Journal articles on the topic 'Proteinaceou'

To see the other types of publications on this topic, follow the link: Proteinaceou.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Proteinaceou.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

О.В., Скрипко. "ИЗУЧЕНИЕ ФУНКЦИОНАЛЬНО-ТЕХНОЛОГИЧЕСКИХ СВОЙСТВ БЕЛКОВО-ВИТАМИННЫХ И БЕЛКОВО-УГЛЕВОДНЫХ ДОБАВОК НА ОСНОВЕ СОИ." Bulletin of KSAU, no. 3 (March 19, 2020): 150–56. http://dx.doi.org/10.36718/1819-4036-2020-3-150-156.

Full text
Abstract:
Цель исследования – изучение функционально-технологических свойств разработанных в ФГБНУ ВНИИ сои инновационных пищевых добавок в виде белково-витаминных концентратов (БВК) и белково-углеводных гранулятов (БУГ). Задачи исследования: определить растворимость в воде БВК в виде гранул и муки, а также БУГ в гранулированном виде; установить продолжительность набухания муки и гранул БУГ и БВК; определить водосвязывающую (ВСС) и водопоглотительную (ВПС) способность БВК и БУГ в гранулированном и диспергированном виде. В результате исследования изучены основные функционально-технологические свойства: растворимость, набухаемость, водопоглотительная способность и водосвязывающая способность добавок в виде гранул и в диспергированном виде. Установлено, что растворимость и набухаемость добавок зависит, прежде всего, от химического состава компонента, а также от его физической формы. Так, белково-вита-минные концентраты обладают более высокой набухаемостью, но процесс набухания протекает медленно в сравнении с белково-углеводными гранулятами. Водопоглотительная способность добавок в виде муки на 23–32 % выше, чем водопоглотительная способность добавок в виде гранул, что связано с физической формой добавки и площадью соприкосновения материала с водой. Установлено, что данный вид добавок обладает высокой водосвязывающей способностью от 183 % для гранул белково-витаминного концентрата до 304 % муки из белково-углеводного гранулята, при этом водосвязывающая способность добавок в виде муки значительно превосходит водосвязывающую способность добавок в виде гранул. Результаты исследований функционально-технологических свойств белково-витаминных и белково-углеводных добавок позволили определить возможности их дальнейшего использования для повышения пищевой и биологической ценности инновационных продуктов питания.
APA, Harvard, Vancouver, ISO, and other styles
2

Fuxreiter, Monika, Ágnes Tóth-Petróczy, Daniel A. Kraut, Andreas T. Matouschek, Roderick Y. H. Lim, Bin Xue, Lukasz Kurgan, and Vladimir N. Uversky. "Disordered Proteinaceous Machines." Chemical Reviews 114, no. 13 (April 4, 2014): 6806–43. http://dx.doi.org/10.1021/cr4007329.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chandna, Sanya, Monarch Shah, and Ankit Agrawal. "PROTEINACEOUS COVID-19." Chest 158, no. 4 (October 2020): A551. http://dx.doi.org/10.1016/j.chest.2020.08.521.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Deaton, J., C. Savva, J. Sun, S. Sharma, A. Holzenburg, J. Sacchettini, and R. Young. "GroEL: A Proteinaceous “Surfactant” ?" Microscopy and Microanalysis 8, S02 (August 2002): 840–41. http://dx.doi.org/10.1017/s1431927602102558.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Svensson, Birte, Kenji Fukuda, Peter K. Nielsen, and Birgit C. Bønsager. "Proteinaceous α-amylase inhibitors." Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1696, no. 2 (February 2004): 145–56. http://dx.doi.org/10.1016/j.bbapap.2003.07.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Akhunzada, Zahir S., Mario Hubert, Erinc Sahin, and James Pratt. "Separation, Characterization and Discriminant Analysis of Subvisible Particles in Biologics Formulations." Current Pharmaceutical Biotechnology 20, no. 3 (April 30, 2019): 232–44. http://dx.doi.org/10.2174/1389201020666190214100840.

Full text
Abstract:
Background:The presence of subvisible particles (SVPs) in parenteral formulations of biologics is a major challenge in the development of therapeutic protein formulations. Distinction between proteinaceous and non-proteinaceous SVPs is vital in monitoring formulation stability.Methods:The current compendial method based on light obscuration (LO) has limitations in the analysis of translucent/low refractive index particles. A number of attempts have been made to develop an unambiguous method to characterize SVPs, albeit with limited success.Results:Herein, we describe a robust method that characterizes and distinguishes both potentially proteinaceous and non-proteinaceous SVPs in protein formulations using Microflow imaging (MFI) in conjunction with the MVAS software (MFI View Analysis Suite), developed by ProteinSimple. The method utilizes two Intensity parameters and a morphological filter that successfully distinguishes proteinaceous SVPs from non-proteinaceous SVPs and mixed aggregates.Conclusion:he MFI generated raw data of a protein sample is processed through Lumetics LINK software that applies an in-house developed filter to separate proteinaceous from the rest of the particulates.
APA, Harvard, Vancouver, ISO, and other styles
7

Gusakov, A. V. "Proteinaceous inhibitors of microbial xylanases." Biochemistry (Moscow) 75, no. 10 (October 2010): 1185–99. http://dx.doi.org/10.1134/s0006297910100019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Braun, R., E. Brachtl, and M. Grasmug. "Codigestion of Proteinaceous Industrial Waste." Applied Biochemistry and Biotechnology 109, no. 1-3 (2003): 139–54. http://dx.doi.org/10.1385/abab:109:1-3:139.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fuxreiter, Monika, Ágnes Tóth-Petróczy, Daniel A. Kraut, Andreas Matouschek, Roderick Y. H. Lim, Bin Xue, Lukasz Kurgan, and Vladimir N. Uversky. "Correction to Disordered Proteinaceous Machines." Chemical Reviews 115, no. 7 (March 26, 2015): 2780. http://dx.doi.org/10.1021/acs.chemrev.5b00150.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tarr, B. D., and S. H. Bixby. "Proteinaceous grain-based fat substitute." Trends in Food Science & Technology 6, no. 9 (September 1995): 317. http://dx.doi.org/10.1016/s0924-2244(00)89157-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Halemejko, Grazyna Z., and Ryszard J. Chrost. "Enzymatic hydrolysis of proteinaceous particulate and dissolved material in an eutrophic lake." Archiv für Hydrobiologie 107, no. 1 (July 18, 1986): 1–21. http://dx.doi.org/10.1127/archiv-hydrobiol/107/1986/1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Carvalho, Luísa. "Entrepreneurship and Regional Development: State of the Art." Technology Transfer and Entrepreneurship 5, no. 2 (January 24, 2019): 58–66. http://dx.doi.org/10.2174/2213809906666190102111108.

Full text
Abstract:
The presence of subvisible particles (SVPs) in parenteral formulations of biologics is a major challenge in the development of therapeutic protein formulations. Distinction between proteinaceous and non-proteinaceous SVPs is vital in monitoring formulation stability.
APA, Harvard, Vancouver, ISO, and other styles
13

OrdónTez, R. M., M. I. Isla, M. A. Vattuone, and A. R. Sampietro. "Invertase Proteinaceous Inhibitor ofCyphomandra BetaceaSendt Fruits." Journal of Enzyme Inhibition 15, no. 6 (January 2000): 583–96. http://dx.doi.org/10.3109/14756360009040712.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Debowski, Dawid. "Natural Proteinaceous Inhibitors of Serine Proteases." Current Pharmaceutical Design 19, no. 6 (December 1, 2012): 1068–84. http://dx.doi.org/10.2174/1381612811319060009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Debowski, Dawid. "Natural Proteinaceous Inhibitors of Serine Proteases." Current Pharmaceutical Design 19, no. 6 (December 17, 2012): 1068–84. http://dx.doi.org/10.2174/138161281906140714121225.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Peinado García, Jenifer, Julien Caballero Castro, and Sergio Zabala López. "Proteinaceous lymphadenopathy associated with splenic rupture." Medicina Clínica (English Edition) 154, no. 10 (May 2020): 419–20. http://dx.doi.org/10.1016/j.medcle.2019.04.041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Barone, Justin R., and Walter F. Schmidt. "Nonfood Applications of Proteinaceous Renewable Materials." Journal of Chemical Education 83, no. 7 (July 2006): 1003. http://dx.doi.org/10.1021/ed083p1003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Suslick, K. S., M. W. Grinstaff, K. J. Kolbeck, and M. Wong. "Characterization of sonochemically prepared proteinaceous microspheres." Ultrasonics Sonochemistry 1, no. 1 (March 1994): S65—S68. http://dx.doi.org/10.1016/1350-4177(94)90030-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Tan, Kar-Chun, Richard P. Oliver, Peter S. Solomon, and Caroline S. Moffat. "Proteinaceous necrotrophic effectors in fungal virulence." Functional Plant Biology 37, no. 10 (2010): 907. http://dx.doi.org/10.1071/fp10067.

Full text
Abstract:
The host–pathogen interface can be considered as a biological battlefront. Molecules produced by both the pathogen and the host are critical factors determining the outcome of the interaction. Recent studies have revealed that an increasing number of necrotrophic fungal pathogens produce small proteinaceous effectors that are able to function as virulence factors. These molecules can cause tissue death in host plants that possess dominant sensitivity genes, leading to subsequent pathogen colonisation. Such effectors are only found in necrotrophic fungi, yet their roles in virulence are poorly understood. However, several recent key studies of necrotrophic effectors from two wheat (Triticum aestivum L.) pathogens, Pyrenophora tritici-repentis (Died.) Drechs. and Stagonospora nodorum (Berk.) Castell. & Germano, have shed light upon how these effector proteins serve to disable the host from the inside out.
APA, Harvard, Vancouver, ISO, and other styles
20

York, William S., Qiang Qin, and Jocelyn K. C. Rose. "Proteinaceous inhibitors of endo-β-glucanases." Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1696, no. 2 (February 2004): 223–33. http://dx.doi.org/10.1016/j.bbapap.2003.07.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Käsermann, Fabian, and Christoph Kempf. "Virus membrane proteins and proteinaceous pores." Future Virology 1, no. 6 (November 2006): 823–31. http://dx.doi.org/10.2217/17460794.1.6.823.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Isla, Maria Ines, Marta Amelia Vattuone, and Antonio Rodolfo Sampietro. "Proteinaceous inhibitor from Solanum tuberosum invertase." Phytochemistry 30, no. 3 (January 1991): 739–43. http://dx.doi.org/10.1016/0031-9422(91)85244-t.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

И.А., Чаплыгина, and Матюшев В.В. "ТЕХНОЛОГИЯ И ОБОРУДОВАНИЕ ПОЛУЧЕНИЯ БЕЛКОВО-ВИТАМИННОГО КОАГУЛЯТА ИЗ ЗЕЛЕНОГО СОКА ЛЮЦЕРНЫ." Bulletin of KSAU, no. 11 (November 25, 2019): 138–42. http://dx.doi.org/10.36718/1819-4036-2019-11-138-142.

Full text
Abstract:
Цель исследований – разработка технологии и оборудования, позволяющих получать белково-витаминный коагулят из зеленого сока при щадящих температурных режимах. Задача исследований – получение белково-витаминного коагулята на экспериментальной установке. Объектом исследований являлись зеленая масса люцерны, коагулятор и белково-витаминный коагулят. Анализ качества исходного сырья и белково-витаминного коагулята проводился в НИИЦ ФГБОУ ВО Красноярский ГАУ, ФГБУ ГЦАС «Красноярский» и ФГБУ «Красноярский референтный центр Россельхознадзора». Полученный в результате механического обезвоживания листостебельной массы люцерны зеленый сок смешивали с аскорбиновой кислотой, предварительно подогревали до 39–43 °С и подвергали повторному нагреву на трубчатом нагревательном элементе коагулятора. Исследовали зависимость температуры белково-витаминного коагулята после прохождения по нагревательным элементам в зависимости от температуры теплоносителя, температуры поступающего на нагревательный элемент сока, а также скорости его подачи на нагревательный элемент. Для указанных параметров рассчитано уравнение регрессии. Установлено, что при оптимальных значениях исследуемых факторов коагуляция белка сока осуществляется при 60–62  С, а выход белково-витаминного коагулята составляет 20,3 % от объема поступившего на переработку зеленого сока. Щадящий температурный режим и использование двухстадийного нагрева позволили получить белково-витаминный коагулят с высокой питательной ценностью, содержанием белка (42,44 %), незаменимых аминокислот (валина, лизина, треонина, триптофана) и каротина (15 мг/кг сухого вещества). Представленная технология получения белково-витаминного коагулята из сока люцерны и разработанное оборудование дают возможность повысить качество и расширить ассортимент выпускаемой кормовой и пищевой продукции за счет обогащения белком и витаминами.
APA, Harvard, Vancouver, ISO, and other styles
24

Liu, Ting, Yong Chen, Shiping Tian, and Boqiang Li. "Crucial Roles of Effectors in Interactions between Horticultural Crops and Pathogens." Horticulturae 9, no. 2 (February 12, 2023): 250. http://dx.doi.org/10.3390/horticulturae9020250.

Full text
Abstract:
Horticultural crops suffer from bacterial, fungal, and oomycete pathogens. Effectors are one of the main weapons deployed by those pathogens, especially in the early stages of infection. Pathogens secrete effectors with diverse functions to avoid recognition by plants, inhibit or manipulate plant immunity, and induce programmed cell death. Most identified effectors are proteinaceous, such as the well-studied type-III secretion system effectors (T3SEs) in bacteria, RXLR and CRN (crinkling and necrosis) motif effectors in oomycetes, and LysM (lysin motifs) domain effectors in fungi. In addition, some non-proteinaceous effectors such as toxins and sRNA also play crucial roles in infection. To cope with effectors, plants have evolved specific mechanisms to recognize them and activate effector-triggered immunity (ETI). This review summarizes the functions and mechanisms of action of typical proteinaceous and non-proteinaceous effectors secreted by important horticultural crop pathogens. The defense responses of plant hosts are also briefly introduced. Moreover, potential application of effector biology in disease management and the breeding of resistant varieties is discussed.
APA, Harvard, Vancouver, ISO, and other styles
25

NAGAI, HIROSHI. "Studies on the proteinaceous toxins from cnidarians." NIPPON SUISAN GAKKAISHI 77, no. 3 (2011): 368–71. http://dx.doi.org/10.2331/suisan.77.368.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Sugiura, Grant, Helen Kühn, Max Sauter, Uwe Haberkorn, and Walter Mier. "Radiolabeling Strategies for Tumor-Targeting Proteinaceous Drugs." Molecules 19, no. 2 (February 18, 2014): 2135–65. http://dx.doi.org/10.3390/molecules19022135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Juge, Nathalie, and Jan Delcour. "Proteinaceous Xylanase Inhibitors: Structure, Function and Evolution." Current Enzyme Inhibition 2, no. 1 (February 1, 2006): 29–35. http://dx.doi.org/10.2174/157340806775473562.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

ISHIKAWA, Kazuhiko, and Hiroshi NAKATANI. "Proteinaceous .ALPHA.-Amylase Inhibitors in Wheat Gluten." Agricultural and Biological Chemistry 55, no. 11 (1991): 2891–92. http://dx.doi.org/10.1271/bbb1961.55.2891.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Roark, E. B., T. P. Guilderson, R. B. Dunbar, S. J. Fallon, and D. A. Mucciarone. "Extreme longevity in proteinaceous deep-sea corals." Proceedings of the National Academy of Sciences 106, no. 13 (March 23, 2009): 5204–8. http://dx.doi.org/10.1073/pnas.0810875106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Ishikawa, Kazuhiko, and Hiroshi Nakatani. "Proteinaceous α-Amylase Inhibitors in Wheat Gluten." Agricultural and Biological Chemistry 55, no. 11 (November 1991): 2891–92. http://dx.doi.org/10.1080/00021369.1991.10856971.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Gardiner, R. B., and A. W. Day. "Surface proteinaceous fibrils (fimbriae) on filamentous fungi." Canadian Journal of Botany 66, no. 12 (December 1, 1988): 2474–84. http://dx.doi.org/10.1139/b88-336.

Full text
Abstract:
Proteinaceous fibrils (fimbriae) of 4–10 nm diam. have been described in several lower eukaryotes, including yeast-like fungi and certain algae. Antibodies prepared against the fimbriae of Ustilago violacea cross react with antigens present on the surface of these same organisms. In this paper we extend these observations to a diverse group of filamentous fungi, representing the major groups. These fungi also produce surface fibrils of 6–10 nm diam. and have surface antigens that cross react with the antibodies of U. violacea fimbriae. We conclude that surface proteins of a conserved type are common in the lower eukaryotes and that these may be manifested as surface fibrils of 4–10 nm diam. In some organisms these are extruded as numerous very long fimbriae (up to 30 μm); in others they may remain largely embedded in the wall or appear as a short fringe or as sparse longer fibrils.
APA, Harvard, Vancouver, ISO, and other styles
32

Hurme, Reini, Kurt D. Berndt, Staffan J. Normark, and Mikael Rhen. "A Proteinaceous Gene Regulatory Thermometer in Salmonella." Cell 90, no. 1 (July 1997): 55–64. http://dx.doi.org/10.1016/s0092-8674(00)80313-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Kazakevičiūtė-Makovska, R., and H. Steeb. "Superelasticity and Self-Healing of Proteinaceous Biomaterials." Procedia Engineering 10 (2011): 2597–602. http://dx.doi.org/10.1016/j.proeng.2011.04.432.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Gongadze, Georgy M., Alla S. Kostyukova, Margarita L. Miroshnichenko, and Elizaveta A. Bonch-Osmolovskaya. "Regular proteinaceous layers ofThermococcus stetteri cell envelope." Current Microbiology 27, no. 1 (July 1993): 5–9. http://dx.doi.org/10.1007/bf01576826.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Paik, Woon Ki, Hyang Woo Lee, and Sangduk Kim. "Endogenous proteinaceous inhibitor for protein methylation reactions." Archives of Pharmacal Research 10, no. 3 (September 1987): 193–96. http://dx.doi.org/10.1007/bf02861913.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Goesaert, Hans, Giles Elliott, Paul A. Kroon, Kurt Gebruers, Christophe M. Courtin, Johan Robben, Jan A. Delcour, and Nathalie Juge. "Occurrence of proteinaceous endoxylanase inhibitors in cereals." Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1696, no. 2 (February 2004): 193–202. http://dx.doi.org/10.1016/j.bbapap.2003.08.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Juge, Nathalie, Birte Svensson, Bernard Henrissat, and Gary Williamson. "Plant proteinaceous inhibitors of carbohydrate-active enzymes." Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1696, no. 2 (February 2004): 141. http://dx.doi.org/10.1016/j.bbapap.2003.11.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Dunaevsky, Ya E., Dong Zhang, A. R. Matveeva, G. A. Belyakova, and M. A. Belozersky. "Degradation of proteinaceous substrates by xylotrophic basidiomycetes." Microbiology 75, no. 1 (January 2006): 35–39. http://dx.doi.org/10.1134/s0026261706010073.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Iritani, Eiji, Masashi Iwata, and Toshiro Murase. "Concentration of Proteinaceous Solutions with Superabsorbent Hydrogels." Separation Science and Technology 28, no. 10 (July 1993): 1819–36. http://dx.doi.org/10.1080/01496399308029243.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Evershed, R. "Proteinaceous Material from Potsherds and Associated Soils." Journal of Archaeological Science 23, no. 3 (May 1996): 429–36. http://dx.doi.org/10.1006/jasc.1996.0038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Ng, Tzi Bun, Randy Chi Fai Cheung, Jack Ho Wong, Yau Sang Chan, Xiuli Dan, Wenliang Pan, Hexiang Wang, et al. "Fungal proteinaceous compounds with multiple biological activities." Applied Microbiology and Biotechnology 100, no. 15 (June 23, 2016): 6601–17. http://dx.doi.org/10.1007/s00253-016-7671-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Jung, Jung-Yeul, Ki-Taek Byun, and Ho-Young Kwak. "Proteinaceous bubble and nanoparticle flows in microchannels." Microfluidics and Nanofluidics 1, no. 2 (December 2, 2004): 177–82. http://dx.doi.org/10.1007/s10404-004-0026-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Tran, Thi Ngoc, Chien Thang Doan, Van Bon Nguyen, Anh Dzung Nguyen, and San-Lang Wang. "Conversion of Fishery Waste to Proteases by Streptomyces speibonae and Their Application in Antioxidant Preparation." Fishes 7, no. 3 (June 14, 2022): 140. http://dx.doi.org/10.3390/fishes7030140.

Full text
Abstract:
Proteinaceous wastes from the fishery process are an abundant renewable resource for the recovery of a variety of high-value products. This work attempted to utilize several proteinaceous wastes to produce proteases using the Streptomyces speibonae TKU048 strain. Among different possible carbon and nitrogen sources, the protease productive activity of S. speibonae TKU048 was optimal on 1% tuna head powder. Further, the casein/gelatin/tuna head powder zymography of the crude enzyme revealed the presence of three/nine/six proteases, respectively. The crude-enzyme cocktail of S. speibonae TKU048 exhibited the best proteolytic activity at 70 °C and pH = 5.8. Sodium dodecyl sulfate strongly enhanced the proteolytic activity of the cocktail, whereas FeCl3, CuSO4, and ethylenediaminetetraacetic acid could completely inhibit the enzyme activity. Additionally, the crude-enzyme cocktail of S. speibonae TKU048 could efficiently enhance the 2,2-diphenyl-1-picrylhydrazyl and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging activities of all tested proteinaceous materials including the head, viscera, and meat of tuna fish; the head, viscera, and meat of tilapia fish; the head, meat, and shell of shrimp; squid pen; crab shell; and soybean. Taken together, S. speibonae TKU048 revealed potential in the reclamation of proteinaceous wastes for protease production and antioxidant preparation.
APA, Harvard, Vancouver, ISO, and other styles
44

Tatun, Nujira, Tippawan Singtripop, Shingo Osugi, Siriluck Nachiangmai, Masafumi Iwami, and Sho Sakurai. "Possible involvement of proteinaceous and non-proteinaceous trehalase inhibitors in the regulation of hemolymph trehalose concentration in Bombyx mori." Applied Entomology and Zoology 44, no. 1 (2009): 85–94. http://dx.doi.org/10.1303/aez.2009.85.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Hendriks, Wiljan, Annika Bourgonje, William Leenders, and Rafael Pulido. "Proteinaceous Regulators and Inhibitors of Protein Tyrosine Phosphatases." Molecules 23, no. 2 (February 12, 2018): 395. http://dx.doi.org/10.3390/molecules23020395.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Tong, P. S., D. M. Barbano, and W. K. Jordan. "Characterization of Proteinaceous Membrane Foulants from Whey Ultrafiltration." Journal of Dairy Science 72, no. 6 (June 1989): 1435–42. http://dx.doi.org/10.3168/jds.s0022-0302(89)79251-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Simakhina, G., and L. Solodko. "Proteinaceous Food Concentrates From Green Mass of Plants." Advanced Science Journal 2015, no. 1 (February 2, 2015): 57–60. http://dx.doi.org/10.15550/asj.2015.01.057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

YOSHINAGA-KIRIAKE, AYA. "Biochemical study on proteinaceous toxins from venomous fish." NIPPON SUISAN GAKKAISHI 88, no. 4 (July 15, 2022): 229–31. http://dx.doi.org/10.2331/suisan.wa2950.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Fernandes, Margarida M., and Artur Cavaco-Paulo. "Protein disulphide isomerase-assisted functionalization of proteinaceous substrates." Biocatalysis and Biotransformation 30, no. 1 (January 23, 2012): 111–24. http://dx.doi.org/10.3109/10242422.2012.646657.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

NAGASHMA, YUJI, and AYA KIRIAKE. "Ⅱ-3. Proteinaceous toxins of venomous scorpaeniform fish." NIPPON SUISAN GAKKAISHI 83, no. 5 (2017): 821. http://dx.doi.org/10.2331/suisan.wa2442-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography