Contents
Academic literature on the topic 'Protéines de liaison à l'ARN messager'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Protéines de liaison à l'ARN messager.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Protéines de liaison à l'ARN messager"
Bourdeau-Julien, Isabelle. "ALS-associated RNA-binding protein FUS and mRNA translation regulation." Master's thesis, Université Laval, 2020. http://hdl.handle.net/20.500.11794/68742.
Full textMutations in several genes have been linked to amyotrophic lateral sclerosis (ALS),particularly in the gene coding for the Fused in Sarcoma protein (FUS). Those mutations are found in the part encoding for the nuclear localization signal, making the protein abnormallyabundant in the cytoplasm. Combined with other observations, it suggests that a toxic gainof function of FUS in the cytoplasm would be the cause of the neurodegeneration. ALS is a neurodegenerative disease that affects motor neurons and causes progressive paralysis. The molecular mechanisms causing the disease are still unknown. One of the hypotheses is the disruption of local translation of mRNAs, which allows synapses to respond quickly and independently from the cell body. Insufficient local translation to support long-term synapticactivity would lead to synaptic loss and neurodegeneration. Thereby, the objective of mystudy is to determine the role of FUS in the regulation of mRNA translation by characterizing its interaction with translational components and evaluate its function in an ALS-linked condition. I have shown that FUS is associated with stalled polyribosomes, which suggests that it plays a role in regulating mRNA translation by interacting with the core of translation.There is also an increase in the presence of FUS in the cytoplasm and in its interaction with polyribosomes following inhibition of translation through mTOR, suggesting its role as anegative regulator. In addition, ALS-related mutations amplify FUS inhibitory function bymaking FUS cytoplasmic and reducing protein synthesis. My results show that the FUSprotein would have a role as a translation inhibitor when it is cytoplasmic. There fore, increasing the presence of FUS in the cytoplasm in ALS would result in significant translation inhibition, at a level insufficient to support synaptic activity.
Lamaa-Mallak, Assala. "Rôle de la protéine de réparation de l'ADN Ku dans la régulation traductionnelle de l'ARNm p53." Thesis, Toulouse 3, 2015. http://www.theses.fr/2015TOU30291.
Full textIncreases in p53 protein levels after DNA damage have largely been attributed to an increase in the half-life of the p53 protein. It is now well accepted that translational regulation of p53 mRNA is also critical for both repression of p53 accumulation in unstressed conditions and induction of the p53 protein in response to DNA damage. Our work focused on studying the role of DNA repair factor Ku in the regulation of P53 mRNA translation. We showed that Ku represses p53 protein synthesis and p53-mediated apoptosis by binding to a stem-loop structure within the p53 5'UTR. However, Ku-mediated translational repression is relieved after genotoxic stress. The underlying mechanism involves Ku acetylation which disrupts Ku-p53 mRNA interactions. These results suggest that Ku-mediated repression of p53 mRNA translation constitutes a novel cytoprotective mechanism linking DNA repair and mRNA translation
Benoît, Perrine. "Contrôle traductionnel au cours de l'ovogenèse de Drosophila melanogaster : étude de Wispy, une poly(A) polymérase cytoplasmique de type GLD-2 et de Bicaudal-C, une protéine de liaison à l'ARN." Montpellier 1, 2008. http://www.theses.fr/2008MON1T022.
Full textLavrynenko, Kyrylo. "The interaction of Caprin1 and G3BP1, major proteins in stress granule assembly, promotes the messenger RNA recruitment by G3BP1." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASL133.
Full textRNA-binding proteins play major role in regulation of messenger RNA translation and the adaptation of cellular metabolism to various environmental signals. This is accomplished due to RBPs possessing unique combination of structured functional domains and non-structured intrinsically disordered regions, which allows them to undergo liquid-liquid phase separation and form separate condensates with mRNA. G3BP1 is a central protein in a network of RBPs that participate in protection of mRNA from environmental stress by forming stress granules - ribonucleoprotein condensates that assemble in response to stress. Stress granules (SGs) might function as checkpoint for mRNA fate: storage of translationally silent mRNA, transfer of mRNA transcripts to P-bodies for degradation or transfer back into polysomes for translation. G3BP1 possesses RNA-binding domains, helicase activity and recruits several proteins into SGs, with some of them considered central nucleators in SG assembly, Caprin1 among them. The aim of this study is to investigate the cooperation between G3BP1 and Caprin1 in RNA-binding and condensate formation. Previous studies evidence the centrality of G3BP1 in SG assembly but, unlike other SG-nucleating proteins, G3BP1 lacks a prion-like domain and its direct mRNA binding is not clear. We propose that Caprin1, which is a known G3BP1 partner through the NTF2L domain of G3BP1 and a SG protein, may promote the G3BP1 mRNA binding and improve the mRNA recruitment in SG. In addition, we analyzed the function of the different G3BP1 domains in this interaction To demonstrate G3BP1-Caprin1-mRNA interplay, we used several methods of structural and cellular biology. We confirmed that G3BP1 and Caprin1 can co-localize and recruit mRNA in vivo, moreover, NTF2L-domain of G3BP1 is needed for this interaction. The mRNA recruiting capabilities of G3BP1 are improved in presence of Caprin1, and the RNA-binding domains of G3BP1 are of fundamental importance. Similarly, the enhanced mRNA recruitment of G3BP1-Caprin1 complex to SGs is at play only when full length G3BP1 is present. The consequence of G3BP1-Caprin1 interaction explain the centrality of G3BP1 in SG assembly and complement the model in which the shift RNA concentration triggers the conformational switch of G3BP1 at the heart of SG assembly by liquid-liquid phase separation
Elatmani, Habiba. "Caractérisation du rôle d'Unr, une protéine de liaison à l'ARN, dans les cellules souches embryonnaires murines." Thesis, Bordeaux 2, 2009. http://www.theses.fr/2009BOR21681/document.
Full textUnr (upstream of N-ras) is a cytoplasmic RNA-binding protein with cold shock domains, involved in regulation of messenger RNA stability and translation. Unr is essential to mouse development since Embryos deficient for Unr die at mid-gestation. Here we report that unr knockout ES cells maintained under growth conditions that sustain self-renewal spontaneously differentiate toward the primitive endoderm (PrE) lineage. This phenotype was reproduced in another ES line (E14tg2a) after shRNA-induced Unr depletion. Moreover, Unr rescue in Unr-deficient ES cells limits their PrE differentiation engagement. However, Unr is dispensable for multilineage differentiation, as shown by knockout ES cells capacity to produce differentiated teratomas. We further investigated the molecular mechanisms underlying the differentiation of unr-/- ES to primitive endoderm, and found that Unr acts downstream of Nanog. Our data also show Gata6 mRNAs are more stable in Unr-deficient ES cells as compared to wild-type ES cells. We propose that the possible repression by Unr of this key inducer of PrE differentiation at a post-transcriptional level may contributes to the stabilization of ES cells pluripotent state
Samsonova, Anastasiia. "Structural and functional insights into YB-1 and Lin28 interplay in mRNA regulation." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASL037.
Full textThe mRNA regulation in human cells is one of the key mechanisms allowing the cells to adapt to a new environment and to respond to incoming signals. In terms of protein synthesis, the regulation of mRNA translation is a preferable process for cells compared to a more rigid mechanism of transcription or degradation. The RNA-binding proteins (RBPs) play a key role in the mRNA translation regulation.In the present work, we made an effort to demonstrate that a human RBP containing a cold shock domain, Lin28a, can act in cooperation with another cold shock protein YB-1, a core protein of mRNPs. The interplay between two cold shock proteins is based on their high structure similarity, that potentially gives Lin28 an opportunity to regulate the mRNA target translation in a general way using YB 1 as an “entry badge” to the mRNP.To demonstrate the interplay between Lin28 and YB 1, several methods of structural and cellular biology were used in the present study. The oligomerization of Lin28-CSD and YB-1-CSD upon RNA binding was shown in vitro, and the amino acid residues responsible for that were highlighted by NMR spectroscopy. Then, the colocalization of Lin28 and YB-1 was demonstrated in cell cytoplasm. Also, the protein interplay was shown to have functional consequences, e.g. for cell proliferation and differentiation
Mure, Fabrice. "Rôle de la protéine EB2 du virus d'Epstein-Barr dans le métabolisme des ARN messagers." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEN071/document.
Full textPost-transcriptional regulation of gene expression is based on a complex and dynamic network of RNA-proteins interactions. A major challenge is to understand the precise contribution of these RNA-binding proteins (RBPs) to each step of mRNA metabolism. During this thesis, we have characterized new functions of the EB2 viral RBP which is essential for the production of the Epstein-Barr virus (EBV). Previous works have shown that EB2 promotes cytoplasmic accumulation of most intronless viral mRNAs. Here, we show that EB2 is not just an mRNA export factor because this RBP also stabilizes its target mRNAs in the nucleus by protecting them from RNA exosome degradation. Our results indicate that in the absence of EB2 : (i) some viral mRNAs are unstable because they contain cryptic splice sites ; (ii) the splicing factor SRSF3 destabilizes these mRNAs by interacting with both the RNA exosome and the Nuclear EXosome Targeting (NEXT) complex. Moreover, we also show that EB2 is associated with polysomes and it strongly stimulates translation of its target mRNAs through interactions with the eIF4G and PABP initiation factors. Interestingly, the development of a new in vitro translational assay allowed us to show that EB2’s translation stimulation requires that EB2 binds its target mRNAs in the nucleus. Taken together, our works demonstrate the key function of a viral RBP in the coordination of the nuclear and cytoplasmic steps of mRNA biogenesis
Argüelles, Camilla. "Étude du rôle de la protéine de liaison aux ARN messagers Smaug dans la voie Hedgehog chez la drosophile." Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCC053.
Full textHedgehog Proteins (HH) are major players of animal development and carcinogenesis. Their transduction requires the 7 transmembrane protein Smoothened (SMO) whose activity is regulated by Patched (PTC), the HH receptor and antagonist. PTC and HH regulates SMO trafficking, phosphorylation and accumulation but numerous aspects of these regulations remain poorly understood. During my thesis, I focused on Smaug, a new partner of SMO in drosophila which was identified in the laboratory in a yeast two-hybrid screen. Smaug is known to bind and repress numerous mRNA during embryonic development in fly. I analyzed how it acts on SMO and HH signaling and also how is it regulated by HH. I have shown that Smaug is a positive regulator of the HH pathway and that it probably acts via its capacity to bind mRNA. I have also demonstrated that SMO and Smaug colocalise in cytoplasmic foci in absence of signal and that SMO is sufficient to localized Smaug to the plasma membrane in response to HH. Finally, I highlighted an effect of SMO and HH on the phosphorylation of Smaug suggesting the existence of a regulatory loop
Meznad, Koceila. "Interaction entre l’oncoprotéine E6 d’HPV16 et le métabolisme des ARN messagers." Thesis, Bourgogne Franche-Comté, 2018. http://www.theses.fr/2018UBFCE012.
Full textHuman papillomaviruses (HPV) are double strand DNA viruses that infect skin and mucosa. HPV infections, although mostly asymptomatic, cause cell proliferation defects that can sometimes give rise to cancer. According to their carcinogenic potential, we distinguish low-risk HPVs (lr-HPV) causing benign lesions, and high-risk HPV (hr-HPV) responsible for the appearance of numerous anogenital and some head and neck squamous-cell cancers. Among the hr-HPV, HPV16 is the most prevalent. Hr-HPV-induced carcinogenesis is correlated with the expression of the viral oncoproteins, E6 and E7, which deregulate many cellular processes. Viral gene expression, performed by the host cell machine, is finely regulated particularly at the post-transcriptional level. Besides, alternative splicing generates about twenty viral transcripts, leading to the expression of viral proteins. The splicing within the E6 open reading frame that generates an E6*I mRNA only in hr-HPV, but not in the lr-HPV, suggests its involvement in hr-HPV-induced carcinogenesis. However, the biological role of E6*I protein produced by HPV-HR is still controversial.In order to better understand the mechanisms of hr-HPV-induced carcinogenesis, we have interested in: (i) the study of the biological functions of the E6*I isoform, and (ii) the mechanisms involved in the regulation of E6 and E7 expression.To get insight the biological role of HPV16 E6*I, we used RNA sequencing to identify targets deregulated by its ectopic expression. Expression of HPV16 E6 and E6*I isoforms in negative HPV cells deregulate several transcripts involved in biological processes related to viral gene expression, viral carcinogenesis, signal transduction and translation. The expression of E6*I alone, deregulates transcripts involved in the organization of the extracellular matrix, signaling pathways and cell adhesion. Interestingly, it was shown that the genes deregulated by E6*I expression are commonly affected by the intracellular level of ROS (reactive oxygen species). These results support the role of E6*I in increasing ROS production. The ROS-associated oxidative stress could favor viral genome integration with that of the host cell, a characteristic of hr-induced carcinogenesis. In sum, E6*I may have an oncogenic role independent of E6, and intervene in the carcinogenesis associated with hr-HPV.We also studied the role of the exon junction complex (EJC) in the posttranscriptional regulation of E6 and E7 expression. EJC is a multiprotein complex deposited on mRNAs via splicing, thus influencing their fate. We have shown that a factor of EJC, eukaryotic initiation factor 4A3 (eIF4A3), binds to viral mRNAs. Moreover, we have observed that the components of the EJC affected, in different ways, the expression of E6 and E7. Finally, we also studied the effect of nonsense-mediated mRNA decay (NMD), a mechanism linked to the EJC, on the expression of E6 and E7. Our results suggest that not only NMD inhibits the expression of E6 and E7, but we have also observed that HPV16 E6 protein reduces NMD activity. This inhibition would allow HPV16 to have control over its transcripts but also to affect NMD cellular targets. Given the involvement of NMD-regulated genes in the maintenance of cellular homeostasis and adaptation, it would be interesting to understand the role of this new E6 activity in carcinogenesis associated with HPV-HR
Budkina, Karina. "The role of an mRNA-binding protein YB-1 in formation of stress granules and translation." Thesis, université Paris-Saclay, 2021. http://www.theses.fr/2021UPASL006.
Full textDuring mRNA life in cell mRNA exists in complex with proteins and is never free. In the cytoplasm, active mRNA is associated with ribosomes to form polyribosomes while repressed mRNAs in association with RNA-binding proteins forms mRNPs. Repressed mRNPs are generally isolated in the cytoplasm but they can also be found in compartments called mRNP granules, notably during cellular stress. Such mRNP granules are non-membrane organelles contains mostly translationally inactive mRNA and coexist with polysomes. Depending on the environmental conditions, there is a change in the ratio of mRNA found in these types of granules or in polysomes. In addition, there are differences in the mRNA content of the different types of such organelles depending on their localization and functions. Currently, stress granules are of great interest to researchers due to their relation to some neurological diseases. Mutations of some RNA-binding proteins such asTDP43 and FUS are directly linked to some neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTLD), and Alzheimer's disease (AD). In the affected neurons, TDP-43 and FUS form cytoplasmic aggregates while these proteins are generally found in the nucleus under physiological conditions. As they were also found in cytoplasmic stress granules, stress granules may serve as intermediates for the formation of FUS and TDP-43 aggregates. In addition, FUS and TDP-43 contain intrinsically disordered regions (IDRs) which contribute to their aggregation. The formation of stress granules is stimulated by exposure to different internal and/or external factors. Stress granules serve as a place for mRNA stabilization and keeping it inactive until stress factors disappear. It is considered that secondary structures of mRNA play a significant role in the assembly of stress granules. Such structures serve as binding sites for RBPs, which further stabilize them (e.g. G3BP). The Y-box binding protein 1 (YB-1) was also identified as a marker for stress granules. YB-1 is an RNA-binding protein that accompanies mRNA from its synthesis in the nucleus to degradation in the cytoplasm. YB-1 contains a cold shock domain (CSD) with two RNA-recognition motifs (RNP-1 and RNP-2), as well as an unstructured CTD domain similar to IDRs. For most of the proteins involved in the formation of stress granules, their stimulating activity of IDR in this process has been shown. At the same time, there are some controversies regarding the role of YB-1 in the assembly of granules. According to some sources, there is reason to consider it as a negative regulator. According to others, YB-1 exhibits the properties of an inducer during the assembly of stress granules. At the same time, no attempts were made to decipher the mechanism of action of the protein under oxidative stress.Here our aim was to unravel the structural mechanisms by which YB-1 can negatively regulate the formation of stress granules and to clarify its influence on translation in stress conditions