Dissertations / Theses on the topic 'Protéines de signalisation YAP'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Protéines de signalisation YAP.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Nallet-staub, Flore. "Caractérisation de la voie hippo et de ses effecteurs YAP et TAZ dans la pathologie du mélanome cutané." Paris 7, 2012. http://www.theses.fr/2012PA077202.
Full textYAP and its paralog protein TAZ are downstream effectors of the Hippo pathway in mammals. Both are amplified in many human cancers and promote cell proliferation and epithelial-mesenchymal transition. To date, little is known about the status of the Hippo pathway in cutaneous melanoma. Then, we undertook a broad analysis of Hippo pathway component expression in human melanoma cell lines and tumors, and! characterized the capacity of YAP and TAZ to control melanoma cell behavior. YAP and TAZ immunostaining revealed mixed cytoplasmic and nuclear staining for both proteins in benign nevi as well as in human melanoma samples. Variable expression of Hippo kinases LATS1/2 and MST1/2 and their effectors YAP1/2 and TAZ was found across a panel of human melanoma cell lines, irrespective of their BRAF mutation status. TAZ was the most predominantly expressed in ail cell lines. Western analysis revealed constitutive phosphorylation of LATS, MST, YAP and TAZ in several cell lines, indicating functional Hippo signaling. Stable knockdown of YAP or TAZ expression in four distinct |cell lines dramatically reduced the expression of CTGF, a classical Hippo target, as well |as anchorage-independent growth, and capacity to invade Matrigel and form lung! métastases in mice. YAP knockdown in 1205Lu cells also reduced invasion in a model of skin reconstruct. Inversely, YAP overexpression increased melanoma cell invasiveness, associated with increased TEAD-dependent transcription and CTGF expression. Together, these results indicate that both YAP and TAZ contribute to the invasive capacity in melanoma cells
Poirson, Juline. "Interactome des oncoprotéines E6 et E7 des HPV : du système ubiquitine-protéasome à la voie de signalisation Hippo." Thesis, Strasbourg, 2016. http://www.theses.fr/2016STRAJ052.
Full textThe human papillomavirus (HPVs) are the archetype of DNA oncogenic viruses. High-risk mucosal HPVs (mainly HPV16) are the main causative agents of cervical cancer and are also involved in other cancers. HPV oncogenic properties are mainly due to the expression of E6 and E7 proteins. We built a resource composed of 600 cDNA encoding the human ubiquitin-proteasome system (UPS) effectors and identified novel E6 and E7 potential targets by using a method based on the complementation of the Gaussia princeps luciferase (GPCA). HPV16 E6 binds to specific LxxLL motifs present in E6AP and IRF3. We have solved the crystallographic structure of the E6/E6AP LxxLL/p53 and E6/IRF3 LxxLL complexes. Furthermore, HPV may target a novel tumour suppressor pathway, the Hippo signalling pathway with its two main mediators YAP and TAZ. We have built a cDNA library dedicated to the 265 human PDZ domains and identified news potential partners of YAP and TAZ proteins by using the GPCA. The results provide novel insights on HPV biology and their oncogenic property
Ruscica, Biagina. "The critical role of YAP and TAZ in tubular homeostasis." Electronic Thesis or Diss., Université Paris Cité, 2024. https://wo.app.u-paris.fr/cgi-bin/WebObjects/TheseWeb.woa/wa/show?t=6623&f=77103.
Full textEpidemiological and experimental studies suggest that the progression of Chronic Kidney Disease (CKD) after an initial injury is genetically determined, but the genetic networks that contribute to this predisposition remain unknown. Among the potential molecular pathways involved in CKD, this study focused on the Hippo pathway, an evolutionarily conserved signaling cascade crucial for regulating organ size and cell proliferation. The paralogs proteins YAP and TAZ, two transcriptional coactivators of the Hippo pathway, have recently been identified also as mechanosensors, capable of detecting a wide range of mechanical cues and translating them into cell-specific transcriptional programs. Activation of YAP and TAZ has been implicated to the progression of several kidney diseases and in the transition from acute kidney injury (AKI) to CKD. However, the underlying mechanisms remain unclear and their role under physiological conditions is still not well understood. The aim of this project is to elucidate the role of YAP and TAZ in the renal tubules. First, using the combination of inducing transgenic mouse models and nephrectomy as a model of CKD, we investigated the effect of the selective inactivation of Yap or Taz gene in renal tubular cells in this disease context. Our findings revealed a potential redundancy between these two proteins in tubular epithelial cells. Interestingly, our mice deficient in both YAP and TAZ developed a spontaneous severe renal phenotype with tubular injury, fibrosis and inflammation, which was described in detail in this work. Through transcriptomic analysis, we identified a new novel molecular signature that may provide further insight into the mechanisms regulated by YAP and TAZ in tubular cells. Paradoxically, in our double knock-out model, we observed a worsening of YAP and TAZ expression and activation, in parallel with the lesion progression. This appeared to be the result of an expansion of the "non-recombined" cells, showing the complex roles of YAP and TAZ in the cross-talk with the neighbouring cells. These data demonstrated the essential role of YAP and TAZ in maintaining tubular homeostasis and the intricate balance required for their regulation. This complexity may have implications for therapeutic strategies targeting the inhibition of YAP and TAZ in kidney disease, especially considering the potential side effects that could make such approaches more challenging
Chevalier, Elodie. "Place de la signalisation Hippo dans l'histoire naturelle du Mésothéliome Pleural Malin (MPM) : dissection de ses rôles dans les lignées mésothéliales pleurales humaines et application à la caractérisation moléculaire des 448 patients atteints de MPM inclus dans l'essai clinique de phase 3 "MAPS"." Thesis, Normandie, 2018. http://www.theses.fr/2018NORMC405/document.
Full textMalignant pleural mesothelioma (MPM) is a rare, very aggressive, primary tumor with a poor prognosis. During this thesis, we wanted to identify new biomarkers of MPM by testing the influence of the RASSF/Hippo pathway inactivation on the survival of the 448 patients included in the clinical trial MAPS (IFCT- GFPC-0701). We also wanted to understand which functions and signals essential to cellular homeostasis, linked to RASSF/Hippo signaling pathway, are disturbed during the mesothelial cell transformation process. Inactivation of RASSF/Hippo members was studied by methylation-specific PCR (MS-PCR) and their influence on the survival of the 448 patients included in the MAPS clinical trial tested in uni- and multivariate analysis before being validated by bootstrap. We also mimed in cell, by RNA interference, several members of the Hippo pathway inactivation in human mesothelial cells lines (MSTO-211H, H2452, H28 and H2052). We have identified several biomarkers of MPM: i) MST1 kinase whose inactivation is a factor of poor prognosis, ii) amphiregulin whose cytoplasmic expression is on the contrary a factor of good prognosis and finally iii) CD44 whose high expression is a diagnostic tool for MPM. In cell we demonstrate that RASSF/Hippo pathway alterations induce an inappropriate activity of YAP, one Hippo end effector: the poorer prognosis of patients with inactivation of MST1 is thus explained by the fact that, by regulating YAP activity, MST1 controls the apoptosis/proliferation balance and prevents invasion and growth without adhesion from mesothelial cells. In its absence, these cellular processes are deregulated. This work finally demonstrates the importance of the CD44/RASSF1A/MST1 axis in controlling appropriate YAP activity and mesothelial cell homeostasis. The understanding of the cellular disorders induced by the of the RASSF/Hippo pathway deregulation designates YAP as a potential therapeutic target in patients with MPM and presenting alterations of this signaling pathway
Bousaleh, Mohamed. "Définir de nouvelles cibles thérapeutiques pour l´hépatite alcoolique : nécessité d´une approche translationnelle." Thesis, Lille 2, 2019. http://www.theses.fr/2019LIL2S041.
Full textAlcoholic hepatitis (AH) is a complex disease associated to a poor prognosis. The therapeutic arsenal is limited to corticosteroid treatment. However, 40% of patients do not respond to the treatment and liver transplantation represents the last option for their survival. AH is characterized by a large infiltration of polymorphonuclear neutrophils (PMN), and paradoxically the infection of these patients is a frequent event related to mortality. On the other hand, our group has demonstrated in AH an important defect of hepatic regeneration characterized by a decrease in hepatocytes proliferation, and the formation of ductular reaction. The aim of our study was to determine the cellular mechanisms causing the defect of liver regeneration in AH, to explore the pathophysiological mechanisms involved in the interaction of the PMN and hepatocytes, and to evaluate the migratory capacity of the PMN.Our work has highlighted the Hippo/YAP pathway as profoundly altered during AH. The effector YAP was aberrantly activated in AH hepatocytes. This led to the dedifferentiation and the loss of function of hepatocytes. The treatment of AH-isolated hepatocytes by the YAP inhibitor, dobutamine, limited the dedifferentiation process. Targeting YAP appears as an innovative strategy for AH management. Our work also identified the NOD1 pathway as a major actor in the PNN/hepatocyte interaction through expression of adhesion molecules. Our results suggest that NOD1 is an interesting target to limit PMN-induced liver injury. In addition, during AH, deregulation of the IL33 / sST2 pathway was involved in PNN migration. We have demonstrated a decrease in the migratory capacity of circulating PMNs. The treatment of PMN by IL33 was able to compensate for this migratory defect, which represents an interesting tool to prevent infectious risks during AH
Morice, Sarah. "Rôle de la voie de signalisation Hippo dans le développement des ostéosarcomes." Thesis, Nantes, 2019. http://www.theses.fr/2019NANT1037.
Full textOsteosarcoma (OS) is the most common primary malignant bone tumour in children and adolescents for whom the prognosis remains poor, especially when metastases are present at diagnosis. Transcriptomic analyses of biopsies from OS patients reveal the presence of an Hippo signalling pathway gene signature in the OS. Its main effector, YAP, is known for its oncogenic role in a number of cancers. In order to study its role in the development of OS, we developed a molecular approach by overexpressing YAP that could or not interact with its transcription factor TEAD. In vitro and in vivo experiments revealed the crucial role of TEAD in cell proliferation and tumor growth mediated by YAP. In addition, we showed that overexpression of YAP increases cell migration in vitro and metastatic dissemination in vivo, regardless of its interaction with TEAD. Transcriptomic analysis showed a genes enrichment related to epithelial-mesenchymal transition, cell migration and TGF-β in cells overexpressing YAP, regardless of its ability to interact with TEAD. PLA and immunoprecipitation experiments showed YAP/Smad3 interaction, the main effector of the TGF-β pathway. Using a specific inhibitor of TGF-β, SD-208, we demonstrated the essential role of TGF- β/Smads signalling in YAP-mediated metastatic dissemination. These results defined the specific role of TEAD and Smad3 in the tumor progression of OS, and identified YAP as a central actor in the development of OS. Thus, YAP could be a promising therapeutic target in OS
Meléndez, García Rodrigo. "YAP as a Regulator of DNA Replication Timing." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASL014.
Full textStemness could be defined as a state in which a cell is able to self-renew and/or to differentiate after cell division. Before this happens, exhaustive duplication of the genome free of errors must occur in order to avoid deleterious mutations, a hallmark of cancer. Thus, DNA replication is particularly important to stem cells because of their continuous division capacities. Regarding DNA replication in eukaryotes, it was discovered that segments of chromosomes close in space, replicate in a coordinated manner during S phase, a process called replication timing. Moreover, major changes in replication timing correlate with cell differentiation, 3D chromatin architecture and transcription. However, the molecules that govern its regulation are poorly understood. Previously, my laboratory found that YAP, the downstream effector of the Hippo pathway, regulates S phase progression of retinal stem cells in Xenopus laevis. To test YAP function in the direct control of replication timing, we took advantage of the powerful in vitro DNA replication system of X. laevis egg extracts. Briefly, we discovered that YAP is recruited to replicating chromatin dependently of origin licensing. In addition, YAP depleted extracts showed increased DNA synthesis and origin activation; revealing that YAP normal function is to slow-down replication by limiting origin firing. Interestingly, we found Rif1, a major regulator of replication timing, as a novel partner of YAP. In vivo, Rif1 expression overlaps that of Yap within the stem cell compartment of the Xenopus retina. Knockdown of Rif1 leaded to a small-eye phenotype and alterations in replication foci of retinal stem cells, resembling the effect observed in YAP deficient cells. Finally, early-embryonic depletion of both molecules resulted in a strikingly acceleration of cell division.Altogether, our findings unveil YAP implication in the regulation of replication dynamis and show Rif1 as a novel partner. Further investigation to analyze this interaction would help us to understand the biological relevance in the control of replication timing and whether it could be used as a target in regenerative medicine
Cabochette, Pauline. "CARACTERISATION DU RESEAU DE SIGNALISATION IMPLIQUE DANS LA MAINTENANCE ET LA PROLIFERATION DES CELLULES SOUCHES DE LA RETINE DU XENOPE." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA11T089/document.
Full textIn contrast to the adult mammals, the retina of amphibians shows continuous growth during adulthood through active neural stem cells localized in the defined niche called ciliary marginal zone (CMZ). This model offers an exceptional tool to study in vivo the molecular mechanisms involved in the maintenance and proliferation of neural stem cells during post-embryonic stages. In this order, the identification and the characterization of the signaling pathways acting in biological retinal stem cell niche is an essential step.My PhD research was divided in two main parts: the study of the interaction between the Wnt and Hedgehog pathways within the CMZ and the functional study of Yap, the downstream effector of the Hippo pathway in this model. By using genetic and pharmacological tools, the first part of this project demonstrated an unexpected antagonism between the Wnt and the Hedgehog signaling in the CMZ that regulates proliferative activity of retinal stem and progenitor cells. In this article, we propose a model in which an antagonistic interplay of Wnt and Hedgehog pathways may regulate the balance proliferation/differentiation in the post-embryonic retina. Second, gain and loss of function experiments of Yap have shown that this factor plays a key role in the regulation of temporal replication of DNA retinal stem cells. Indeed, inhibition of Yap leads to strong reduction of the S-phase length during the cell cycle associated with genomic instability. c-Myc and p53-p21 overactivation seems to be involved in this phenotype. This work also allowed us to identify a novel YAP partner, the transcriptional factor PKNOX1. We indeed propose a model in which the YAP/PKNOX1 complex may be required for the successful convening of the replication phase on stem cells, essential for the maintenance of genome integrity on the cells and their progeny
Moretti, Julien. "Deubiquitinations dans la voie de signalisation Notch." Paris 6, 2011. http://www.theses.fr/2011PA066365.
Full textBanerjee, Sara Luiza. "Identification de nouvelles protéines effectrices dans la signalisation des récepteurs Eph." Doctoral thesis, Université Laval, 2021. http://hdl.handle.net/20.500.11794/69034.
Full textThe cellular response to extracellular stimuli is often mediated by signaling pathways that act downstream of transmembrane receptors, such as receptor tyrosine kinases (RTKs). With fourteen members, the Eph family of RTKs is the largest in humans. In contrast to other RTKs, Eph receptor cognate ligands, ephrins, are tethered to the cell surface. This results in Eph receptor-ephrin signaling being mainly involved in short-range cell-cell communication events that regulate cell migration, repulsion and cell-cell adhesion. These events are crucial in biological processes such as axon guidance and tissue boundary formation in the developing and adult organisms. Eph receptors are frequently overexpressed or deregulated in a variety of human tumors, especially in the more aggressive and lethal ones. In recent years, the Eph-ephrin signaling system became an emerging new target for cancer treatment. Although a plethora of Eph receptor biological functions have been extensively studied, we still have a vague idea on the molecular mechanisms of Eph receptor signal transduction, underlying how Eph receptors regulate precise cellular phenotypes. To better understand the Eph receptor signaling system, my studies focused on the identification of novel Eph receptor downstream effector proteins and the determination of their requirement for Eph receptor-regulated functions. To unravel Eph receptor-associated signaling complexes under native conditions, I applied a mass spectrometry (MS)-based approach, namely BioID proximity labeling. This allowed me to overcome the limitations of conventional affinity purification approaches for mapping protein-protein interactions of transmembrane receptors. I obtained a composite signaling network from EphA4, -B2, -B3 and -B4 receptors that comprises 395 proteins, most of which not previously linked to Eph signaling. To test the biological relevance of the identified Eph receptor proximity interactors, I examined the contribution of 17 candidates using a loss-of-function approach in an Eph receptor-dependent cell sorting assay. I showed that depletion of a few candidates, including the signaling scaffold Par3, blocks Eph receptordependent cell sorting. Using affinity purification combined with MS, I further delineated a signaling complex involving C-terminal SRC kinase (CSK), whose recruitment to Par3 complexes is dependent on Eph receptor signals. To further elucidate Eph receptor-centric signaling complexes that are formed upon ephrin binding and are affected by Eph receptor catalytic activity I performed TurboID experiments. I systematically mapped ligand stimulation-dependent signaling networks downstream of EphA4 and EphB2 receptors. I dissected the impact of ephrin-B2 stimulation on the formation of EphA4- nucleated proximal protein complexes. Moreover, I showed the differential recruitment of EphB2 partners upon receptor binding to the same subclass of ligands, ephrin-B1 and ephrin-B2. To explore whether the EphB2 interactions with these two ephrin-B ligands elicit different reverse signaling responses, I delineated ephrin-B1/-B2 proximity partners recruited upon EphB2 stimulation. I also determined that the kinase domain of EphA4/-B2 plays a major role in determining the composition of signaling networks around the receptors, as a loss of catalytic activity led to a drastic decrease in a number of interactors with the receptors. Collectively, my definition of Eph receptor signaling networks sheds light on physiologically relevant Eph receptor-centered protein complexes that occur in living cells. These studies will lead to a better understanding of the mechanisms by which Eph receptors transmit signals at the membrane and give insight into how Eph receptor-mediated signaling pathways contribute to boundary formation, a process often disrupted in diseases like cancer.
Chaves-Almagro, Carline. "Signalisation apeline : nouvelle cible thérapeutique de l'adénocarcinome pancréatique ?" Thesis, Toulouse 3, 2015. http://www.theses.fr/2015TOU30246/document.
Full textApelin, the endogenous ligand of the human G-protein coupled receptor, APJ, is a key regulator of cardiovascular system, notably during physiological and tumor angiogenesis. Using a cancer profiling array approach, our team clearly showed that apelin gene is overexpressed in one third of the human carcinomas, with the highest frequency (2/3) in pancreatic cancers. Thus, the aim of my PhD project was to characterize apelin signaling function during pancreatic carcinogenesis. Pancreatic ductal adenocarcinoma (PDAC) is the most common form of pancreatic cancer and the discovery of biomarkers and new therapeutic targets is of crucial interest for this cancer since this cancer is diagnosed too late and there is no effective therapy. By an immunohistochemistry approach on human PDAC slides (49 patients), we show that apelin and APJ are strongly expressed by pancreatic tumor cells. In order to characterize apelin and APJ spatio-temporal expression during pancreatic carcinogenesis, we have studied their expression by immunohistochemistry in genetically engineered mouse models of PDAC. In the K-ras mouse model (Lox-Stop-Lox-K-rasG12D/+/Pdx1-Cre) which recapitulates early stages of the disease, and in the KPC mouse model (Lox-Stop-Lox- K-rasG12D/+ ; Lox-Stop-Lox-Trp53 R172H/+/Pdx1-Cre) which develops PDAC until invasive stages, our results demonstrate that apelin and its receptor are expressed by tumor cells since the first steps of carcinogenesis. In order to study apelin signaling function, we have characterized signal transduction pathways activated by apelin in MiaPaCa human pancreatic cancer cell line endogenously expressing apelin and APJ as observed in vivo. In these cells, apelin induces transient activation of ERKs and p70S6 Kinase, a sustained Akt activation and an inhibitory phosphorylation of GSK3 thus allowing Beta-catenin stabilization. Interestingly, my results demonstrate that the MAPK pathway activation apelin induced is Gi protein dependent. Conversely, long term stimulation of PI3K/Akt pathway is G protein independent but instead involves receptor internalization. Moreover, apelin positively regulates on one hand c-myc and cyclin D1 protein levels, both of them being implicated in cell proliferation and on the other hand, intracellular protein content of Hexokinase 2 in order to ensure high glycolytic flux which is essential for tumor cells energy supply. These results are in agreement with cellular effects that we observed since apelin stimulates proliferation, glucose uptake and migration of tumor cells which are essentials properties for tumor progression. Accordingly, apelin and APJ overexpression in PDAC and the effects of this signaling pathway on tumor cells make of this ligand/receptor couple a new potential therapeutic target for pancreatic cancer treatment
Picault, François-Xavier. "Signalisation apeline et adénocarcinomes coliques." Toulouse 3, 2013. http://thesesups.ups-tlse.fr/2407/.
Full textApelin, the endogenous ligand of the human G protein-coupled APJ receptor, is an angiogenic factor, which stimulates tumour growth by a paracrine effect on tumor neovascularisation. Our team also showed an upregulation of apelin gene expression in half of the human colon adenocarcinomas. The aim of my thesis was to determine the role of apelin signalling during colon carcinogenesis. I first confirmed by immunohistochemistry the overexpression of apelin peptide in the human colon adenocarcinomas. Then I showed for the first time that this overexpression occurred as soon as the adenoma stage. On adjacent sections, I observed the co-expression of APJ receptor with an identical temporal pattern of expression. These results therefore suggest the existence of an autocrine loop which might participate in the growth of colon tumours. In order to validate this hypothesis, we studied the expression of apelin and its receptor in several colorectal human cancer cell lines. In view of their high expression of apelin and apelin receptor, LoVo cells were selected for in vitro experiments. In this cell line, apelin induced Akt phosphorylation and adenylyl cyclase inhibition, thereby confirming the presence of the receptor at the plasma membrane as well as its functionality. Although apelin did not exert any mitogenic effect, it clearly acted as an anti-apoptotic factor. Indeed, the different apelin fragments protected LoVo cells from cell death induced by TNF-related apoptosis-inducing ligand (TRAIL) or the MG132 proteasome inhibitor. In addition, apelin inhibited caspase 3 cleavage, enzymatic activity of caspases 3 and 7 and PARP degradation induced by MG132. All these data clearly demonstrate that the activation of apelin signalling promotes an inhibition of apoptotic cell pathways which would increase tumour growth. The most prominent result was the inhibitory effect induced by the (F13A)apelin13 receptor antagonist on LoVo cell proliferation. Accordingly, co-expression of apelin and its receptor is the basis of a tumoral autocrine loop which should reinforce tumour growth. The co-existence of this autocrine effect on tumour and the paracrine effect on tumour vessels clearly emphasises the promising role of apelin signalling as a new therapeutic target in the treatment of human colon cancers
García-García, Diana. "Müller Cells and Retinal Regeneration : The Role of the Hippo/YAP Signaling Pathway Yap Haploinsufficiency Leads to Müller Cell Dysfunction and Late-Onset Cone Dystrophy Linking YAP to Müller Glia Quiescence Exit in the Degenerative Retina." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASL068.
Full textDegenerative diseases of the retina are one of the main causes of blindness. Among the various therapeutic strategies currently being studied, our team is focusing on the regenerative potential of the retina. One cellular source of interest are Müller cells, the main type of glial cells in the retina capable of reactivating in case of degeneration, a process called reactive gliosis, and in some species adopting certain characteristics of stem cells. If such a process sustains powerful regeneration abilities in teleosts, it is however largely inefficient in mammals. Hence, increasing our knowledge of the molecular mechanisms underlying the behaviour of these cells under pathological conditions may help turning their regenerative properties into new therapeutic strategies. In this context, my laboratory focused on the terminal effector of the Hippo pathway, the co-transcriptional factor YAP, which has been shown to stimulate regeneration of several injured organs. In the retina, YAP is specifically expressed in Müller cells and upregulated in case of damage. However, its function in retinal homeostasis, and its role in retinal regeneration remained unknown.The first part of my PhD aimed at deciphering YAP function in mouse Müller cells in both physiological and pathological conditions. In essence, we revealed a central role of YAP in Müller cell-dependent retinal homeostasis and as such, as a key player for cone survival during aging. In case of retinal damage, we showed that YAP upregulation is critical for cell-cycle gene reactivation that normally accompanies reactive gliosis. In this context, we also found a functional interaction between YAP and the EGFR signaling pathway, supporting a function of YAP as a hub within the complex signaling network of key regenerative signaling pathways. I also found that YAP overactivation is sufficient to induce mouse Müller cell reprogramming into highly proliferative cells, mimicking a fish or amphibian condition, when Müller cells spontaneously proliferate upon injury. As a whole, this work highlights the critical role of YAP in driving mammalian Müller cells to exit quiescence and thus reveals a potential target for regenerative medicine.The second part of my PhD project stemmed from the emerging discoveries highlighting inflammatory pathways as regulators of the regenerative process. Although inflammation is considered to hamper retinal regeneration in mammals, there are no studies regarding the influence of inflammation on mouse Müller cell-dependent regenerative process. In addition, recent discoveries on the role of YAP in the regulation of the inflammatory process lead to the hypothesis that it could play a role in the relationship between inflammation and retinal regeneration. I thus aimed at investigating the role played by the injury-induced inflammation on mouse Müller cell behavior and how YAP fits in this interplay. I unexpectedly discovered that a microglial-dependent pro-inflammatory context stimulates mouse Müller cell proliferation in retinal explants. Importantly, my results showed that this mitogenic effect occurs in a YAP-dependent manner. Moreover, I uncovered that the effect of YAP overexpression on Müller cell proliferation can be potentiated by a pro-inflammatory environment, and abolished upon microglia depletion. Finally, we found that, in turn, YAP regulates key inflammatory cytokines. Altogether, this part of my project not only deepen our knowledge regarding the impact of inflammation on mouse Müller cell behavior, it also highlights YAP as a key player in the crosstalk between inflammation and retinal regeneration
Girardin, Stephen. "Régulation de la voie de signalisation intracellulaire JNK/SAPK." Université Louis Pasteur (Strasbourg) (1971-2008), 2001. http://www.theses.fr/2001STR13179.
Full textJabrani, Amira. "Régulation de la voie Hedgehog : Étude structurale et fonctionnelle de protéines de signalisation." Phd thesis, Université Paris Sud - Paris XI, 2012. http://tel.archives-ouvertes.fr/tel-00737495.
Full textBonnemay, Louise. "Utilisation de nanoparticules magnétiques pour perturber la localisation spatiotemporelle de protéines de signalisation." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066528/document.
Full textAn increasing number of studies highlight the importance of signaling localization. We developed methods to perturb this localization using magnetic nanoparticles. Proteins of interest are grafted on magnetic nanoparticles, allowing to magnetically localize them. We first propose a new method to engineer directly a spatial gradient of signaling protein concentration within in cell extract droplets using super-paramagnetic nanoparticles. We observed a link between a spatial asymmetry in biochemical cues and microtubules aster positional information. Our assay provides a bottom-up approach to examine the minimum ingredients generating polarization and symmetry breaking within cells. We then examined the possibility to magnetically perturb endosomes position in HeLa cell. We found the experimental conditions to achieve this goal. Finally, we used directly cytoskeleton elements as actin filament to trigger asymmetrically confined signaling proteins and trigger microtubule assembly, in cell extract droplets. More generally, these results show how symmetry breaking within cells can be induced and studied using magnetic nanoparticles and biophysical tools
Makamté, Kemdib Staëlle Sonia. "Etudes des protéines Patched et SUFU impliquées dans la voie de signalisation Hedgehog." Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCC102/document.
Full textThe hedgehog (HH) signalling pathway is involved in the segmentary polarity formation. A dysfunction of this pathway is involved in several malformations. Many cancers are caused by an overactivation of this pathway. The HH signalling pathway is activated by the binding of HH on the receptor Patched (hPtc) and included many cytoplasmic partners such as Suppressor of Fused (SUFU). Few molecular and structural data are available on this pathway even if these data are important to fully understand the pathway functioning. Furthermore, the HH signalling pathway maybe be the target of chemotherapy treatments. However, hPtc is involved in drugs efflux. Inhibition of hPtc by the binding of its ligand HH may lead to this efflux inhibition. Yet, the binding site of HH on its receptor hPtc is not yet determined.During this thesis, the structural study of hPtc have been engaged especially the study of the binding site of HH. On the second hand, I have structurally studied some SUFU proteins.First of all, I have expressed the extracellular domains of hPtc. These domains have been described as necessary for HH binding. I have cloned a chimeric protein made by the extracellular domains of hPtc associated with the lysozyme T4 (hPtcD1D2). This protein have been expressed in the E.Coli bacteria. The protein expressed in inclusion bodies in the cytoplasm of the bacteria. In the other hand, I have cloned the protein in a yeast expression vector. Part of this, I have also expressed the protein hPtc without its N and C terminus regions (hPtcNC). These regions are intrinsically disrupted. They may lead to crystallization problems. The protein has been expressed in yeast.This work permits to expressed hPtcD1D2 and hPtcΛNΛC. This will lead to the expression of the protein and its crystallisation in order to determine its 3D structure and to characterize its ligand binding site.Finally, I structurally studied the protein SUFU. A novel Zn binding site has been characterized. In fact, after the protein purification, I have made affinity measures using a colorimetric compound, PAR. I also performed spectroscopic experiments in which I varied the pH and the Zn concentration. I determined the SUFU has a nanomolar affinity for the Zn best at pH 8 than pH 6.5. Indeed, the Zn binding site may be basic.The SUFU 3D structure has been published in 2013 by two teams. Inspired by their crystallization conditions, I crystallized SUFU with Zn. Circular dichroism experiments permitted to know that the proteins are organized in helices and sheets. Moreover, small angles X ray spectroscopy experiments show that dSUFU, hSUFU and zSUFU did not have the same conformation in solution. Drosophila SUFU is globular and human and zebrafish SUFU are long and dimeric. The N-terminal region involved in hSUFU has been removed and hSUFUΛ30 is present in different oligomerization forms
Ferry, Xavier. "Signalisation de l'activation des mastocytes par les sécrétagogues basiques." Université Louis Pasteur (Strasbourg) (1971-2008), 2002. http://www.theses.fr/2002STR13111.
Full textMartinez, Turtos Adriana. "Les effets anti-tumoraux d'un régime pauvre en protéines et de la signalisation IRE1α." Electronic Thesis or Diss., Université Côte d'Azur, 2022. http://www.theses.fr/2022COAZ6012.
Full textNutritional interventions are investigated in the context of non-communicable diseases such as cancer. Dietary regimens such as caloric restriction, fasting, ketogenic and protein-restricted diets have shown benefits to control tumor progression. Indeed, we have previously reported the protective effect of an isocaloric diet partially reduced in protein in several cancer mouse models. Beyond a stronger anticancer immunosurveillance dependent on cytotoxic T cells, the low protein diet limited tumor growth in an IRE1α-dependent manner.Inositol-requiring enzyme 1α (IRE1α) is the most evolutionally conserved ER (endoplasmic reticulum) stress sensor induced as part of the Unfolded Protein Response (UPR). The UPR is activated by accumulation of misfolded proteins in the ER, lipidic disturbances in the ER membrane, hypoxia and nutrient deprivation. IRE1α activates downstream targets via its endoribonuclease activity resulting in XBP1 splicing as well as degradation of RNAs by a process known as the Regulated IRE1-Dependent Decay (RIDD). While XBP1 splicing recovers cellular homeostasis, massive RIDD induction leads to apoptosis under chronic ER stress.The IRE1α signaling has been described to play dual roles in most hallmarks of cancer. While the IRE1α-XBP1 axis in tumor cells supports tumor progression in several solid and liquid oncogenic malignancies, the IRE1α-RIDD branch has been suggested as tumor-suppressive in glioblastoma. Since our previous findings showed that IRE1 is implicated in the tumor-protective effects of a low protein diet, we investigated the effect of the exogenous expression of IRE1 in tumor cells implanted in immunocompetent mice.We found that overexpression of IRE1 and self-induction of its full RNAse activity was detrimental for subcutaneous tumor growth of colorectal and Lewis lung carcinomas. Tumors with higher IRE1 activity were characterized by active IRE1α-XBP1 and IRE1α-RIDD branches, a higher anticancer immunosurveillance and tumor cells undergoing apoptosis. The enhanced anti-cancer immune response elicits upon IRE1α overexpression was mainly dependent on T cell-mediated-cytotoxicity. In conclusion, our findings support the notion that IRE1α with a full RNAse activity can have tumor-suppressive roles
Yao, Lei. "Etude de la voie de signalisation de TOR (Target Of Rapamycin) chez Arabidopsis thaliana." Aix-Marseille 2, 2007. http://theses.univ-amu.fr.lama.univ-amu.fr/2007AIX22004.pdf.
Full textTOR (target of rapamycin) is a conserved eukaryotic signaling protein. Its pathway has been investigated mostly in animal and yeast cells where it is recognized as a central regulator of cell growth. In plants, although the TOR gene was identified, the natural resistance of plants to rapamycin and the lethal phenotype caused by its insertional knockout currently hamper the study of the TOR pathway. Previous results have shown that the Arabidopsis thaliana TOR is essential for embryo development, but the precise architecture of the plant TOR pathway remains to be determined. In this work I used constitutive or inducible RNAi to reduce the AtTOR expression and I generate an antibody recognizing the AtTOR protein in plants cells. These approaches show that modifying AtTOR expression causes significant alterations in morphology and that vegetative and reproductive growth are positively correlated with AtTOR expression. The AtTOR signalling pathway regulates meristem size, cell size and cell numbers, and in turn affects the accumulation of biomass. I further demonstrated that AtTOR is also linked to the response to nutrient availability such as phosphate and sugar, phytohormones, light-dosage and the tolerance of stresses. This suggests that plant TOR is an essential component of the growth response to environmental cues. Using the AtTOR antibody we further characterize the heterologous interaction between AtTOR and the Saccharomyces cerevisiae FKBP protein
Vacher, Sébastien. "La signalisation glucose chez le champignon phytopathogène Sclerotinia sclerotiorum : caractérisation du gène snfS codant pour une protéine kinase." Lyon 1, 2002. http://www.theses.fr/2002LYO10149.
Full textHamon, Annaïg. "Etude de la signalisation Hippo/YAP dans les cellules gliales de Müller en conditions physiologiques et pathologiques de dégénérescence rétinienne chez la souris." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS558/document.
Full textRetinal dystrophies are one of the main causes of blindness. Among the different therapeutic strategies currently studied, our team is interested in the regenerative potential of endogenous retinal cells. A cellular source of interest are Müller cells, which are the main type of glial cells in the retina. These cells are able to reactivate in case of retinal degeneration and adopt various characteristics of stem cells. They enter a state called reactive gliosis. While in some species such as the fish, they allow the complete regeneration of the retina, they have very limited and ineffective regenerative capacities in mammals. Increasing our knowledge of the complex molecular response of Müller cells to retinal degeneration is thus essential for the development of promising new therapeutic strategies. In this context, the aim of my thesis project was to study the role of the co-transcription factor YAP in Müller cells reactivation. This protein is the main effector of the Hippo signaling pathway which is a crucial player in the field of stem cell biology and regeneration.As a first step, we performed a transcriptomic analysis, which revealed that the Hippo/YAP pathway is one of the main signaling deregulated in a mouse model of photoreceptor degeneration. In particular, we found that YAP is specifically expressed in Müller cells and strongly upregulated upon retinal degeneration, when these cells are reactivated. We thus uncovered for the first time a link between the Hippo/YAP pathway and reactive gliosis in the retina. Consequently, the second part of my thesis project was to undertake a functional study of YAP in Müller cells. For this purpose, we generated, by crossing, a mouse model allowing for Yap conditional knockout specifically in these cells. This model allowed us to show that Yap deletion leads to deregulation of several Müller cell specific genes. A phenotypic analysis revealed that these molecular deregulations lead to premature aging of Müller cells and visual defects in old mice. These results suggest that YAP is required for normal function of Müller glial cells. We then studied the impact of Yap deletion in Müller cells under degenerative conditions. A transcriptomic analysis revealed that various aspects of the molecular response of reactive Müller cells are affected in the absence of Yap. Among the deregulated biological processes, we focussed in particular in the regulation of cell proliferation. We found that YAP is required to trigger cell cycle gene upregulation that occurs in Müller glial cells following photoreceptor cell death. Furthermore, our results suggest that some components of the EGFR signaling pathway, which is known for its central role in the reactivation of Müller cells in pathological conditions, are regulated by YAP in Müller cells.Taken together, these results highlight the importance of YAP (i) in Müller cell function under physiological conditions to maintain retinal homeostasis, and (ii) in the regulation of Müller cell reactivation process under degenerative conditions. Moreover, these data allow us to propose a model in which YAP would be involved in the control of Müller glia cell cycle re-entry through its interaction with the EGFR signaling pathway. Therefore, this work has contributed to increase our knowledge of the signaling network involved in the reactivation of Müller cells in the mammalian retina
Brigui, Amira. "Rôle et contrôle du trafic de Patched dans la voie de signalisation Hedgehog chez Drosophila melanogaster." Paris 7, 2009. http://www.theses.fr/2009PA077030.
Full textThe secreted Hedgehog (HH) proteins act as morphogens in animal development. In vertebrates, HH signalling also controls the fate of stem cells and its deregulation is involved in oncogenesis. The HH receptor Patched (PTC) inhibits the HH pathway in the absence of signal and is itself inhibited by HH binding. PTC also controls the HH gradient by the sequestration and internalisation of HH 4. The transport of PTC is tightly linked to its activity. Here, we analysed the role of two HECT E3 ubiquitin ligases, NEDD4 and SU(DX), in the trafficking and accumulation of PTC in Drosophila. We show that NEDD4 down regulates PTC and is necessary for the endocytosis of free or HH-bound PTC. These effects rely on the interaction of NEDD4 with an L/PPXY (PY) recognition motif conserved in PTC proteins. Internalisation of PTC can be specifically blocked by altering this motif. Thus, PTC endocytosis is essential for its accumulation but not for its intrinsic inhibitory signalling or its ability to bind and retain HH. We also show that SU(DX) is involved in PTC endocytosis and is necessary for lysosomal sorting of PTC in response to HH. Our findings suggest that NEDD4 and SU(DX) cooperate to finely tune the regulation of PTC levels: whereas NEDD4 promutes the constitutive endocytosis and degradation of PTC, SU(DX) appears to be specifically required for the lysosomal sorting and degradation of PTC in cells responding to HH. Finally, given their roles in Notch trafficking, NEDD4 and SU(DX) represent points of potential between these two signalling pathways, which are central to both development and oncogenesis
Schramm, Antoine. "Caractérisation de domaines d’oligomérisation et régions désordonnées de phosphoprotéine de paramyxovirus." Thesis, Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0381.
Full textThe replication of paramyxoviruses is headed by the viral replicative machinery composed of three proteins : P, N and L.This complexe is a promising target for antiviral inhibitors. While P is known to be the centralrecruitment platform of the system, the interaction details of the P-L complex remain obscure. The ambition ofmy thesis project is to improve our knowledge on P interaction and dynamics. Thus, on one hand my goal is toimprove the P-L interaction mapping and on the other hand to contribute to a better structural description of P.Combining bio-physical and functional virology approaches, we identified P modules involved in the P-Lcomplex assembly. P XD is an essential P module for interaction as well as the P oligomeric state. theoligomerisation domain C-terminal part is essential for P chaperon function and crucial to drive L to an activeconformation. Finally, physico-chemical properties that correlate the oligomerisation domain stability is essentialfor transcription and replication processes. Moreover, based on biophysical measurements on P truncatedvariants, we propose a preliminary model of P C-terminal domain at very low resolution. Those results are a stepforward in narrowing down the replicative complex mechanistic. P mapping suggest that P and L interacttogether via different sites, suggesting this complex is rather dynamic. Especially, the oligomerisation domain sofar considered as an inert part of P, plays a crucial role in the replicative machinery
Miot, Marie-Caroline. "Etude du système CpxA/R : une voie de signalisation du repliement incorrect des protéines de l'enveloppe d'Escherichia coli." Paris 6, 2007. http://www.theses.fr/2007PA066691.
Full textCabane, Candice. "Les voies de signalisation des protéines P38 et AKT : rôle et interaction au cours de la différenciation des cellules musculaires." Nice, 2003. http://www.theses.fr/2003NICE4000.
Full textBayle, Julie Emmanuelle. "Régulation de la signalisation du récepteur KIT par les protéines SOCS : Etude de l'adaptateur SOCS6." Aix-Marseille 2, 2004. http://www.theses.fr/2004AIX22080.
Full textQuettier, Anne-Laure. "Implication des protéines tyrosine phosphatases dans la signalisation de l' acide abscissique chez Arabidopsis thaliana." Paris 6, 2006. http://www.theses.fr/2006PA066312.
Full textBlaize, Gaëtan. "Analyses moléculaire, cellulaire et fonctionnelle des protéines de signalisation CD5 et Themis1 dans les lymphocytes T." Thesis, Toulouse 3, 2018. http://www.theses.fr/2018TOU30124.
Full textT-cells play a key role in immune responses. Each T-cell expresses a unique TCR (T-cell receptor) which specifically recognises a microbial-derived antigen presented by MHC molecules (major histocompatibility complex) on the surfaces of host cells. This interaction leads to the activation of T-cells via highly regulated intracellular signalling pathways using numerous membrane-bound and cytoplasmic proteins. These complex signals are responsible for the development of a customised immune response specifically directed against the invading pathogen. This thesis examines the role of two proteins involved in TCR signalling, CD5 and Themis1. CD5 proteins are TCR-associated co-receptors which exhibit inhibitory activity on TCR signalling. They modulate the variability of the TCR repertoire by finely regulating positive and negative selection in the thymus. However, their role in peripheral T-cells and the underlying molecular mechanisms by which they act is poorly understood. To answer this question, the CD5 interactome in peripheral T-cells was determined by mass spectrometry. Analysis of the interactome shows that, upon TCR engagement, CD5 recruits several proteins in a molecular complex referred to hereafter as "CD5 signalosome", namely: c-Cbl, Sts-2, SHIP, CIN85, CrkL and Pi3K. The same interactome analysis in c-Cbl deficient T-cells proves that c-Cbl acts as an adaptor necessary for the interaction between CD5 and the other proteins of the CD5 signalosome. These data have also demonstrated the necessity of a specific tyrosine for signalosome recruitment, located in position 429 within the intracytoplasmic domain of CD5. Analysis of TCR signalling in T-cells harbouring an invalidating Tyr429 mutation reveals that the CD5 signalosome downregulates phosphorylation of key proteins such as ZAP-70, ERK1/2 and SLP-76 and decreases T-cell auto-amplification upon stimulation. In parallel, CD5 also inhibits activity of Foxo1 protein by facilitating Akt recruitment, thereby reducing regulatory T-cell (Treg) generation in secondary lymphoid organs. Altogether, our data suggest that the CD5 co-receptor could promote a specifically adapted immune response against exogenous antigens by limitation of Treg differentiation. In 2009, our team identified a previously unknown signalling protein called Themis1 (THymocyte-Express Molecule Important for Selection) that is essential for T-cell development. The role of Themis1 has been extensively studied in thymocytes and recent data show that Themis enhances TCR signalling by selective inhibition of SHP-1 and SPH-2 phosphatases in these cells. However, its role in peripheral T-cells remains elusive. To study the post-thymic role of Themis1, we generated a new mouse model selectively deficient for Themis1 in peripheral T-cells but not in thymocytes. My in vitro analyses show that Themis1 enhances the TCR signalling threshold necessary to activate T-cells and selectively represses IFNƴ production in Th1 polarised T-cells. In vivo, Themis1 expression increases susceptibility to experimental autoimmune encephalomyelitis (EAE, multiple Sclerosis mouse model). Surprisingly, preliminary results obtained in the same mouse model also suggest that Themis1 enhances differentiation of encephalitogenic T-cells producing IFNƴ and GM-CSF. We therefore hypothesise that Themis1 could act in vivo by repressing the activity of co-inhibitory receptors such as PD-1 or CTLA-4 by recruiting SH2 domain-containing phosphatases
Ahr, Barbara. "Rôles des motifs cytoplasmiques de CXCR4 dans la signalisation induite par SDF-1." Montpellier 1, 2005. http://www.theses.fr/2005MON1T009.
Full textGirard, Johanne. "Altération du sentier de signalisation Sonic Hedgehog dans le cancer superficiler de la vessie : description du phénomène et hypothèse." Doctoral thesis, Université Laval, 2009. http://hdl.handle.net/20.500.11794/20951.
Full textSemac, Isabelle. "Signalisation dans les lymphocytes B et T : Influence des protéines de surface CD20 et CD4 dans les microdomaines." Aix-Marseille 2, 2003. http://www.theses.fr/2003AIX22015.
Full textBachet, Jean-Baptiste. "Récepteurs tyrosine-kinase, voies de signalisation et tumeurs digestives." Versailles-St Quentin en Yvelines, 2013. http://www.theses.fr/2013VERS0019.
Full textReceptor tyrosine kinases (RTKs) are pro-oncogenes involved in the pathogenesis of many gastrointestinal tumors. We conducted several studies of translational and basic research on the RTK KIT and the gastrointestinal stromal tumors (GISTs). GISTs with delWK557-558 and those with a deletion carrying the two tyrosine residues in KIT exon 11 had the same prognosis. Homozygous GISTs appear more often malignant than heterozygous GISTs. We then reported that homozygous GISTs may be secondary to loss of heterozygosity without loss of genetic material. From cell lines, we demonstrated that the biology of KIT in heterozygous cells was closer to that hemizygous unmutated KIT cells that hemizygous mutated KIT. The hemizygous/heterozygous status on the one hand and the loss or non-tyrosine residues of the KIT exon 11 on the other hand were associated with specific expression profiles of mRNA and miRNAs. Finally, we have described three families with a germline mutation in exon 13 of KIT, and we proposed recommendations for their management
Ibarz, Géraldine. "Etude pharmacologique de la signalisation intracellulaire d'un récepteur couplé aux protéines G : le récepteur de la cholécystokinine de type I." Montpellier 1, 2003. http://www.theses.fr/2003MON13503.
Full textBernet, Agathe, and Agathe Bernet. "Caractérisation et rôle des cils primaires de l'épididyme dans la voie de signalisation Hedgehog." Master's thesis, Université Laval, 2018. http://hdl.handle.net/20.500.11794/31455.
Full textLes cils primaires (CP) sont des antennes de signalisation présentes en un seul exemplaire à la surface de la plupart des cellules. Ils jouent un rôle de mécano/chimio-senseur pour le développement et le maintien de l’homéostasie des tissus, en réponse aux stimuli et à la voie de signalisation Hedgehog (Hh). En 2013, l’ultrastructure des CP a été mise en évidence au niveau de l’épithélium épididymaire d’équidés. L’épididyme, organe du système reproducteur masculin, est composé d’un épithélium pseudo-stratifié qui se différencie au cours du développement postnatal jusqu’à la maturité sexuelle. Les principaux types cellulaires qui composent cet organe au stade adulte, assurent des rôles distincts et bien orchestrés afin de contrôler la composition du micro environnement spermatique. Bien que la mutation de gènes codants pour les constituants majeurs des CP entraine une infertilité masculine, peu de choses sont connues concernant leur rôle au niveau du système reproducteur. Nous émettons donc l’hypothèse que les CP de l’épididyme joueraient un rôle dans le contrôle des fonctions épididymaires. Nos objectifs se définissent en deux points 1) la caractérisation spatiotemporelle de cette organelle le long de l’épididyme, 2) l’étude fonctionnelle des CP de l’épididyme dans la voie de signalisation Hh. Grâce à une souris double transgénique Ar13b/mCherry- EGFP/CETN2, nous avons révélé une évolution spatio-temporelle des CP au cours du développement postnatal. En effet, à la naissance, les CP sont localisés au pôle apical des cellules épithéliales alors que chez l’adulte, les CP sont exclusivement associés aux cellules basales cytokératine-V positives. De plus, par une approche pharmacologique nous avons évalué l’implication des CP de l’épididyme murin dans la voie de signalisation Hh. Bien que les fonctions des CP, au niveau de l’épididyme, restent à déterminer, notre étude préliminaire ouvre la porte à une meilleure compréhension du contrôle et maintien des fonctions épididymaires et de la fertilité masculine.
Primary cilia (PC) are signaling antennas present in a single copy on the surface of most cells. They play a mechano / chemo-sensory role for the development and maintenance of tissue homeostasis, in response to extracellular stimuli. In 2013, the ultrastructure of PC was demonstrated in equine epididymal epithelium. The epididymis, an organ of the male reproductive system, is composed of a pseudo-stratified epithelium that differentiates during postnatal development until puberty. The different cell types populating this epithelium control discrete and well-orchestrated role in order to monitor the composition of the spermatic microenvironment. Although the mutation of genes coding for the major constituents of PC leads to male infertility, little is known regarding their role in the male reproductive system. Our hypothesis is that PC play a role in the control of the functions important to epididymis development and homeostasis. Our objectives are defined in two points: 1) to define the spatio-temporal localization of this organelle along the epididymis, and 2) to determine the function of PC in the transduction of the Hh signaling pathway, which is known to be important for proper sperm maturation. Using an Arl13b / mCherry- Cetn2 / GFP transgenic mouse model, we revealed for the first time a spatio-temporal change of PC cell-specificity during epididymis postnatal development, from birth to adulthood. After birth, PC are localized at the apical pole of undifferentiated cells whereas in the adult, elongated PC are exclusively associated with cytokeratin-V positive basal cells. In addition, we evaluated the involvement of epididymal PC in the transduction of the Hh signaling pathway through a pharmacological approach. Although the functions of PC in the epididymis remains to be determined, our preliminary in vitro studies open the door to a better understanding of the control and maintenance of epididymal functions and male fertility.
Primary cilia (PC) are signaling antennas present in a single copy on the surface of most cells. They play a mechano / chemo-sensory role for the development and maintenance of tissue homeostasis, in response to extracellular stimuli. In 2013, the ultrastructure of PC was demonstrated in equine epididymal epithelium. The epididymis, an organ of the male reproductive system, is composed of a pseudo-stratified epithelium that differentiates during postnatal development until puberty. The different cell types populating this epithelium control discrete and well-orchestrated role in order to monitor the composition of the spermatic microenvironment. Although the mutation of genes coding for the major constituents of PC leads to male infertility, little is known regarding their role in the male reproductive system. Our hypothesis is that PC play a role in the control of the functions important to epididymis development and homeostasis. Our objectives are defined in two points: 1) to define the spatio-temporal localization of this organelle along the epididymis, and 2) to determine the function of PC in the transduction of the Hh signaling pathway, which is known to be important for proper sperm maturation. Using an Arl13b / mCherry- Cetn2 / GFP transgenic mouse model, we revealed for the first time a spatio-temporal change of PC cell-specificity during epididymis postnatal development, from birth to adulthood. After birth, PC are localized at the apical pole of undifferentiated cells whereas in the adult, elongated PC are exclusively associated with cytokeratin-V positive basal cells. In addition, we evaluated the involvement of epididymal PC in the transduction of the Hh signaling pathway through a pharmacological approach. Although the functions of PC in the epididymis remains to be determined, our preliminary in vitro studies open the door to a better understanding of the control and maintenance of epididymal functions and male fertility.
Gouedard, Lucile. "Identification des voies de signalisation de l'hormone anti-Müllerienne." Paris 11, 2000. http://www.theses.fr/2000PA11T035.
Full textAnti-Müllerian hormone induces the regression of Müllerian ducts in male fetuses. It belongs to the transforming growth factor-P family, which includes bone morphogenetic proteins (BMPs) and activin. Members ofthe family signal through two distinct receptors denoted type I and II. The ligand binding induces the assembly of a receptor complex in which the specifie type II receptor activates the type I receptor, which phosphorylates Smad proteins. Smad 1, 5 and 8 participate in BMP pathways and Smad2 and 3 transduce TGF-P and activin signals. A novel member of the type II receptor family was identified as the AMH type II receptor (AMHR-II). After biochemical characterization of this receptor, we have studied mutations of AMHR-II, observed in patients with persistent Müllerian duct syndrome. Sorne of them induce protein retention in the reticulum endoplasmic, leading to a binding defect. Other mutants can block signal propagation because they are dominant-negative. Another goal of my work was to visualize endogenous AMHR-II in AMH target cells. We produced a specifie antibody against AMHR-II. With this antibody, another mean of the laboratory demonstrated a cranial to caudal expression of AMHR-II protein in the Müllerian ducts, strictly correlated with the regression phenomenon. My main project was to identify the AMH type I receptor, among six type I receptors already cloned. We demonstrate that BMPR-IB 1 ALK-6 co-precipitates with AMHR-II in a ligand dependent manner. Moreover, Smad 1 is specifically activated by AMH, in testicular and ovarian celllines. In conclusion, it means that AMH and BMP share same type I receptor and Smad
Bouvet, Marion. "Etude des voies de signalisation impliquées dans la phosphorylation des protéines du myofilament dans l’insuffisance cardiaque." Thesis, Lille 2, 2015. http://www.theses.fr/2015LIL2S061/document.
Full textWith over 3,5 million new cases each year, heart failure (HF) currently affects more than 15 million of European individuals and thus represents the leading cause of cardiovascular mortality in Europe. Despite advances in cardiovascular research, HF remains a serious disease with poor prognosis. Indeed, more than 50 per cent of patients die within 5 years after diagnosis. Understanding the underlying physiopathological mechanisms would allow the development of therapeutics to treat the causes of HF rather than the consequences of the disease, thereby improving the medical care of patients. The major contribution of post-translational modifications (PTMs) in the regulation of gene expression, enzyme activity as well as in the functional regulation of proteins, turns PTMs into integrators of the dynamic adaptation of the phenotype. For this reason, the team performed phosphoproteomic analyses in an experimental rat model of HF at 2 monhs following myocardial infarction (MI). These analyses revealed an increase of the phosphorylation levels of Desmin at serine residues in left ventricles (LV) of HF rats compared to sham rats.The aim of our study is to identify the kinases which are implicated in Desmin phosphorylation on one hand, and the impact and behavior of increased phosphorylated Desmin in cardiomyocyte on the other hand.By bioinformatic analysis, we first selected the kinases which are potentially implicated in Desmin phosphorylation. Then, we studied the enzymatic regulation of selected kinases in an experimental rat model of HF, which allowed the identification of active PKC zeta and GSK3 beta in the LV of HF rats at 2 months. In vitro, pharmacological inhibition of PKC zeta leads to a decreased of GSK3 beta activity as well as a modulation of the phosphorylated Desmin profiles. Taken together, these data suggest an implication of PKC zeta and GSK3 beta in the increase of Desmin phosphorylation levels in the LV of HF rats. However, their direct, consecutive or indirect implication on Desmin phosphorylation remains to be evaluated.By immunofluorescence, we observed the presence of aggregated Desmin in LV of HF rats at 2 months post-MI that suggest that these could be the result of Desmin hyperphosphorylation. We hypothesized that these Desmin aggregates, like other aggregated proteins, could be toxic for cardiomyocytes and need to be cleared by proteolytic systems to ensure cell survival.The study of proteolytic systems in the in vivo model showed that while the UPS is not modulated all along LV remodeling, macroautophagy decreases with time and could thus drive cytosolic accumulation of phosphorylated Desmin in LV of HF rats. At the same time, CMA seems to be activated thereby ensure phosphorylated Desmin clearance. In vitro, we have shown that pharmacological induction of CMA results in lower phosphorylated Desmin levels.In conclusion, increased Desmin phosphorylation levels seems to be dependent of PKC zeta and/or GSK3 beta activation in LV of HF rats at 2 months after MI. This elevation could drive the cytosolic accumulation and aggregation of Desmin, which could be involved in the contractile dysfunction observed during HF. Finally, as a result of decreased macroautophagy, CMA could be activated in LV of HF rats to ensure phosphorylated Desmin clearance and thus cardiomyocyte survival
Tzen, MonZen. "Invasion de la cellule hôte par Toxoplasma gondii : étude des voies de signalisation cellulaire impliquant les protéines kinases." Paris 5, 2005. http://www.theses.fr/2005PA05P612.
Full textToxoplasma gondii is an obligate intracellular parasite ; its implication in human pathology is well known regarding two particular aspects : congenital toxoplasmosis and reactivated toxoplasmosis in immunodeficient patients. Regulation of the infectivity of the parasite is not clear at this time. Meanwhile, many studies point to the importance of the calcium during the processus of the invasion of the parasite. Ca2+ has an important role for the motility of the parasite, for attachment to the host cells and for survival. Intracellular Ca2+ plays a essential role in signal transduction in eukaryotic cells, by activating protein kinase cascades (such as MAPKs involving protein kinase C ; and CDPKs). In addition, tachyzoite stimulation with bombesin stimulated host cell invasion 2-fold, and conversely, tachyzoite treatment with PD98059, a MAP kinase inhibitor, significantly reduced both parasite infectivity and growth. To demonstrate the presence of protein kinase activity in Toxoplasma gondii, an " in gel renatured protein assay " was performed after different Ca2+ stimuli, showing the existence of proteins that can strongly phosphorylate MBP in the presence of Ca2+. This increase was reversed with the incubation of tachyzoite with EGTA (calcium inhibitor). In this study, we have cloned and sequenced kinase genes, in particular a 62 kDa CDPKs that we named TgCDPK3. TgCDPK3 is an enzyme from the calcium dependent protein kinase superfamily, that is absent from the complete genome sequence of yeast and of nematode and human. It is then tempting to speculate that CDPKs might be present in plants and protozoans only. The immunolocalization using two specifics antibodies of TgCDPK3, anti-SE41 and anti-SE42 antibody reveal that this protein is cytoplasmic. This result suggest that TgCDPK3 plays a role in the infection of the parasite and may be a novel therapeutic target
Duchene, Johan. "Le récepteur B2 de la bradykinine : exemple d'un RCPG utilisant de nouvelles voies de signalisation dites alternatives." Toulouse 3, 2003. http://www.theses.fr/2003TOU30143.
Full textDupont, Joëlle. "Signalisation de l'insuline chez le poulet : mise en évidence d'IRS-1 et de Shc dans le foie et le muscle." Aix-Marseille 3, 1999. http://www.theses.fr/1999AIX30051.
Full textMarquette, Amélie. "Signalisation et oncogenèse dans le mélanome." Thesis, Paris Est, 2009. http://www.theses.fr/2009PEST0079.
Full textMelanoma, the most aggressive skin tumor, has become a major public health problem in many countries. Diagnosed early, it can be treated by surgical excision, but the prognosis for advanced melanoma is very poor because the tumor is resistant to all therapies used today. In order to develop new therapies to treat this tumor, we study the signaling pathways that play a major role in the proliferation, survival and differentiation of melanocytes and melanoma. These are the MAPK, PI3K pathway and the cyclic AMP (cAMP). We first demonstrated that some phosphodiesterases (PDEs; physiological inhibitors of cAMP pathway) are overexpressed in melanoma lines and thus inhibit the differentiation of these cells. Overexpression of PDEs is necessary for melanocyte transformation by oncogenic Ras when the reactivation of the cAMP pathway in melanoma lines inhibits their proliferation. These data suggest a therapeutic strategy that would aim to stimulate the differentiation of melanoma by reactivating the cAMP pathway could help to inhibit their proliferation. We have also shown that the protein kinase B-Raf, which is frequently mutated in melanoma, however, was inactivated in melanomas containing a mutation of Ras. We demonstrated that this inhibition was due to a downregulation of B-Raf by Erk substrate. Indeed, Erk phosphorylates B-Raf on its amino-terminal to prevent its interaction with Ras. This negative regulatory mechanism of B-Raf melanoma is forcing these lines to use isoform C-Raf. This work has implications for the treatment of melanoma. Indeed, if B-Raf is not used for the activation of MAPK in N-Ras mutated melanoma, the B-Raf inhibitors in clinical development will be ineffective in these cancers. We also demonstrated that a kinase inhibitor of B-Raf and C-Raf, which is in clinical development (Sorafenib), induces the activation of these kinases by heterodimerization in regulating their phosphorylation. These results reveal new mechanisms of regulation of proto-oncogene B-Raf and C-Raf, which could play an important role in the resistance of melanoma to Raf inhibitors, which are currently in clinical development
Boutet-Robinet, Elisa. "Pharmacologie moléculaire des médicaments neuroleptiques et implication des protéines RGS dans la signalisation du récepteur dopaminergique D2." Toulouse 3, 2002. http://www.theses.fr/2002TOU30177.
Full textThough the dopamine D2 receptor is the main receptor involved in the action of neuroleptic drugs, it is less clear how this heterogeneous class of molecules is acting at the molecular level. This thesis reports on the distinct behaviour for a series of neuroleptic drugs at a constitutively active dopamine D2 receptor construct. This was achieved specially with a chimeric receptor between the a1B-adrenergic and dopaminergic D2 receptor. .
Giordano, Cécile. "Étude du mécanisme d’activation de la voie de signalisation canonique de Hedgehog chez la drosophile." Electronic Thesis or Diss., Université Côte d'Azur (ComUE), 2017. http://www.theses.fr/2017AZUR4131.
Full textHedgehog (Hh) is a secreted morphogen that controls growth and differentiation in both vertebrates and invertebrates. The dysregulation of its activity leads to severe developmental defects, and the onset of cancer in adults. In Drosophila, the Hh signal transduction is initiated by the binding of Hh to its receptor Patched (Ptc). This induces the stabilization of the transmembrane protein Smoothened (Smo) and the subsenquent activation of a transduction complex consisting of 5 proteins: the kinases Fused (Fu), PKA and Gprk2, the kinesin Costal2 (Cos2), and the transcription factor of the pathway Cubitus Interruptus (Ci). The aim of my thesis was to study the regulation and molecular interactions between the different components of the transduction complex. Thanks to complementary techniques, I have shown that in absence of Hh the proteins Fu and PKA interact in C-terminal part of Ci, whereas on the presence of Hh induces their relocalization toward the N-terminal domain of Ci. I have proved that the trigger element of this moving is Smo. In presence of Hh, Smo goes into transduction complex, allowing the activation and the moving of Fu toward N-terminal domain of Ci. This relocalization is responsible of Ci phosphorylation and activation. My thesis reveals the importance of conformational changes inside the transduction complex of Hh pathway. As the mechanism of transduction is conserved between species, my PhD provides research elements in order to better understand the normal and abnormal functioning of cells
Chaligné, Ronan. "Signalisation par le récepteur de la thrombopoïétine et syndromes myéloprolifératifs non-LMC." Paris 11, 2009. http://www.theses.fr/2009PA11T053.
Full textPerroy, Julie. "Le récepteur métabotropique du glutamate mGlu7 : voie de signalisation et fonction dans les neurones." Montpellier 2, 2001. http://www.theses.fr/2001MON20095.
Full textZanin, Natacha. "Role de STAM dans la régulation endosomale de la signalisation JAK/STAT induite par les IFNs." Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLS047.
Full textA decade ago, my laboratory established the first role of type I IFNs receptor (IFNAR) endocytosis in the control of Jak/STAT signaling induced by type 1 IFNs (Marchetti et al., 2006). A salient question is now to elucidate why and how IFNAR endocytosis could control the Jak/STAT pathway. Two key players of endosomal sorting retained our interest: Hrs (Hepatocyte growth factor-Regulated tyrosine kinase Substrate) and STAM (Signal Transducing Adaptor Molecule). These two classical components of the ESCRT-0 (Endosomal Sorting Complexes Required for Transport-0) complex were ideally placed at the interface between signaling and membrane trafficking. By using a combination of molecular and cellular biology, biochemistry, and fluorescent microscopy, we could establish that STAM binds to the IFNAR complex at the plasma membrane to exert an inhibitory effect on Jak/STAT signaling. This inhibition is removed when IFNAR is delivered to the sorting endosome by interacting with Hrs upon IFN-α stimulation. Based on shRNA down-expression and pharmacological inhibition, we further involve the PTP1B (Protein Tyrosine Phosphatase 1B) as it activates Jak/STAT signaling upon IFN stimulation. We could also show that PTP1B activation is inhibited by STAM at the plasma membrane from experiments where IFNAR endocytosis was blocked by siRNA-mediated clathrin down-expression. This was further confirmed by protein-protein interaction experiments (Proximity Ligation Assay) showing that STAM was constitutively associated with IFNAR1, whereas the interaction between IFNAR1 and Hrs occured only at the sorting endosome. Our results therefore allow to draw a model where STAM is a constitutive handbrake on Jak/STAT signaling at the plasma membrane that is released after IFNAR endocytosis and delivery to the sorting endosome. We further show that Hrs/STAM interaction at the early endosome allows to selectively distinguish the activation of Jak/STAT signaling mediated by IFN-α or IFN-β
Denys, Anne. "Rôle des acides gras polyinsaturés n-3 dans la régulation de la voie de signalisation de ERK1/ERK2." Dijon, 2003. http://www.theses.fr/2003DIJOS028.
Full textIn this study, we investigated in T-cells the role of eicosapentaenoic acid and docosahexaenoic acid in MAPK/ERK1/ERK2 regulation pathway. These PUFA alone failed to induce phosphorylation and enzymatic activity of MAPK. In order to ascertain their mechanism of action on MAPK activation we used anti-CD3 antibodies, phorbol 12-myristate 13-acetate (PMA) or okadaic acid (OA) to activate MAPK. PMA and anti-CD3 activate MAPK upstream of MEK as U0126, a MEK inhibitor, abolishes their action. On the other hand, OA seems to act upstream of MEK or via a MEK independent MAPK pathway. Furthermore, GF109203X, a PKC inhibitor, inhibited PMA-stimulated MAPK activity. Also, this pathway is coupled with PKC. EPA and DHA abolished PMA and anti-CD3-induced MAPK activation and the translocation of two PKC isoforms, PKC alpha and PKC epsilon. Also these PUFA regulate the ERK1/ERK2 pathway via these kinases. Their inhibitory effect are responsible for inhibition of NFkB translocation, IL-2 gene transcription and T cell proliferation. Together these observations suggest that EPA and DHA exert immunosuppressives effects in part via the PKC/MAPK pathway in T-cells
Mekpoh, Flavien. "Signalisation Nodal à courte et longue distance chez l'oursin Paracentrotus lividus : rôles potentiels de Cripto, d'Univin et d'une modification post-traductionnelle." Paris 6, 2012. http://www.theses.fr/2012PA066664.
Full textTGF-beta family member Nodal plays essential roles in the development of many organisms. In the sea urchin embryo, Nodal acts upstream of gene regulatory network controlling the regionalization of the ectoderm along the dorsal-ventral axis. Nodal is expressed very early in the presumptive ventral ectoderm where its activity is required for specification of the ventral and dorsal ectoderm. In this context, there is evidence that Nodal activity is limited to the ectoderm by its antagonist Lefty. However, recent studies have shown that Nodal also plays a role in the regionalization of the mesoderm precursors in vegetative pole of the embryo, territory distant from Nodal expression domain. In my thesis, I have attempted to clarify the mechanisms by which Nodal signals over long range, using the sea urchin, by analyzing the roles of different factors that modulate the activity of the Nodal signaling pathway. The first factor is Cripto, a membrane protein of the EGF-CFC family. In vertebrates, Cripto acts as a coreceptor for Nodal, which is also the target of the Nodal antagonist: Lefty. In addition, we analyzed the role of TGF-beta ligand, Univin, an ortholog of Vg1/GDF1, and the effect of post-translational modification of Nodal on its ability to signal over long-range. Taken together, results of these studies suggest that partners such as Cripto or Univin, but also post-translational modifications such as glycosylation, may potentiate the activity of Nodal signaling and therefore play a major role in regulating Nodal long-range signaling
Mazars, Anne. "Implication des voies de signalisation des protéines JNK et SMAD dans l'apoptose régulée par le TGF-β1." Paris 5, 2001. http://www.theses.fr/2001PA05P606.
Full textThe TGF-beta plays an important role in constraining cellular proliferation and in regulating the cell cycle, but is also a potent inducer of apoptosis. TGF-beta1 initiates signaling throgh transmembrane receptors and activates various cellular pathways. Smad and JNK proteins have been identified as essential downstream elements of the signal transduction pathways that are required for TGF-bata1 signaling. Smad2 and Smad3, are directly activated by ligand-activated receptor. One negative feedback loop may control TGF-beta response, the involvement of Smad7, which localizes in the nucleus but translocates to the cytoplasm after TGF-beta1 stimulation. Smad7 can exert its inhibitory function by binding to TGF-beta1 receptor, thereby blocking the receptor-regulated Smad from interacting with the receptor. .
Barthet, Gaël. "Régulation des voies de signalisation dépendante et indépendante des protéines G activées par le récepteur 5-HT4." Montpellier 1, 2007. http://www.theses.fr/2007MON1T014.
Full text