Journal articles on the topic 'Proteins'

To see the other types of publications on this topic, follow the link: Proteins.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Proteins.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Boege, F. "Bence Jones-Proteine. Bence Jones Proteins." LaboratoriumsMedizin 23, no. 9 (January 1999): 477–82. http://dx.doi.org/10.1515/labm.1999.23.9.477.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Thorp, H. Holden. "Proteins, proteins everywhere." Science 374, no. 6574 (December 17, 2021): 1415. http://dx.doi.org/10.1126/science.abn5795.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The first protein structures were determined by x-ray crystallography in 1957 by John C. Kendrew and Max F. Perutz. As a bioinorganic chemist, I was delighted that the structures were myoglobin and hemoglobin, both heme proteins with big, beautiful iron atoms. It must have been an extraordinary experience to stare at a physical model of the structures and see something that had previously only been imagined. Not long afterward, Christian B. Anfinsen Jr. proposed that the structure of a protein was thermodynamically stable. It seemed possible that the three-dimensional structure of a protein could be predicted based on the sequence of its amino acids. This “protein-folding problem,” as it came to be known, baffled scientists until this year, when the papers we’ve deemed the 2021 Breakthrough of the Year were published.
3

Akhter, Tahmin, S. Kanamaru, and F. Arisaka. "2P043 Protein interactions among neck proteins, gp13/gp14, and the connector protein, gp15, of bacteriophage T4." Seibutsu Butsuri 45, supplement (2005): S130. http://dx.doi.org/10.2142/biophys.45.s130_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Williams, R. J. P. "Synthetic Proteins: Designer proteins." Current Biology 4, no. 10 (October 1994): 942–44. http://dx.doi.org/10.1016/s0960-9822(00)00213-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Töpfer-Petersen, E., D. Čechová, A. Henschen, M. Steinberger, A. E. Friess, and A. Zucker. "Cell biology of acrosomal proteins: Zellbiologie akrosomaler Proteine." Andrologia 22, S1 (April 27, 2009): 110–21. http://dx.doi.org/10.1111/j.1439-0272.1990.tb02077.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Coleman, Joseph E. "Zinc Proteins: Enzymes, Storage Proteins, Transcription Factors, and Replication Proteins." Annual Review of Biochemistry 61, no. 1 (June 1992): 897–946. http://dx.doi.org/10.1146/annurev.bi.61.070192.004341.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Paape, M., S. Nell, S. von Bargen, and J. W. Kellmann. "Identification and characterization of host proteins interacting with NSm, the Tomato spotted wilt virus movement protein." Plant Protection Science 38, SI 1 - 6th Conf EFPP 2002 (January 1, 2002): S108—S111. http://dx.doi.org/10.17221/10331-pps.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
To search for host proteins involved in systemic spreading of Tomato spotted wilt virus (TSWV), the virus-encoded NSm movement protein has been utilized as a bait in yeast two-hybrid interaction trap assays. J-domain chaperones from different host species and a protein denominated At-4/1 from Arabidopsis thaliana showing homologies to myosins and kinesins were identified as NSm-interacting partners. In this communication we illustrate that following TSWV infection, J-domain proteins accumulated in systemically infected leaves of A. thaliana, whereas At-4/1 was constitutively detected in leaves of A. thaliana and Nicotiana rustica.
8

Doolittle, Russell F. "Proteins." Scientific American 253, no. 4 (October 1985): 88–99. http://dx.doi.org/10.1038/scientificamerican1085-88.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Deisenhofer, J. "Proteins." Current Opinion in Structural Biology 11, no. 6 (December 1, 2001): 701–2. http://dx.doi.org/10.1016/s0959-440x(01)00273-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Brändén, Carl-Ivar, and Johann Deisenhofer. "Proteins." Current Opinion in Structural Biology 7, no. 6 (December 1997): 819–20. http://dx.doi.org/10.1016/s0959-440x(97)80152-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Sleator, Roy D. "Proteins." Bioengineered 3, no. 2 (March 2012): 80–85. http://dx.doi.org/10.4161/bbug.18303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Eklund, Hans, and T. Alwyn Jones. "Proteins." Current Opinion in Structural Biology 5, no. 6 (December 1995): 719–20. http://dx.doi.org/10.1016/0959-440x(95)80002-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Stevens, Timothy J., and Isaiah T. Arkin. "Are membrane proteins ?inside-out? proteins?" Proteins: Structure, Function, and Genetics 36, no. 1 (July 1, 1999): 135–43. http://dx.doi.org/10.1002/(sici)1097-0134(19990701)36:1<135::aid-prot11>3.0.co;2-i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Jin, Wenzhen, and Syoji T. akada. "1P103 Asymmetry in membrane protein sequence and structure : Glycine outside rule(Membrane proteins,Oral Presentations)." Seibutsu Butsuri 47, supplement (2007): S49. http://dx.doi.org/10.2142/biophys.47.s49_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Lan, Nan, Hanxing Zhang, Chengcheng Hu, Wenzhao Wang, Ana M. Calvo, Steven D. Harris, She Chen, and Shaojie Li. "Coordinated and Distinct Functions of Velvet Proteins in Fusarium verticillioides." Eukaryotic Cell 13, no. 7 (May 2, 2014): 909–18. http://dx.doi.org/10.1128/ec.00022-14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
ABSTRACTVelvet-domain-containing proteins are broadly distributed within the fungal kingdom. In the corn pathogenFusarium verticillioides, previous studies showed that the velvet proteinF. verticillioidesVE1 (FvVE1) is critical for morphological development, colony hydrophobicity, toxin production, and pathogenicity. In this study, tandem affinity purification of FvVE1 revealed that FvVE1 can form a complex with the velvet proteinsF. verticillioidesVelB (FvVelB) and FvVelC. Phenotypic characterization of gene knockout mutants showed that, as in the case of FvVE1, FvVelB regulated conidial size, hyphal hydrophobicity, fumonisin production, and oxidant resistance, while FvVelC was dispensable for these biological processes. Comparative transcriptional analysis of eight genes involved in the ROS (reactive oxygen species) removal system revealed that both FvVE1 and FvVelB positively regulated the transcription of a catalase-encoding gene,F. verticillioidesCAT2(FvCAT2). Deletion ofFvCAT2resulted in reduced oxidant resistance, providing further explanation of the regulation of oxidant resistance by velvet proteins in the fungal kingdom.
16

ISOBE, TAKASHI. "Amyloid proteins and amyloidosis.2 Amyloidosis of AA proteins and AL proteins." Nihon Naika Gakkai Zasshi 82, no. 9 (1993): 1415–19. http://dx.doi.org/10.2169/naika.82.1415.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Jeffery, Constance J. "Moonlighting proteins: old proteins learning new tricks." Trends in Genetics 19, no. 8 (August 2003): 415–17. http://dx.doi.org/10.1016/s0168-9525(03)00167-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Smith, Valerie J., and Elisabeth A. Dyrynda. "Antimicrobial proteins: From old proteins, new tricks." Molecular Immunology 68, no. 2 (December 2015): 383–98. http://dx.doi.org/10.1016/j.molimm.2015.08.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

TSUGITA, AKIRA. "Ultramicroanalysis of proteins. 1. Purification of proteins." Kagaku To Seibutsu 26, no. 5 (1988): 330–37. http://dx.doi.org/10.1271/kagakutoseibutsu1962.26.330.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Serdyuk, I. N. "Structured proteins and proteins with intrinsic disorder." Molecular Biology 41, no. 2 (April 2007): 262–77. http://dx.doi.org/10.1134/s0026893307020082.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Xu, Shengnan, and Hai-Yu Hu. "Fluorogen-activating proteins: beyond classical fluorescent proteins." Acta Pharmaceutica Sinica B 8, no. 3 (May 2018): 339–48. http://dx.doi.org/10.1016/j.apsb.2018.02.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Марьянович, Александр Тимурович, and Дмитрий Юрьевич Кормилец. "SARS CoV-2 PROTEINS AND HUMAN PROTEINS." Russian Biomedical Research 9, no. 1 (May 22, 2024): 48–58. http://dx.doi.org/10.56871/rbr.2024.11.95.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Белки SARS CoV-2 представляют собой молекулы с массой от нескольких десятков до нескольких тысяч аминокислотных остатков. Существуют структурные и неструктурные белки. К первым относятся шиповый гликопротеин, или S-белок (S), малый мембранный оболочечный белок (E), мембранный белок (M) и нуклеопротеин или нуклеокапсид (N). Вторая группа состоит из 16 неструктурных белков (Nsp1-16, включая полипротеины репликазы RPP 1a и 1ab) и 10 вспомогательных факторов или белков открытой рамки считывания (ORF3a, 3b, 6, 7a, 7b, 8, 9b, 9c, 10 и 14). Белки S, E и M, расположенные снаружи и в мембране вириона, участвуют в контакте вириона с клеткой и проникновении в нее. Другие белки участвуют в захвате внутриклеточных механизмов и их использовании в собственных интересах вируса. Большинство этих белков содержат многочисленные мотивы, гомологичные человеческим белкам, в том числе таким важным, как интерлейкин-7. Возможно, эта гомология является важным фактором, позволяющим «обмануть» иммунную систему на начальных стадиях инфекции и спровоцировать аутоиммунный ответ впоследствии. Гомология белков SARS CoV-2, с одной стороны, и белков вкусовых и обонятельных рецепторов — с другой, возможно, объясняетпричины нарушения восприятия вкусовых и обонятельных раздражителей, характерного для COVID-инфекции. SARS CoV-2 proteins are molecules with a mass of several tens to several thousand amino acid residues. There are structural and nonstructural proteins. The former include Spike glycoprotein (S), small membrane envelope protein (E), membrane protein (M), and nucleoprotein or nucleocapsid (N). The second group consists of 16 nonstructural proteins (Nsp1-16, including replicase&nbsp; polyproteins RPP 1a and 1ab) and 10 accessory factors or open reading frame proteins (ORF3a, 3b, 6, 7a, 7b, 8, 9b, 9c, 10 and 14). Proteins S, E and M, located outside and in the membrane of a virion, are involved in the contact of the virion with a cell and penetration into it. Other proteins are involved in the hijacking of intracellular mechanisms and their use in the virus’s own interests. Most of these proteins contain numerous motifs that are homologous to human proteins including such important ones as Interleukin-7. Perhaps this homology is an important factor in deceiving the immune system at the initial stages of infection and provoking an autoimmune response later. The homology of SARS CoV-2 proteins on the one hand and taste and olfactory receptor proteins on the other hand may possibly explain the causes of the impaired perception of taste and olfactory stimuli characteristic of COVID infection.
23

Pillai, Harikrishna, Harikumar, S. Harikumar, S, Pramod kumar, R. Pramod kumar, R, and Anuraj, K. S. Anuraj, K.S. "Dna Mimicry by Proteins." International Journal of Scientific Research 3, no. 8 (June 1, 2012): 471–72. http://dx.doi.org/10.15373/22778179/august2014/150.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Littler, Dene R., Stephen J. Harrop, Sophia C. Goodchild, Juanita M. Phang, Andrew V. Mynott, Lele Jiang, Stella M. Valenzuela, et al. "The enigma of the CLIC proteins: Ion channels, redox proteins, enzymes, scaffolding proteins?" FEBS Letters 584, no. 10 (January 18, 2010): 2093–101. http://dx.doi.org/10.1016/j.febslet.2010.01.027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Chakraborty, Asit Kumar. "Multi-Alignment Comparison of Coronavirus Non-Structural Proteins Nsp13- Nsp16 with Ribosomal Proteins and other DNA/RNA Modifying Enzymes Suggested their Roles in the Regulation of Host Protein Synthesis." International Journal of Clinical & Medical Informatics 3, no. 1 (June 1, 2020): 7–19. http://dx.doi.org/10.46619/ijcmi.2020.1024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Hung, Kuo-Wei, Chun-Chia Cheng, Yi-Chao Lin, Tsan-Hung Yu, Pei-Ju Fan, Chi-Fon Chang, Shih-Feng Tsai, and Tai-Huang Huang. "2P089 NMR Studies of Virulence-associated Proteins and Small Conserved Hypothetical Proteins in Klebsiella Pneumoniae(30. Protein function (II),Poster Session,Abstract,Meeting Program of EABS & BSJ 2006)." Seibutsu Butsuri 46, supplement2 (2006): S318. http://dx.doi.org/10.2142/biophys.46.s318_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Ma, Yingxuan, and Kim Johnson. "Arabinogalactan-proteins." WikiJournal of Science 4, no. 1 (2021): 2. http://dx.doi.org/10.15347/wjs/2021.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Arabinogalactan-proteins (AGPs) are highly glycosylated proteins (glycoproteins) found in the cell walls of plants. AGPs account for only a small portion of the cell wall, usually no more than 1% of dry mass of the primary wall. AGPs are members of the hydroxyproline-rich glycoprotein (HRGP) superfamily that represent a large and diverse group of glycosylated wall proteins. AGPs have attracted considerable attention due to their highly complex structures and potential roles in signalling. In addition, they have industrial and health applications due to their chemical/physical properties (water-holding, adhesion and emulsification). Glycosylation can account for more than 90% of the total mass. AGPs have been reported in a wide range of higher plants in seeds, roots, stems, leaves and inflorescences. They have also been reported in secretions of cell culture medium of root, leaf, endosperm and embryo tissues, and some exudate producing cell types such as stylar canal cells are capable of producing lavish amounts of AGPs.
28

Löer, Birgit, and Michael Hoch. "Wech proteins." Cell Adhesion & Migration 2, no. 3 (July 2008): 177–79. http://dx.doi.org/10.4161/cam.2.3.6579.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Yarotskyy, Viktor, and Robert T. Dirksen. "RGK proteins." Channels 8, no. 4 (July 2014): 286–87. http://dx.doi.org/10.4161/chan.29982.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Flannery, Maura C. "Designing Proteins." American Biology Teacher 48, no. 2 (February 1, 1986): 112–14. http://dx.doi.org/10.2307/4448220.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Guo, Shiny Shengzhen, and Reinhard Fässler. "KANK proteins." Current Biology 32, no. 19 (October 2022): R990—R992. http://dx.doi.org/10.1016/j.cub.2022.08.073.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

GÖKSEL, Şeyma, and Mustafa AKÇELİK. "Autotransporter Proteins." Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi 13, no. 3 (December 31, 2021): 49–57. http://dx.doi.org/10.29137/umagd.1037361.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Danilova, Lubov A. "Glycated proteins." Pediatrician (St. Petersburg) 10, no. 5 (January 28, 2020): 79–86. http://dx.doi.org/10.17816/ped10579-86.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Glycation is a biological reaction that occurs in all proteins. Thisreaction proceeds more slowly in healthy subjects and more rapidly in patients suffering from a hyperglycemia. Glycated proteins cannot fulfill their functions that could lead to metabolic disorders. The process of glycation leads to building of advanced glycation end-products (AGEs). Thestructureof AGEs has not been fully researched yet. Glycated proteins have diagnostic meaning in different health conditions and not only in patients with diabetes mellitus. Determination of glycated proteins level (hemoglobin and plasma proteins) in diagnostics of diabetes mellitus and the effectiveness of its treatment; measurements of glycated proteins could be used as a predictor of different illnesses and their complications. Glycated hemoglobin was researched in children with diabetes mellitus of different severity. It has been shown that the level of glycated proteins does not always correlate with blood sugar level. Results of glycated proteins measurements in patients with thyroid disorders shows that the glycation takes place not only in patients with diabetes mellitus, but also with other illnesses without hyperglycemia. Our research in patients with diabetes mellitus has shown that the measured level of glycated proteins and plasma proteins could be more significant in the course of disease than the level of blood sugar. Compensation of diabetes mellitus in children in regard of the blood sugar level does not always correlate with the level of glycated proteins. This assumption could lead to the conclusion that only the combination of measurements like blood sugar, glycated hemoglobin and glycated proteins could give a full picture of disease compensation.
34

Mudgil, Yashwanti, and Alan M. Jones. "NDR proteins." Plant Signaling & Behavior 5, no. 8 (August 2010): 1017–18. http://dx.doi.org/10.4161/psb.5.8.12290.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Thomas, Clément, Céline Hoffmann, Sabrina Gatti, and André Steinmetz. "LIM Proteins." Plant Signaling & Behavior 2, no. 2 (March 2007): 99–100. http://dx.doi.org/10.4161/psb.2.2.3614.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Roterman, Irena, Mateusz Banach, and Leszek Konieczny. "Antifreeze proteins." Bioinformation 13, no. 12 (December 31, 2017): 400–401. http://dx.doi.org/10.6026/97320630013400.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Glomset, John A., Michael H. Gelb, and Christopher C. Farnsworth. "Geranylgeranylated proteins." Biochemical Society Transactions 20, no. 2 (May 1, 1992): 479–84. http://dx.doi.org/10.1042/bst0200479.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

DECLERCQ, JEROEN, KAREN HENSEN, WIM J. VAN DE VEN, and MARCELA CHAVEZ. "PLAG Proteins." Annals of the New York Academy of Sciences 1010, no. 1 (December 2003): 264–65. http://dx.doi.org/10.1196/annals.1299.045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Anderson, Alexandra, and Rachel McMullan. "G-proteins." Worm 1, no. 4 (October 2012): 196–201. http://dx.doi.org/10.4161/worm.20466.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Demming, Anna. "Precision proteins." Nanotechnology 21, no. 23 (May 17, 2010): 230201. http://dx.doi.org/10.1088/0957-4484/21/23/230201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

MACEK, F. "Microbial proteins." Kvasny Prumysl 32, no. 11 (November 1, 1986): 258–62. http://dx.doi.org/10.18832/kp1986072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Gehring, W. J., M. Affolter, and T. Burglin. "Homeodomain Proteins." Annual Review of Biochemistry 63, no. 1 (June 1994): 487–526. http://dx.doi.org/10.1146/annurev.bi.63.070194.002415.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Willert, K., and R. Nusse. "Wnt Proteins." Cold Spring Harbor Perspectives in Biology 4, no. 9 (September 1, 2012): a007864. http://dx.doi.org/10.1101/cshperspect.a007864.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Sansom, Clare. "Fluorescent proteins." Biochemist 35, no. 5 (October 1, 2013): 40–41. http://dx.doi.org/10.1042/bio03505040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Yost, C. Spencer. "G Proteins." Anesthesia & Analgesia 77, no. 4 (October 1993): 822???834. http://dx.doi.org/10.1213/00000539-199310000-00029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Vale, Ronald D. "Aaa Proteins." Journal of Cell Biology 150, no. 1 (July 10, 2000): F13—F20. http://dx.doi.org/10.1083/jcb.150.1.f13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Fujiwara, Toru, Eiji Nambara, Kazutoshi Yamagishi, Derek B. Goto, and Satoshi Naito. "Storage Proteins." Arabidopsis Book 1 (January 2002): e0020. http://dx.doi.org/10.1199/tab.0020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Bussell, Katrin. "Territorial proteins." Nature Reviews Molecular Cell Biology 5, no. 10 (October 2004): 774. http://dx.doi.org/10.1038/nrm1514.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Brummer, Tilman, Carsten Schmitz-Peiffer, and Roger J. Daly. "Docking proteins." FEBS Journal 277, no. 21 (September 30, 2010): 4356–69. http://dx.doi.org/10.1111/j.1742-4658.2010.07865.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Selitrennikoff, Claude P. "Antifungal Proteins." Applied and Environmental Microbiology 67, no. 7 (July 1, 2001): 2883–94. http://dx.doi.org/10.1128/aem.67.7.2883-2894.2001.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography