduction in methanol permeability. These copolymer/inorganic nanocomposite hybrid membranes show lower water uptake and conductivity than Nafion and neat poly(arylene ether sulfone)s copolymers, but in some cases have similar or even slightly improved DMFC performance due to the lower methanol permeability. These membranes also show advantages for high temperature applications because of the reinforcing effect of the filler, which helps to maintain the modulus of the membrane, allowing the membrane to maintain proton conductivity even above the hydrated glass transition temperature (Tg) of the copolymer. Sulfonated zirconium phenyl phosphonate additives were also synthesized, and membranes incorporating these materials and disulfonated poly(arylene ether sulfone)s showed promising proton conductivity over a wide range of relative humidities. Single-Tg polymer blend membranes were studied, which incorporated disulfonated poly(arylene ether sulfone) with varied amounts of polybenzimidazole. The polybenzimidazole served to decrease the water uptake and methanol permeability of the membranes, resulting in promising DMFC and hydrogen/air fuel cell performance.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Proton exchange membrane"

1

Albarbar, Alhussein, and Mohmad Alrweq. Proton Exchange Membrane Fuel Cells. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-70727-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Francis, Fuller Thomas, Electrochemical Society Meeting, Sociedad Mexicana de Electroquimica. Congreso, and Electrochemical Society. Energy Technology Division., eds. Proton exchange membrane fuel cells 6. Pennington, N.J: Electrochemical Society, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Francis, Fuller Thomas, Electrochemical Society Meeting, Electrochemical Society. Energy Technology Division., and International Symposium on Proton Exchange Membrane Fuel Cells (7th : 2007 : Washington, D.C.), eds. Proton exchange membrane fuel cells 7. Pennington, N.J: Electrochemical Society, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gao, Fei, Benjamin Blunier, and Abdellatif Miraoui, eds. Proton Exchange Membrane Fuel Cells Modeling. Hoboken, NJ USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118562079.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gao, Fei. Proton exchange membrane fuel cells modeling. London: ISTE, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Li, Hui. Proton exchange membrane fuel cells: Contamination and mitigation strategies. Boca Raton: Taylor & Francis, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Li, Hui. Proton exchange membrane fuel cells: Contamination and mitigation strategies. Boca Raton: Taylor & Francis, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

P, Wilkinson David, ed. Proton exchange membrane fuel cells: Materials properties and performance. Boca Raton: Taylor & Francis, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

1964-, Li Hui, ed. Proton exchange membrane fuel cells: Contamination and mitigation strategies. Boca Raton: Taylor & Francis, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Francis, Fuller Thomas, Lamy C, Bock C, Electrochemical Society Meeting, and Electrochemical Society. Energy Technology Division., eds. Proton exchange membrane fuel cells V, in honor of Supramaniam Srinivasan. Pennington, N.J: Electrochemical Society, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Proton exchange membrane"

1

Hickner, Michael A. "Proton Exchange Membrane Nanocomposites." In ACS Symposium Series, 155–70. Washington, DC: American Chemical Society, 2010. http://dx.doi.org/10.1021/bk-2010-1034.ch011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Larminie, James, and Andrew Dicks. "Proton Exchange Membrane Fuel Cells." In Fuel Cell Systems Explained, 67–119. West Sussex, England: John Wiley & Sons, Ltd,., 2013. http://dx.doi.org/10.1002/9781118878330.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Aricò, Antonino S., Vincenzo Baglio, Nicola Briguglio, Gaetano Maggio, and Stefania Siracusano. "Proton Exchange Membrane Water Electrolysis." In Fuel Cells : Data, Facts and Figures, 343–56. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA., 2016. http://dx.doi.org/10.1002/9783527693924.ch34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cavaliere, Pasquale. "Proton Exchange Membrane Water Electrolysis." In Water Electrolysis for Hydrogen Production, 233–85. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-37780-8_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Peng, Shengjie. "Proton Exchange Membrane Water Electrolysis." In Electrochemical Hydrogen Production from Water Splitting, 69–98. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4468-2_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Albarbar, Alhussein, and Mohmad Alrweq. "Proton Exchange Membrane Fuel Cells: Review." In Proton Exchange Membrane Fuel Cells, 9–29. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70727-3_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Albarbar, Alhussein, and Mohmad Alrweq. "Introduction and Background." In Proton Exchange Membrane Fuel Cells, 1–8. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70727-3_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Albarbar, Alhussein, and Mohmad Alrweq. "Design and Fundamental Characteristics of PEM Fuel Cells." In Proton Exchange Membrane Fuel Cells, 31–58. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70727-3_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Albarbar, Alhussein, and Mohmad Alrweq. "Failure Modes and Mechanisms." In Proton Exchange Membrane Fuel Cells, 59–76. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70727-3_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Albarbar, Alhussein, and Mohmad Alrweq. "Mathematical Modelling and Numerical Simulation." In Proton Exchange Membrane Fuel Cells, 77–100. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70727-3_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Proton exchange membrane"

1

Chu, Benjamin, Dean Ho, Hyeseung Lee, Karen Kuo, and Carlo Montemagno. "Protein-Functionalized Proton Exchange Membranes." In ASME 2004 3rd Integrated Nanosystems Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/nano2004-46018.

Full text
Abstract:
Protein-functionalized biomimetic membranes, based upon a triblock copolymer simulating a natural lipid bilayer in a single chain, serves as a core technology for applications in bioenergetics. Monolayers of block copolymer, which simulates the hydrophilic-hydrophobic-hydrophilic chain of a natural cell membrane, can be formed by Langmuir-Blodgett (LB) deposition and provides a favorable environment for protein refolding. Large-scale membrane formation is achieved using LB deposition on a variety of substrates, such as gold, quartz, silicon, and Nafion®. We have successfully inserted membrane proteins, such as the light-activated proton pump, bacteriorhodopsin (BR) and the pH/voltage-gateable porin, Outermembrane Protein F (OmpF), into large-area LB monolayers. We have also established sustained protein functionality in films through the measurement of light-activated proton transport.
APA, Harvard, Vancouver, ISO, and other styles
2

Reissman, Timothy, Austin Fang, Ephrahim Garcia, Brian J. Kirby, Romain Viard, and Philippe M. Fauchet. "Inorganic Proton Exchange Membranes." In ASME 2006 4th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2006. http://dx.doi.org/10.1115/fuelcell2006-97149.

Full text
Abstract:
Direct Methanol Fuel Cells (DMFCs) offer advantages from quick refills to the elimination of recharge times. They show the most potential in efficient chemical to electrical energy conversion, but currently one major source of inefficiency within the DMFC system is the electrolyte allowing fuel to cross over from the anode to cathode. Proprietary DuPont™ Nafion® 117 has been the standard polymer electrolyte thus far for all meso-scale direct methanol power conversion systems, and its shortcomings consist primarily of slow anodic reaction rates and fuel crossover resulting in lower voltage generation or mixed potential. Porous Silicon (P-Si) is traditionally used in photovoltaic and photoluminescence applications but rarely used as a mechanical filter or membrane. This research deals with investigations into using P-Si as a functioning electrolyte to transfer ions from the anode to cathode of a DMFC and the consequences of stacking multiple layers of anodes. Porous silicon was fabricated in a standard Teflon cylindrical cell by an anodization process which varied the current density to etch and electro-polish the silicon membrane. The result was a porous silicon membrane with approximately 1.5 μm pore sizes when optically characterized by a scanning electron microscope. The porous membranes were then coated in approximately 0.2 mg/cm2 Pt-Ru catalyst with a 10% Nafion® solution binding agent onto the anode. Voltage versus current data shows an open circuit voltage (OCV) of 0.25V was achieved with one layer when operating at 20°C. When adding a second porous silicon layer, the OCV was raised to approximately 0.32V under the same conditions. The experimental data suggested that the current collected also increased with an additional identical layer of anode prepared the same way. The single difference was that the air cathode side was surface treated with 0.1 mg of Pt black catalyst combined with a 10% Nafion® binding agent to aid in the recombination of hydrogen atoms to form the water byproduct. Porous silicon endurance runs with 2ml of 3% by volume methanol (0.7425M) fuel dissolved in water showed an operating voltage was generated for approximately 3 hours before the level dropped to approximately 65% of the 0.25V maximum voltage. Endurance runs with a second layer added extended the useful cell life to approximately 5 hours under the same conditions. In an effort to quantify these layering results, Fourier Transform Infrared Spectrometry was conducted on a number of samples to verify decreased methanol concentration present in the second layer.
APA, Harvard, Vancouver, ISO, and other styles
3

Dhar, Hari. "Internally humidified proton exchange membrane fuel cell." In Intersociety Energy Conversion Engineering Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-4076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cheng, Chin-Hsien, Shu-Feng Lee, and Che-Wun Hong. "Molecular Dynamics of Proton Exchange Inside a Nafion® Membrane." In ASME 2006 4th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2006. http://dx.doi.org/10.1115/fuelcell2006-97135.

Full text
Abstract:
The proton transfer mechanism is the fundamental principle of how the proton exchange membrane fuel cell (PEMFC) works. This paper develops a molecular dynamics technique to simulate the transfer mechanism of the hydrogen protons inside a Nafion 117 membrane. The realistic polymer structure of the Nafion is extremely huge and very complex, it is simplified to be a repeated structure with part of the major carbon-fluoride backbone and a side chain with radicals of SO3− in this paper. Water molecules were assigned to distribute between side chains randomly. The simulation package of DLPOLY was employed as the platform. Simulation results show that the water molecules will cluster together due to the polarization characteristics, and the clusters are attracted by the side chain of the membrane electrolyte. Hydrogen protons are then transferred from one side chain to another through the water clusters. The migration process of the hydrogen protons within the membrane is a function of the water uptakes and many other factors. They are investigated to further improve the ionic conduction of the fuel cell membrane.
APA, Harvard, Vancouver, ISO, and other styles
5

Mu, Shichun, Niancai Cheng, Pei Zhao, Lei Cheng, Mu Pan, and Runzhang Yuan. "Single Cell Performance of Catalyst Coated Membrane Based on Superthin Proton Exchange Membrane." In ASME 2006 4th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2006. http://dx.doi.org/10.1115/fuelcell2006-97192.

Full text
Abstract:
The superthin PEM (≤ 30 μm in thickness) can be used in CCMs (Catalyst coated membranes) and helpful to lower the cost of fuel cells. In this paper, the CCM based on Nafion NRE® 211 membrane (thickness ∼25 μm) was prepared and assembled into a single fuel cell. The activation time, the V-I curves and the voltage vs time plot were used to characterize the performance of CCMs under variuos hydrogen/air humidifying conditions at ambient pressure. The experimental results showed that the fuel cell with CCMs based on NRE® 211 membrane had a shorter activation time and higher performance under humidifying conditions compared to that based on nafion NRE® 212 membrane (thickness ∼50 μm). However, it’s important to remove water from anode in order to maintain a stable performance of fuel cell. Moreover, the performance of the single fuel cell using superthin membranes could be improved at a high current density under non-humidifying conditions.
APA, Harvard, Vancouver, ISO, and other styles
6

Jung Geun Seo, Jun Taek Kwon, Junbom Kim, Woo Sik Kim, and Jong Tae Jung. "Impurity effect on proton exchange membrane fuel cell." In 2007 International Forum on Strategic Technology. IEEE, 2007. http://dx.doi.org/10.1109/ifost.2007.4798637.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, C. Y. "TRASNPORT PHENOMENA IN PROTON EXCHANGE MEMBRANE FUEL CELLS." In Proceedings of Symposium on Energy Engineering in the 21st Century (SEE2000) Volume I-IV. Connecticut: Begellhouse, 2023. http://dx.doi.org/10.1615/see2000.1870.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gwang-Yeon Jeon, Hong-Jun Choi, Young-Hoon Yun, In-Su Cha, Dong-Mook Kim, Jeong-Sik Choi, Jin-Ho Jung, and Jeong-Phil Yoon. "PEM (Proton Exchange Membrane) fuel cell bipolar plates." In 2007 International Conference on Electrical Machines and Systems. IEEE, 2007. http://dx.doi.org/10.1109/icems12746.2007.4412119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dams, R. A. J., P. Hayter, and S. C. Moore. "Fuel options For Proton Exchange Membrane Fuel Cells." In Warship 96 - Naval Submarines 5. RINA, 1996. http://dx.doi.org/10.3940/rina.warship.1996.8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ngema, S. N., A. K. Saha, and N. M. Ijumba. "Power converter for proton exchange membrane fuel cell." In 2010 International Conference on Power System Technology - (POWERCON 2010). IEEE, 2010. http://dx.doi.org/10.1109/powercon.2010.5666082.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Proton exchange membrane"

1

Lin, Rui. The Application of Proton Exchange Membrane Water Electrolysis. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, June 2024. http://dx.doi.org/10.4271/epr2024014.

Full text
Abstract:
<div class="section abstract"><div class="htmlview paragraph">Hydrogen has gained global recognition as a crucial energy resource, holding immense potential to offer clean, efficient, cost-effective, and environmentally friendly energy solutions. Through water electrolysis powered by green electricity, the production of decarbonized “green hydrogen” is achievable. Hydrogen technology emerges as a key pathway for realizing the global objective of “carbon neutrality.” Among various water electrolysis technologies, proton exchange membrane water electrolysis (PEMWE) stands out as exceptionally promising. It boasts high energy density, elevated electrolysis efficiency, and the capacity for high output pressure, making it a frontrunner in the quest for sustainable hydrogen production.</div><div class="htmlview paragraph"><b>The Application of Proton Exchange Membrane Water Electrolysis</b> delves into the challenges and trends ahead of PEMWE—from fundamental research to practical application—and briefly describes its relative characteristics, key components, and future targets. The cost-effectiveness of PEMWE is illustrated and the report explores the potential for deeper integration into various industries, such as renewable energy consumption and hydrogen for industrial purposes. It further points the current trends, concluding with a series of recommendations for consideration by government, industry stakeholders, and researchers.</div><div class="htmlview paragraph"><a href="https://www.sae.org/publications/edge-research-reports" target="_blank">Click here to access the full SAE EDGE</a><sup>TM</sup><a href="https://www.sae.org/publications/edge-research-reports" target="_blank"> Research Report portfolio.</a></div></div>
APA, Harvard, Vancouver, ISO, and other styles
2

Mayyas, Ahmad T., Mark F. Ruth, Bryan S. Pivovar, Guido Bender, and Keith B. Wipke. Manufacturing Cost Analysis for Proton Exchange Membrane Water Electrolyzers. Office of Scientific and Technical Information (OSTI), August 2019. http://dx.doi.org/10.2172/1557965.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Weisbrod, K. R., N. E. Vanderborgh, and S. A. Grot. Modeling of gaseous flows within proton exchange membrane fuel cells. Office of Scientific and Technical Information (OSTI), December 1996. http://dx.doi.org/10.2172/460311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

L.G. Marianowski. 160 C PROTON EXCHANGE MEMBRANE (PEM) FUEL CELL SYSTEM DEVELOPMENT. Office of Scientific and Technical Information (OSTI), December 2001. http://dx.doi.org/10.2172/838020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shamsuddin Ilias. DEVELOPMENT OF NOVEL ELECTROCATALYSTS FOR PROTON EXCHANGE MEMBRANE FUEL CELLS. Office of Scientific and Technical Information (OSTI), July 2001. http://dx.doi.org/10.2172/825377.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Shamsuddin Ilias. DEVELOPMENT OF NOVEL ELECTROCATALYSTS FOR PROTON EXCHANGE MEMBRANE FUEL CELLS. Office of Scientific and Technical Information (OSTI), June 2002. http://dx.doi.org/10.2172/825378.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shamsuddin Ilias. DEVELOPMENT OF NOVEL ELECTROCATALYST FOR PROTON EXCHANGE MEMBRANE FUEL CELLS. Office of Scientific and Technical Information (OSTI), January 2000. http://dx.doi.org/10.2172/778369.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shamsuddin Ilias. DEVELOPMENT OF NOVEL ELECTROCATALYSTS FOR PROTON EXCHANGE MEMBRANE FUEL CELLS. Office of Scientific and Technical Information (OSTI), April 2003. http://dx.doi.org/10.2172/821855.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Badgett, Alex, Joe Brauch, Amogh Thatte, Rachel Rubin, Christopher Skangos, Xiaohua Wang, Rajesh Ahluwalia, Bryan Pivovar, and Mark Ruth. Updated Manufactured Cost Analysis for Proton Exchange Membrane Water Electrolyzers. Office of Scientific and Technical Information (OSTI), February 2024. http://dx.doi.org/10.2172/2311140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

George Marchetti. Interim report re: component parts for proton-exchange membrane fuel cells. Office of Scientific and Technical Information (OSTI), October 1999. http://dx.doi.org/10.2172/761769.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography