Academic literature on the topic 'Proteine s1'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Proteine s1.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Proteine s1"

1

Thuong, Ho Thi, Le Thu Ngoc, Nguyen Thu Giang, Trinh Thai Vy, Phan Trong Hoang, Pham Bich Ngoc, Vu Huyen Trang, and Chu Hoang Ha. "Transient expression of recombinant S1 protein of Porcine Epidemic Diarrhea Virus in Nicotiana benthamiana." Vietnam Journal of Biotechnology 19, no. 1 (July 18, 2021): 95–105. http://dx.doi.org/10.15625/1811-4989/14614.

Full text
Abstract:
Porcine Epidemic Diarrhea (PED) is an infectious disease with high mortality especially in suckling piglets. Among the structural proteins of Porcine Epidemic Diarrhea Virus (PEDV), the S protein (including sub-domain S1 and S2), is a homotrimer protein that plays an important role in attaching the viruses to the cell receptors. In particular, the S1 protein is considered as an important sub-component in the development of effective vaccines against PEDV. In this study, for the purpose of expressing S1 in the original form of trimmer and oligomer of trimer based on S-tag and S-protein interactions, the DNA encoding for S1 protein was fused with GCN4pII or GCN4pII-Stag, was then inserted to the pRTRA cloning vector under the control of the 35S CaMV promoter. After that, the whole cassete was inserted into the pCB301 vector and transformed into Agrobacterium tumefaciens for transient expression on Nicotiana benthamiana. The expression of recombinant S1 proteins in tobacco was determined by Western blot. The results showed that the expression levels of S1 trimer and S1 trimer S-tag proteins were equal in plants, which also indicated that S-tag fusion did not affect the expression level of the S1 protein. However, the expression level of S1 proteins was relatively low, reaching 0.005% of total soluble protein. In addition, the expression of S1 trimer S-tag protein and Sprotein-tp protein by co-transformation of two A. tumefaciens strains containing corresponding vectors in plants were also determined by Western blot. This is a premise study for the development of subunit vaccines in plants that prevent the spread of PEDV.
APA, Harvard, Vancouver, ISO, and other styles
2

Gürtler, Lutz. "Überlegungen zur Schutzdauer." Trillium Diagnostik 19, no. 1 (March 18, 2021): 71–72. http://dx.doi.org/10.47184/td.2021.01.07.

Full text
Abstract:
Als Reaktion auf eine SARS-CoV-2-Infektion werden vorwiegend Antikörper gegen die Rezeptor-bindende Domäne des S1-Teils des Spike-Proteins, das Nukleokapsid und die Chymotrypsin-ähnliche Protease gebildet. Die T-Zell-Reaktion richtet sich neben der S1-Domäne und M-, N- und ORF-Protein-Epitope in stärkerem Ausmaß auch gegen die S2-Domäne, was eine Erklärung für den milderen Verlauf bei Kindern sein könnte.
APA, Harvard, Vancouver, ISO, and other styles
3

Hügle, B., R. Hazan, U. Scheer, and W. W. Franke. "Localization of ribosomal protein S1 in the granular component of the interphase nucleolus and its distribution during mitosis." Journal of Cell Biology 100, no. 3 (March 1, 1985): 873–86. http://dx.doi.org/10.1083/jcb.100.3.873.

Full text
Abstract:
Using antibodies to various nucleolar and ribosomal proteins, we define, by immunolocalization in situ, the distribution of nucleolar proteins in the different morphological nucleolar subcompartments. In the present study we describe the nucleolar localization of a specific ribosomal protein (S1) by immunofluorescence and immunoelectron microscopy using a monoclonal antibody (RS1-105). In immunoblotting experiments, this antibody reacts specifically with the largest and most acidic protein of the small ribosomal subunit (S1) and shows wide interspecies cross-reactivity from amphibia to man. Beside its localization in cytoplasmic ribosomes, this protein is found to be specifically localized in the granular component of the nucleolus and in distinct granular aggregates scattered over the nucleoplasm. This indicates that ribosomal protein S1, in contrast to reports on other ribosomal proteins, is not bound to nascent pre-rRNA transcripts but attaches to preribosomes at later stages of rRNA processing and maturation. This protein is not detected in the residual nucleolar structures of cells inactive in rRNA synthesis such as amphibian and avian erythrocytes. During mitosis, the nucleolar material containing ribosomal protein S1 undergoes a remarkable transition and shows a distribution distinct from that of several other nucleolar proteins. In prophase, the nucleolus disintegrates and protein S1 appears in numerous small granules scattered throughout the prophase nucleus. During metaphase and anaphase, a considerable amount of this protein is found in association with the surfaces of all chromosomes and finely dispersed in the cell plasm. In telophase, protein S1-containing material reaccumulates in granular particles in the nucleoplasm of the newly formed nuclei and, finally, in the re-forming nucleoli. These observations indicate that the nucleolus-derived particles containing ribosomal protein S1 are different from cytoplasmic ribosomes and, in the living cell, are selectively recollected after mitosis into the newly formed nuclei and translocated into a specific nucleolar subcompartment, i.e., the granular component. The nucleolar location of ribosomal protein S1 and its rearrangement during mitosis is discussed in relation to the distribution of other nucleolar proteins.
APA, Harvard, Vancouver, ISO, and other styles
4

Deryusheva, Evgenia I., Andrey V. Machulin, Maxim A. Matyunin, and Oxana V. Galzitskaya. "Investigation of the Relationship between the S1 Domain and Its Molecular Functions Derived from Studies of the Tertiary Structure." Molecules 24, no. 20 (October 13, 2019): 3681. http://dx.doi.org/10.3390/molecules24203681.

Full text
Abstract:
S1 domain, a structural variant of one of the “oldest” OB-folds (oligonucleotide/oligosaccharide-binding fold), is widespread in various proteins in three domains of life: Bacteria, Eukaryotes, and Archaea. In this study, it was shown that S1 domains of bacterial, eukaryotic, and archaeal proteins have a low percentage of identity, which indicates the uniqueness of the scaffold and is associated with protein functions. Assessment of the predisposition of tertiary flexibility of S1 domains using computational and statistical tools showed similar structural features and revealed functional flexible regions that are potentially involved in the interaction of natural binding partners. In addition, we analyzed the relative number and distribution of S1 domains in all domains of life and established specific features based on sequences and structures associated with molecular functions. The results correlate with the presence of repeats of the S1 domain in proteins containing the S1 domain in the range from one (bacterial and archaeal) to 15 (eukaryotic) and, apparently, are associated with the need for individual proteins to increase the affinity and specificity of protein binding to ligands.
APA, Harvard, Vancouver, ISO, and other styles
5

Hui-Jun, Lu, He Wen-Qi, Song De-Guang, Liu Li-Guo, Chang Ling-Zhu, Li Zhi-Ping, Chen Ke-Yan, and Gao Feng. "Identification of Porcine haemagglutinating encephalomyelitis virus receptor in PK cell membranes." Chinese Journal of Agricultural Biotechnology 5, no. 1 (April 2008): 87–92. http://dx.doi.org/10.1017/s1479236208002209.

Full text
Abstract:
AbstractTo identify Porcine haemagglutinating encephalomyelitis virus (HEV) 67N receptor in porcine kidney (PK) cell membranes, the S1 protein of HEV was expressed in Pichia pastoris and purified by Ni2+ affinity chromatograph. Polyclonal antibodies to HEV were prepared by immunizing rabbits by injecting the purified S1 protein four times. After SDS–polyacrylamide gel electrophoresis (SDS–PAGE), the PK cell membrane proteins were transferred on to nitrocellulose membrane. A virus overlay protein binding assay (VOPBA) was performed using the recombinant S1 protein to identify the protein binding receptor, HEV-S1. The result showed that HEV-S1 protein bound to one band (about 90 kDa) in PK cell membranes. This result is very important for the study of the pathogenic mechanism of HEV.
APA, Harvard, Vancouver, ISO, and other styles
6

Machulin, Andrey, Evgenia Deryusheva, Mikhail Lobanov, and Oxana Galzitskaya. "Repeats in S1 Proteins: Flexibility and Tendency for Intrinsic Disorder." International Journal of Molecular Sciences 20, no. 10 (May 14, 2019): 2377. http://dx.doi.org/10.3390/ijms20102377.

Full text
Abstract:
An important feature of ribosomal S1 proteins is multiple copies of structural domains in bacteria, the number of which changes in a strictly limited range from one to six. For S1 proteins, little is known about the contribution of flexible regions to protein domain function. We exhaustively studied a tendency for intrinsic disorder and flexibility within and between structural domains for all available UniProt S1 sequences. Using charge–hydrophobicity plot cumulative distribution function (CH-CDF) analysis we classified 53% of S1 proteins as ordered proteins; the remaining proteins were related to molten globule state. S1 proteins are characterized by an equal ratio of regions connecting the secondary structure within and between structural domains, which indicates a similar organization of separate S1 domains and multi-domain S1 proteins. According to the FoldUnfold and IsUnstruct programs, in the multi-domain proteins, relatively short flexible or disordered regions are predominant. The lowest percentage of flexibility is in the central parts of multi-domain proteins. Our results suggest that the ratio of flexibility in the separate domains is related to their roles in the activity and functionality of S1: a more stable and compact central part in the multi-domain proteins is vital for RNA interaction, terminals domains are important for other functions.
APA, Harvard, Vancouver, ISO, and other styles
7

Fox, Ted, Patrizia Mason, Andrew C. Storer, and John S. Mort. "Modification of S1 subsite specificity in the cysteine protease cathepsin B." "Protein Engineering, Design and Selection" 8, no. 1 (1995): 53–57. http://dx.doi.org/10.1093/protein/8.1.53.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jana, Sirsendu, Michael R. Heaven, and Abdu I. Alayash. "Cell-Free Hemoglobin Does Not Attenuate the Effects of SARS-CoV-2 Spike Protein S1 Subunit in Pulmonary Endothelial Cells." International Journal of Molecular Sciences 22, no. 16 (August 22, 2021): 9041. http://dx.doi.org/10.3390/ijms22169041.

Full text
Abstract:
SARS-CoV-2 primarily infects epithelial airway cells that express the host entry receptor angiotensin-converting enzyme 2 (ACE2), which binds to the S1 spike protein on the surface of the virus. To delineate the impact of S1 spike protein interaction with the ACE2 receptor, we incubated the S1 spike protein with human pulmonary arterial endothelial cells (HPAEC). HPAEC treatment with the S1 spike protein caused disruption of endothelial barrier function, increased levels of numerous inflammatory molecules (VCAM-1, ICAM-1, IL-1β, CCL5, CXCL10), elevated mitochondrial reactive oxygen species (ROS), and a mild rise in glycolytic reserve capacity. Because low oxygen tension (hypoxia) is associated with severe cases of COVID-19, we also evaluated treatment with hemoglobin (HbA) as a potential countermeasure in hypoxic and normal oxygen environments in analyses with the S1 spike protein. We found hypoxia downregulated the expression of the ACE2 receptor and increased the critical oxygen homeostatic signaling protein, hypoxia-inducible factor (HIF-1α); however, treatment of the cells with HbA yielded no apparent change in the levels of ACE2 or HIF-1α. Use of quantitative proteomics revealed that S1 spike protein-treated cells have few differentially regulated proteins in hypoxic conditions, consistent with the finding that ACE2 serves as the host viral receptor and is reduced in hypoxia. However, in normoxic conditions, we found perturbed abundance of proteins in signaling pathways related to lysosomes, extracellular matrix receptor interaction, focal adhesion, and pyrimidine metabolism. We conclude that the spike protein alone without the rest of the viral components is sufficient to elicit cell signaling in HPAEC, and that treatment with HbA failed to reverse the vast majority of these spike protein-induced changes.
APA, Harvard, Vancouver, ISO, and other styles
9

Davis, Elisabeth, Dustin Kennedy, Scott A. Halperin, and Song F. Lee. "Role of the Cell Wall Microenvironment in Expression of a Heterologous SpaP-S1 Fusion Protein byStreptococcus gordonii." Applied and Environmental Microbiology 77, no. 5 (December 30, 2010): 1660–66. http://dx.doi.org/10.1128/aem.02178-10.

Full text
Abstract:
ABSTRACTThe charge density in the cell wall microenvironment of Gram-positive bacteria is believed to influence the expression of heterologous proteins. To test this, the expression of a SpaP-S1 fusion protein, consisting of the surface protein SpaP ofStreptococcus mutansand a pertussis toxin S1 fragment, was studied in the live vaccine candidate bacteriumStreptococcus gordonii. Results showed that the parent strain PM14 expressed very low levels of SpaP-S1. By comparison, thedltmutant strain, which has a mutation in thedltoperon preventingd-alanylation of the cell wall lipoteichoic acids, and another mutant strain, OB219(pPM14), which lacks the LPXTG major surface proteins SspA and SspB, expressed more SpaP-S1 than the parent. Both thedltmutant and the OB219(pPM14) strain had a more negatively charged cell surface than PM14, suggesting that the negative charged cell wall played a role in the increase in SpaP-S1 production. Accordingly, the addition of Ca2+, Mg2+, and K+, presumably increasing the positive charge of the cell wall, led to a reduction in SpaP-S1 production, while the addition of bicarbonate resulted in an increase in SpaP-S1 production. The level of SpaP-S1 production could be correlated with the level of PrsA, a peptidyl-prolylcis/transisomerase, in the cells. PrsA expression appears to be regulated by the cell envelope stress two-component regulatory system LiaSR. The results collectively indicate that the charge density of the cell wall microenvironment can modulate heterologous SpaP-S1 protein expression inS. gordoniiand that this modulation is mediated by the level of PrsA, whose expression is regulated by the LiaSR two-component regulatory system.
APA, Harvard, Vancouver, ISO, and other styles
10

INOUE, Akira, Yukitomo ARAO, Akira OMORI, Sachiyo ICHINOSE, Koji NISHIO, Naoki YAMAMOTO, Yosihiro KINOSHITA, and Shiro MITA. "Identification of S1 proteins B2, C1 and D1 as AUF1 isoforms and their major role as heterogeneous nuclear ribonucleoprotein proteins." Biochemical Journal 372, no. 3 (June 15, 2003): 775–85. http://dx.doi.org/10.1042/bj20021719.

Full text
Abstract:
AUF1 (A+U-rich RNA binding factor) participates in the rapid decay of mRNAs in the cytoplasm. It is sometimes called heterogeneous nuclear ribonucleoprotein (hnRNP) D0; however, evidence for its characterization as an hnRNP protein has been scarce. S1 proteins A–D are those selectively extracted at pH 4.9 from isolated nuclei pretreated with either RNase A or DNase I. In the present study we identified S1 (‘first supernatant’) proteins B2, C1 and D1 with p45, p40 and p37 AUF1s respectively, by microsequencing and product analysis of transfected cDNAs. We found, further, that more than 96% of the S1 proteins occurred in the nucleus, and localized largely in RNase-sensitive structures. B2 was confined in the nucleus and C1 directly bound to heterogeneous nuclear RNAs (hnRNAs). These B2 and C1 proteins formed hnRNP structures responsible for the 33 S, and, to lesser extent, the 40 S particles, which were liberated upon mild nucleolytic cleavage. On the other hand, D1 and the remainder of C1 were associated with nuclease-hypersensitive sites of hnRNAs, and comprised the major cytoplasmic AUF1s that may be involved in mRNA decay. Two-dimensional immunoblotting resolved each S1 isoform into up to six spots or more, and suggested that the previous uncertain relationship of hnRNP D0 and hnRNP D is resolved in terms of charge differences and differential splicing arising from one gene. The present results thus indicate that S1 proteins B2, C1 and D1 are identical with AUF1 proteins, but largely occur as hnRNP proteins in the nucleus. That hnRNP D0 is indeed an hnRNP protein was verified.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Proteine s1"

1

Hahn, Véronique. "Utilisation d'anticorps polyclonaux et monoclonaux pour l'etude de la structure et de la fonction de la proteine s1 du ribosome d'escherichia coli." Université Louis Pasteur (Strasbourg) (1971-2008), 1987. http://www.theses.fr/1987STR13154.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zoulim, Fabien. "Signification de l'expression des proteines pre-s1 dans le serum et les cellules mononucleees du sang au cours des infections chroniques dues au virus de l'hepatite b." Lyon 1, 1990. http://www.theses.fr/1990LYO1M151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

HU, ROUH-MEI. "Etude de la specificite de l'endoribonuclease regb du bacteriophage t4 : influence de la sequence et de la structure de l'arn : role de la proteine ribosomique s1." Paris 11, 1998. http://www.theses.fr/1998PA112320.

Full text
Abstract:
L'endoribonuclease regb du bacteriophage t4 coupe au milieu des motifs ggag des arnm. Regb purifiee est tres peu active in vitro. Son activite est stimulee environ 100 fois par la proteine ribosomique s1. In vivo, s1 est responsable de l'inactivation fonctionnelle et chimique des arnm precoces de t4 et egalement de la maturation des longs arnm precoces de t4. In vivo, tous les motifs ggag ne sont pas coupes par regb. Dans cette these, je montre que la sensibilite et la resistance a regb observees apres une infection par t4 peuvent etre reproduites in vivo dans les cellules d'e. Coli non-infectees et in vitro. Cela suggere que les motifs ggag resistants a regb apres l'infection ne sont pas des substrats, quelque soit la periode au cours du cycle ou les arnm sont faits. In vitro, a hautes concentrations, regb seule est capable de couper specifiquement les motifs ggag. L'efficacite de clivage est deja meilleure pour un bon substrat que pour un mauvais substrat. Regb possede donc l'activite enzymatique et discriminatoire. S1 stimule l'activite de regb avec les deux types d'arnm du meme ordre de grandeur. Un mauvais substrat peut etre bien coupe par regb en presence de hautes concentrations de s1, cependant, a une concentration de regb donnee, l'efficacite de coupure par regb dans les mauvais substrats atteint un plateau plus bas que pour les bons substrats. L'analyse des structures secondaires de ces deux types d'arn par sondes chmiques montre que les mauvais substrats ont des structures plus complexes autour du motif ggag que les bons substrats. Regb serait inhibee par ces structures. Dans un petit arn de 30 nucleotides, l'efficacite de coupure par regb dans un motif ggag situe dans une region simple brin est meilleure que celle localisee dans un motif structure (structure predite par calcul). En plus, s1 n'est pas necessaire pour la coupure dans ce motif ggag libre. S1 serait un arn chaperon, modifiant la structure du motif ggag de maniere a ce qu'il soit coupe.
APA, Harvard, Vancouver, ISO, and other styles
4

Hartmann, Marie-Louise. "Application des anticorps monoclonaux a l'etude de quelques proteines de sous-unite 30s du ribosome d'e. Coli." Université Louis Pasteur (Strasbourg) (1971-2008), 1987. http://www.theses.fr/1987STR13199.

Full text
Abstract:
Nous avons prepare des anticorps monoclonaux diriges contre des proteines de la sous-unite 30s du ribosome d'e. Coli en vue de leur utilisation comme sondes fonctionnelles et structurales. Nous presentons d'abord une technique de fractionnement des proteines de la sous -unite 30s du ribosome d'e. Coli par chromatographie en phase inverse sur un systeme fplc. Puis, nous decrivons l'obtention et la caraterisation d'anticorps monoclonaux diriges contre quelques proteines de la sous-unite 30s: les proteines s1, s4, s12 et s17. Ces anticorps ont permis de montrer que des modifications des conditions ioniques dans lesquelles se trouvent la sous-unite 30s affectent l'accessibilite ou la conformation d'epitopes situes a la surface des proteines s4 (ou s17) et s12. Nous avons pu mettre en evidence des changements conformationnels discrets entre deux etats differents de la sous-unite 30s. Enfin, nous presentons l'obtention et la caracterisation d'anticorps monoclonaux diriges contre la proteine s1
APA, Harvard, Vancouver, ISO, and other styles
5

Thomas, Franck. "Expression des gènes rpl23, rpl2, rps19 et rps19' du génome chloroplastique d'épinard : identification des produits de quelques gènes de protéines ribosomiques." Grenoble 1, 1987. http://www.theses.fr/1987GRE10171.

Full text
Abstract:
Le genome chloroplastique d'epinard est constitue d'une molecule d'adn circulaire (140 kbp) organisee en 4 regions: une sequence unique (lsc) et une petite sequence unique (ssc) separees par deux regions inversees repetees (ira et irb). L'expression des genes rp12, rps19 et rps19' est etudie. Les techniques de clonage et de cartographie a la nuclease s1 ont peris de montrer que le gene rps19' n'est pas exprime "in vivo" dans le chloroplaste en raison de la co-transcription sur l'autre brin des genes psba et trn h-gug. Les genes rp12 et rps19 codent respectivement pour les proteines ribosomiques chloroplastiques d'epinard l4 et s23 fortement homologues aux l2 et s19 d'e. Coli
APA, Harvard, Vancouver, ISO, and other styles
6

Bisaglia, Marco. "Etude fonctionnelle et structurale de deux protéines impliquées dans le métabolisme des ARN messagers." Palaiseau, Ecole polytechnique, 2002. http://www.theses.fr/2002EPXX0018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sinor, Cleve Ray-Dean. "Xenopus laevis Ribosomal Protein S1: Evidence for Regulation at the Transcriptional Level." W&M ScholarWorks, 1994. https://scholarworks.wm.edu/etd/1539625876.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Marenna, Alessandra. "Staphylococcus aureus protein S1, an RNA chaperone involved in translation initiation and sRNA regulation." Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAJ080/document.

Full text
Abstract:
Bien que l'initiation de la traduction soit un processus conservé entre les bactéries, nous avons montré que le mécanisme par lequel les ARNm structurés sont reconnus et adaptés sur le ribosome diffère chez Staphylococcus aureus, un micro-organisme avec un bas taux de G+C et chez Escherichia coli. Une particularité du ribosome de S. aureus est l'absence de la protéine ribosomale S1, qui non seulement est plus courte que celle de E. coli mais qui possède également une organisation distincte des domaines. Mes expériences suggèrent que la protéine S1 (SauS1) favorise spécifiquement l'initiation de la traduction de l'opéron α-psm 1-4 en liant son ARNm hautement structuré. En outre, il influence aussi l'expression et la production de facteurs de virulence comme les exotoxines (α-haemolysine, δ-hémolysine et γ- hémolysine) et les exoenzymes (protéases et lipases). En plus de son rôle dans la traduction, SauS1 pourrait être impliquée dans d'autres processus cellulaires tels que le métabolisme de l'ARN et la régulation par des ARN non-codants (ARNnc). Elle forme des complexes in vivo avec plusieurs ARNnc dont la stabilité serait affectée dans la souche délétée du gène rpsA codant S1. SauS1 a donc une activité chaperonne favorisant la cinétique d’appariement entre deux molécules d'ARN et au moins dans un cas, elle stimule la reconnaissance entre un ARNnc et son ARN cible. Ainsi, SauS1 appartient à une nouvelle classe de chaperons d'ARN qui jouent un rôle clé dans la régulation du virulon de S. aureus
Even if translation initiation is a conserved process among bacteria, we have recently shown that low G+C content Gram-positive, such as Staphylococcus aureus, differ from E. coli on the mechanism by which structured mRNAs are recognized and adapted on the ribosome. One peculiarity of the S. aureus ribosome is the absence of ribosomal protein S1, which is shorter than E. coli S1 and has different domains organization. My work could demonstrate that S. aureus S1 (SauS1) specifically promotes translation initiation of the α-psm 1-4 operon by binding its highly structured mRNA. Moreover, it influences the expression and production of other exotoxins (α-haemolysin, δ-haemolysin and γ-haemolysins) and exoenzymes (proteases and lipases). Besides its role in translation, SauS1 could be implicated in other cellular processes such as RNA maturation/degradation and sRNA-mediated regulation. It forms in vivo complexes with several sRNAs whose level is affected in a strain deleted of rpsA gene, coding for S1. Preliminary results show that SauS1 has a chaperone activity promoting the kinetic of annealing of two model RNA molecules and at least in one case, we could demonstrate that it stimulates the recognition between a sRNA and its target RNA. Taken together, SauS1 belongs to a new class of RNA chaperones that play key roles in the regulation of S.aureus virulon
APA, Harvard, Vancouver, ISO, and other styles
9

Knoetze, Adrian David. "Investigation into the variation of infectious bronchitis virus serotypes in KwaZulu-Natal poultry flocks." Diss., University of Pretoria, 2013. http://hdl.handle.net/2263/40700.

Full text
Abstract:
Infectious bronchitis virus (IBV) is a member of family Coronaviridae and is classified into group 3 of the Coronaviruses. The virus is a single-stranded positive-sense RNA virus with a genome of 27kbp. IBV is a highly infectious disease of chickens that results in high morbidity with moderate to severe mortality depending on the strain involved, age of the birds, and immune status of the chickens. Multiple worldwide investigations indicate that differentiation within the S1 glycoprotein gene can lead to serotype variation within the IBV species. In this study 46 isolates collected over two years from broiler and broiler breeder flocks and eight historical isolates were analyzed. Forty one isolates originated from the KwaZulu-Natal region whilst the remaining thirteen were isolated from 4 other poultry-dense provinces. The S1 gene was sequenced and compared to determine variation between South African isolates, as well as global sequences submitted to Genbank. The results indicate the division of isolates analyzed into 2 different clades of IBV within the province. The most prevalent genotype was similar to IBV Mass strain detected in 79% of the full S1 sequences. Variation up to 22.3% was detected within local strains, supporting the hypothesis that multiple IBV serotypes may co-circulate in the same region simultaneously. Additionally, more conservation was observed among Mass serotypes versus QX-like serotypes, implying that vaccine use can influence the variability within the IBV population. Higher variability was found in the first half of the S1 gene in comparison to the last half of the S1 gene. This is in agreement with previous findings that the hypervariable regions of the S1 gene are located within the first 450 base pairs. This study offers the first published consolidation of IBV isolates from South Africa and identifies variation within the IBV population of the SA broiler flock. Previous publications list four or five IBV isolates whilst this study describes variation found in 54 isolates spanning 32 years. In addition this study provides the insight into the prevalence of IBV variation in poultry flocks due to the large number of isolates. The comparative use of geno- and serotyping for South African IBV isolates is also described for the first time in this study.
Dissertation (MSc)--University of Pretoria, 2013.
gm2014
Veterinary Tropical Diseases
unrestricted
APA, Harvard, Vancouver, ISO, and other styles
10

Duval, Mélodie. "La protéine ribosomique S1 d'Escherichia coli au carrefour de la traduction et de la régulation de l'expression des gènes." Thesis, Strasbourg, 2015. http://www.theses.fr/2015STRAJ065.

Full text
Abstract:
La traduction est une étape clef de l’expression des gènes, et mon travail a consisté à étudier l’implication de la protéine ribosomique S1 d’Escherichia coli dans l’initiation de la traduction des ARNm structurés. Mes résultats montrent que 1) S1 est requise pour la formation du complexe d’initiation des ARNm portant une séquence SD faible et/ou des structures stables, 2) elle est dotée d’une activité chaperonne, débobinant les ARNm afin de les placer dans le canal de décodage ; et 3) le ribosome favorise son action. Par la suite, j’ai montré un rôle inattendu de S1 dans la régulation post-transcriptionnelle médiée par les ARNnc. En effet, la dégradation rapide de l’ARNm sodB, induite par l’ARNnc RyhB en absence de fer, est perdue dans une souche dont l’extrémité C-terminale de S1 a été supprimée, montrant ainsi un lien fonctionnel entre S1 et le dégradosome. Ainsi, S1 exerce de multiples fonctions qui se placent au carrefour de la traduction et de la régulation de l’expression des gènes
The translation is a key step for the gene expression, and the aim of my PhD was to analyze the involvment of Escherichia coli ribosomal protein S1 in the translation initiation of structured mRNAs.My results show that 1) S1 is required for the establishment of the active translation initiation complex involving mRNAs with a weak SD sequence and/or stable structures, 2) S1 has a RNA chaperone activity, unwinding the mRNA in order to accommodate it in the decoding channel, and 3) the ribosome promotes its activity.In the second part of my thesis, I unexpectedly showed that S1 is involved in the ncRNAmediated regulation. Indeed, the fast degradation of sodB mRNA, induced by RyhB ncRNA under iron depletion, is impaired in a strain depleted of the C-terminal part of S1 protein, thus highlighting a functional link between S1 and the degradosome.All in one, my results show that S1 is endowed with multiple functions, at the cross-road between translation and regulation of gene expression
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Proteine s1"

1

Dovč, P., H. Elbertzhagen, F. Niepold, and O. J. Rottmann. "Expression of the Bovine α s1 — Casein cDNA in CHO Cells." In Milk Proteins, 168–70. Heidelberg: Steinkopff, 1989. http://dx.doi.org/10.1007/978-3-642-85373-9_26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Niepold, F., P. Dovč, and O. J. Rottmann. "Expression of an α s1,-Casein cDNA-Clone in a Cell-free and Procaryote Model System." In Milk Proteins, 155–57. Heidelberg: Steinkopff, 1989. http://dx.doi.org/10.1007/978-3-642-85373-9_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Subramanian, A. R. "Ribosomal Protein S1: “The Messenger RNA-Catching Arm” of Escherichia Coli Ribosome." In Gene Manipulation and Expression, 393–406. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-011-6565-5_28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

"S1 Ribosomal Protein." In Encyclopedia of Genetics, Genomics, Proteomics and Informatics, 1750. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6754-9_14969.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Li, Bin, and Dennis Shasha. "A Framework for Biological Pattern Discovery on Networks of Workstations." In Pattern Discovery in Biomolecular Data. Oxford University Press, 1999. http://dx.doi.org/10.1093/oso/9780195119404.003.0015.

Full text
Abstract:
Biological pattern discovery problems are computationally expensive. A possible technique for reducing the time to perform pattern discovery is parallelization. Since each task in a biological pattern discovery application is usually time-consuming by itself, we might be able to use networks of workstations (NOWs) that communicate infrequently. Persistent Linda (PLinda) is a distributed parallel computing system that runs on NOWs and it automatically utilizes idle workstations (Anderson and Shasha, 1992; Jeong, 1996). This means that labs can do parallel pattern discovery without buying new hardware. We propose an acyclic directed graph structure, exploration dag (E-dag for short), to characterize computational models of biological pattern discovery applications. An E-dag can first be constructively formed from specifications of a pattern discovery problem; then an E-dag traversal is performed on the fly to solve the problem. When done in parallel, the process of E-dag construction and traversal efficiently solves pattern discovery problems. Parallel E-dag construction and traversal can be easily programmed in PLinda. Finding active motifs in sets of protein sequences and in multiple RNA secondary structures are two examples of biological pattern discovery. Before discussing the framework, we introduce these two applications and briefly describe their computational models. Consider a database of imaginary protein sequences D = {FFRR, MRRM, MTRM, DPKY, AVLG} and the query “Find the patterns P of the form *X* where P occurs in at least two sequences in D and the size of P |P| ≥ 2.” (X can be a segment of a sequence of any length, and * represents a variable length don’t care [VLDC].) The good patterns are *RR* (which occurs in FFRR and MRRM) and *RM* (which occurs in MRRM and MTRM). Pattern discovery in sets of sequences concerns finding commonly occurring subsequences (sometimes called motifs). The structures of the motifs we wish to discover are regular expressions of the form *S1 * S2 * ... where S1,S2,… are segments of a sequence, that is, subsequences made up of consecutive letters, and * represents a VLDC. In matching the expression *S1 * S2 * … with a sequence S, the VLDCs may substitute for zero or more letters in S.
APA, Harvard, Vancouver, ISO, and other styles
6

Roberts, M., and J. C. Rabinowitz. "THE ROLE OF RIBOSOMAL PROTEIN S1 IN SPECIES-SPECIFIC PROTEIN SYNTHESIS." In Genetics and Biotechnology of Bacilli, 101–7. Elsevier, 1988. http://dx.doi.org/10.1016/b978-0-12-274161-6.50022-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Proteine s1"

1

Deryusheva, E. I., A. V. Machulin, O. M. Selivanova, S. Yu Grishin, A. V. Glyakina, A. K. Surin, and O. V. Galzitskaya. "Investigation of Fibrillation by Amyloidogenic Regions of the Ribosomal S1 Proteins." In Mathematical Biology and Bioinformatics. Pushchino: IMPB RAS - Branch of KIAM RAS, 2020. http://dx.doi.org/10.17537/icmbb20.19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cool, D. E., and R. T. A. MacGillivray. "CHARACTERIZATION OF THe HUMAN FACTOR XII GENE." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1642800.

Full text
Abstract:
Surface activation of the plasma systems involved with coagulation, fibrinolysis, renin formation and kinin generation involves factor XII (Hageman factor). This protein is a 76,000 dalton glycoprotein which circulates in plasma as an inactive form of a serine protease. A human liver cDNA coding for factor XII was used to screen a human genomic phage library. Two overlapping clones were isolated, XHXII27 and XHXII76, and contain the entire gene for human factor XII. The gene is 13.5 Kbp in length and consists of 14 exons and 13 introns. The transcriptional start site of the mRNA was determined using S1 mapping and primer extension analysis. The results indicate that the 5′ untranslated end of the mRNA has a leader sequence of 47 bp and is not interrupted by an intron in the gene. DNA sequence analysis of the region upstream of the transcriptional start site does not contain TATA or CAAT sequences, which are often found in other genes transcribed by RNA polymerase II. The positions of the introns in the coding sequence separate the protein into domains which are homologous to similar regions found in fibronectin and tissue-type plasminogen activator. Furthermore, wherever protein homologies are found, the positions of the introns in the triplet codon occur in the same reading frame as in the tissue-type plasminogen activator, urokinase plasminogen activator and factor XII genes. The intron/exon organization of the factor XII gene is different to the organization of other coagulation genes such as prothrombin, factor IX and factor X. Therefore, factor XII appears to have evolved as a member of the plasminogen activator family of genes rather than as a member of the clotting factor gene family.
APA, Harvard, Vancouver, ISO, and other styles
3

Liu, Yubo, and Zhichao Zhang. "Abstract 1710: An anti-apoptotic Bcl-2 family protein index predicts the response of leukemic cells to the pan-Bcl-2 inhibitor S1." In Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-1710.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Monteiro, Daniel Vitor Da Silva, Daniele De Lima Dos Santos, Ediberto Nunes, Jaqueline Salim Brabo, and Maria Carolina Raiol Da Silva. "O USO DE ANTICOAGULANTES NA COVID-19." In I Congresso Brasileiro de Imunologia On-line. Revista Multidisciplinar em Saúde, 2021. http://dx.doi.org/10.51161/rems/944.

Full text
Abstract:
Introdução: Uma infecção por SARS-CoV-2 pode desencadear uma resposta imune excessiva, conhecida como tempestade de citocinas, que pode levar à falência de múltiplos órgãos e à morte. Objetivo: Analisar como o SARs-CoV-2 interfere na cascata de coagulação e como os anticoagulantes podem atuar sendo possíveis coadjuvantes no tratamento da COVID-19. Material e métodos: As buscas foram realizadas em bases de dados bibliográficas — SciELO, BIREME, LILACS. Incluiu-se artigos do período de maio de 2020 a dezembro de 2020, com delineamento experimental ou observacional, em Inglês, Português e Espanhol. Resultados: A resposta inflamatória sistêmica em pacientes com infecção, pode resultar em lesão endotelial com consequente aumento na geração de trombina e redução da fibrinólise endógena. Esse estado pró-trombótico é denominado coagulopatia induzida pela sepse e precede a coagulação intravascular disseminada. Assim, os fatores mais importantes que atuam nesse distúrbio do sistema de coagulação durante a sepse são as citocinas inflamatórias ou tempestades de citocinas. Ocorrendo uma interação cruzada, onde a inflamação induz a ativação da coagulação e a coagulação acentuando a atividade inflamatória. A heparina vem sendo utilizada ativando a antitrombina, que irá atuar inibindo a trombina, resultando na não formação de fibrina e nem de coágulos. As heparinas não fracionadas e as heparinas de baixo peso molecular são aprovadas como anticoagulantes e antitrombóticos. A heparina apresenta também um efeito antiarrítmico e antiflamatório. Sabe-se que o Coronavírus possui uma glicoproteína estrutural de superfície chamada S1, que se liga ao receptor da enzima conversora de angiotensina 2, possibilitando a sua entrada na célula hospedeira, dessa forma, a heparina se ligará a proteína viral estrutural induzindo uma mudança nessa proteína impedindo a endocitose, ou seja, a entrada desse vírus. Conclusão: Além dos efeitos anticoagulante e anti-inflamatório, as heparinas apresentam o papel de protetor endotelial, por antagonizar as histonas que causam injuria endotelial e um efeito antiviral por competir com o vírus pelo sítio de ligação da superfície celular. Dessa forma, a Sociedade Americana de Hematologia recomenda que todos os pacientes hospitalizados com COVID-19 devam receber profilaxia farmacológica com HBPM (heparina de baixo peso molecular), a menos que apresente alguma contraindicação.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography